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ON THE SIZES OF THE SETS OF INVARIANT MEANS

BY

TIANXUAN Miao!

1. Introduction and notation

Let G be a locally compact group with a fixed Haar measure A. If G is
compact, we assume A(G) = 1. Let L?(G) be the associated real Lebesgue
spaces (1 < p < ). For each f € L(G) and x € G, ,f € L*(G) is defined
by .f(y) = f(xy), y € G. Let P denote the set of all f € L'(G) with f> 0
and |Ifll; = [5lf(x)|dx = 1. A functional m € L*(G)* is called a mean if
m(1) = 1 and m(f) = 0 for each f € L*(G) with f > 0. We denote the set of
all left invariant means on L*(G) by LIM, ie. all the mean m with
m(.f) =m(f),(x € G, f € L(G)).For ¢ € P and f € L(G), ¢ * f € LY(G)
is defined by

oxf(x) = [@()f(+'x)dt, x€G,

and the set of all topologically left invariant means, i.e. the mean m on
LAG) with m(¢ * f) = m(f) (¢ € P, f € L(G)), is denoted by TLIM. For
any set A, the cardinality of A4 is denoted by |A].

Let CB(G) be the Banach space of continuous bounded functions on G in
the supremum norm. We can define a left invariant mean on CB(G) as in the
case of L*(G). We denote all left invariant means and all topologically left
invariant means on CB(G) by LIM(CB(G)) and TLIM(CB(G)), respectively.
When LIM # ¢, we say that G is amenable. It is well known that any
topologically left invariant mean is left invariant and G is amenable if and
only if one of the following conditions is true: (a) TLIM # ¢. (b)
LIM(CB(G)) # ¢. (¢c) TLIM(CB(G)) # ¢. Also, if G is amenable as a
discrete group, then G is amenable (see [9]).

The size of LIM ~ TLIM was first studied by Granirer [7] and Rudin [18].
They showed independently that LIM ~ TLIM # ¢ if G is nondiscrete and
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54 TIANXUAN MIAO
amenable as a discrete group. Rosenblatt in [16] proved the following:

TueoreMm (Rosenblatt). Let G be a o-compact locally compact group. If G
is nondiscrete and amenable as a discrete group, then there are at least 2°
mutually singular elements of LIM each of which is singular to any element of
TLIM. In particular, |LIM ~ TLIM| > 2°¢.

In Section 2, we use the axiom of choice and Proposition 3.4 of Rosenblatt
in [15] to divide a “small” open dense subset of G into infinitely many
pairwise disjoint P.P. sets, i.e. the set E such that N}_,x;E is not locally null
for any x,, x,,..., x, € G. Then we apply the technique used in Chou [3] to
embed a large set &; into LIM ~ TLIM. This result removes the condition
of o-compact for the above theorem of Rosenblatt (also see [13] Chapter 7).

The study of the size of LIM was initiated in Banach [1], Day [6] and
Granirer [8]. Chou in [4] and [5] proved that |LIM(CB(G))| = 2¢ for any
amenable noncompact locally compact group and |LIM| = 22 for a discrete
infinite amenable group. Lau and Paterson in [11] showed that |TLIM| =
22%¢ ), where d(G) is the smallest cardinality of a cover of G by compact sets.
Since any topologically left invariant mean is left invariant. |LIM| > 22 “©
The general problem remains open (also see Paterson [13] Chapter 7 and
Yang [20]).

In Section 3, we prove that for any noncompact locally compact metrizable
group G, |LIM| = |TLIM|. Since we have already known |TLIM|, this will
give us the cardinality of LIM in this case. We also give examples which show
that without the condition of metrizability this is not the case. Actually,
|LIM| can be as large as we want without changing | TLIM| for some locally
compact group. In this section, we also answer two problems raised by
Rosenblatt in [15] and [17] on whether any @ € LIM which is singular to
every ¢ € TLIM is concentrated on a “small” set of G and whether the
discrete amenability assumption is necessary for a group G where there is an
f € CB(G) and 6 € LIM(CB(G)) with 6(f) =1 and ¢(f) =0 for every
¢ € TLIM(CB(G)). We show that there are such f< CB(G) and 0
LIM(CB(G)) if G = G, X G,, where G, is any noncompact o-compact
nondiscrete group which is amenable as a discrete group and G, is any
amenable group. This confirms Chou’s conjecture LIM(CB(G)) +
TLIM(CB(G)) for any noncompact amenable group in this case.

I am deeply indebted to Professor Anthony T. Lau for his valuable
suggestions and encouragement. This paper will form a part of my Ph.D.
thesis under his supervision.

2. The size of LIM ~ TLIM

Let 2 be the maximal ideal space of L*(G). With the Gelfand topology,
9 is a compact Hausdorff space. The Gelfand transform A is an isometry of
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L*(G) onto C(2), the algebra of real-valued continuous functions on 2 with
the supremum norm. Note that if 8 € 9, L 0 € 9 is defined by L,0(f) =
6(.f) for f€ L*(G) and x € G. Each u € LIM can be 1dent1ﬁed with a
G-invariant probability measure 2 on 2:A(f ) = [.L( f), f € L(G). We say
that two u,, u, € LIM are mutually singular if {4, and {1, are mutually
singular as measures on 2. A A-measurable set E of G is called perma-
nently positive (P.P.) if for any x,, x,,...,x, € G, N’ ,x,E is not locally
null. E is called strictly positive (S.P.) if V' N ﬂ 7-1x;E is not locally null for
all open set V and x;, x,,..., x, € G. Note that if G is o-compact, a set E
is P.P. if and only if

n
A( ﬂx,.E) >0 foranyx;,...,x, €G
i=1

and E is S.P. if and only if

A((nE) "

(see [15] p. 40 for more details).

Throughout this section G will denote a locally compact, noncompact and
nondiscrete group. Let G, be a noncompact o-compact open and closed
subgroup of G (see [14], Proposition 22.24) and let {x ,G,: @ € A} be all the
left cosets of G, in G. Then

> (0 foranyopensetV in G and x, x;,...,x, €G

U xaGO

a€A

is a disjoint union.

DeriNTION 2.1. Let {4, : v € )} be a family of A-measurable subsets of
Go- If y1,75,---,7, € Q, V is an open subset in G, and g{”, g5, .. g(‘) e
G, =1,2,.. n) the set

n m;
=N Negl4,nV,
i=1 k=1 '

the intersection of finite elements of {4, :y € Q}, is called an (FI)-form set
relative to {A:y € Q}. If for any (FI)-form set F relative to {4, :y € O}
we have A(F) > 0, we call {4, :y € O} a strictly positive (S.P.) family in G,.

Lemma 2.2. If {A,:a € A} is an S.P. family in G, and the set A =
U eax,A,, then Ais an S.P. subset of G.
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Proof. For any compact set K of G, there are a,, @,,..., @, € A such
that

n
Kc |Ux,G
i=1

since G, is open. Hence KN4 = U]_(x,4,) N K is A-measurable. By
(11.31) of [10], A is A-measurable. Given an open set ¥V in G and
Xy Xp,..., %, € G, there is an ay € A with VNx, GO#=¢ Let V,, be an
open set in G such that VDo x, VO For each 1 <i <n, thereisa a; € A
such that y; = x_ x x,, € G,. Hence

n n
o NxA=vn ( U xx,4,
i=1 i=1 a€A

n
Dxe Vo N ) x:x,,4

i=1

n
X Vo N N y,.Aai).

i=1

Also, Mx,(VoN N1y, D =AaV,N NL,y;4,) > 0 since {4,:a €
A} is an S. P family in G, Note that VoN NT,y;A, is a subset of G,
which is o-compact. V, N N}_;y;4,, is not locally null and soV N Nx; A
is not a locally null set.

Let V, be an open dense subset of G, with A(V;)) < 1. Then

-1
v=Uvis' = (U

acA a€A

is also an open and dense subset in G. Suppose that V' = U ,,x,4,, then
each A4, is an open dense subset in G,. We shall use Proposition 3.4 of [15]
and the axiom of choice to divide V' into infinitely many disjoint S.P. subsets
as the following.

LemMma 2.3. For each a € A, there are subsets AD, i = 1,2,... in G such
that

.= U A9

i=1

is a disjoint union and for each i > 1, {A®:a € A} is an S.P. family in G,
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Proof. Fix a a, € A. There are disjoint S.P. subsets A and 4% in G,
such that 4, = A9 U A by Proposition 3.4 of [15] since G is o-compact.
Suppose A0 is a subset of °A with a, € Ay Set

(*)

A, {A<°> a €Ay, AD cA,, AD = A, ~ AD such that {AD:a € Ay}
is an S.P. family (i = 0 l) and A(°) N A(l) =0,
AP NAD = ¢ forall @ € Ay}

Let Ao = {@}. We can see that such &7, exists and &7, + ¢. Take a partial
order in the family of all the nonempty ‘MAo as the followmg Put .M < &, 2
if and only if A, C A, and if @ € A,, then AD in o7, is the same as in .M,
for Ay € A and A; € A. Then it is clear that < isa partial order. For each
chain {» :p € 2} put Ag= U ,csAP; then Ag C A and oy € Ay If
a € A, then there is p €3 such that o € AP. Let AD be the same as in
2. Then AQ is well-defined since {&p : p € 3} is a chain. Also it is
clear that (%) is satisfied. Since for any a,, a,,...,a, € A, there is p € 3,
such that o, a,,...,a, € AP, both

{AD:a € Ay} and {AD:a € A}

are S.P. families. Hence &7, ={A9:a € Ay} is an upper bound of
{Aw» : p € 3}. By Zorn’s Lemma, there is a maximal &/, . Claim A = A,. If
not, Yot a € A ~ A, then there are disjoint S.P. subsets V© and V. in G0
such that 4, = V(O) U V9, Put

4D = (VO U 4, 0 AD) ~ 4D,
AP = (v®Pua4, NAP) ~ AQ;
then 4, = AD U AD is a disjoint union and
ADNAD =¢, ADNAD = 6.
Claim
{AD:8 € Ay U {a}}

is an S.P. family. For any (FI)-form set F, relative to {49 : B € Ay} and any
g1, 82> 8m, € Go, since {ADP:B € Ay} is an S. P family and V =
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N g;A, is an open dense subset of G, we have
ml!
0<A|FyN ng,.Afg’gnV)
i=1
md ma
=AMFn NgAD N N g,Aa)
i=1 =1
mﬂ
<A Fon N g(AD nAa))
i=1

ma
= A Fon N &(A49 nA(,S)))

i=1

ma
<AMF,n N g,.A‘f));

i=1

ie. for any (FI)-form set F relative to {AQ:B8 € Ay U {al}, A(F)>0.
Therefore

{A(,?):B €A,V {a}}

is an S.P. family. Similarly, {A(Bl): B € AyU{a}} is an S.P. family in G,.
Therefore

%OU(“‘) = "M)‘o and '%ou(a) # '%\o
which is a contradiction. Hence A = A,,.

Suppose for each a € A, 4, = AP UADP U --- U AY is a disjoint union
and for each 1 <i < n, {A¥:a € A} is an S.P. family. Also, if i # j,

(**) ADNAP =¢ foranya € A.

Note that for each 1 <i < n, AY is an S.P. set in G,.. By Proposition 3.4 of
[15] again, there are S.P. sets A(” 9 and AL D in G, such that A(”) =AY 0
UA("O’ D is a disjoint union. Wlth the similar order and the argument as
above, there is a maximal &7, Ao for every subset A, of A with a;, € A, where
o, = {Ag"") ta € Ay, LD AP, A™D = 4® ~ 400
(AP :a € Ay} isan S.P. family (i = 0,1) and
ATO N ADD = ¢, A N AT = ¢},

Then A, = A. Indeed, if « € A ~ A, by Proposition 3.4 of [15], there are



ON THE SIZES OF THE SETS OF INVARIANT MEANS 59
disjoint S.P. sets V(*® and V(" in G, such that 4™ = V0 y y™D, Pyt
AP0 = (VO UAP N ATY) ~ ATY,

APD = (VD UAP N ALD) ~ AT,
then A = A9 Uy 4™D js a disjoint union and
AT NATD = ¢, AT N A®D = §.
Claim
{AG-9:8 € Ay U {a}}
is an S.P. family. Let F, be a (FI)-form set relative to {A%"”: B € Ay} and

8182+ 5 8m, € G,. Note that V= N/«g,A, is open and F; N
N 728, A% is an (FI)-form set relative to {457 B € A,}. Hence

ma
0<A|FyN n £A%9 N N g,Aa)

=1
<AlFyN 0 g:(A4L” ﬁAa))

ma
“a{Rn (a0 0 409)
i=1

ma
SAMFNn N giAg"O)),
i=1

since

A, =APDUVAP U --- UATD U ATO U ATD,
,0 ) ,0 k) —
AT NATD =¢ and ALO NAD = ¢

if k <n. Hence any (FI)-form set relative to (A(B”'O): B € Ay U {a}} has
positive measure. Therefore

{Ag"o):ﬁ €Ay U {a}}
is an S.P. family. Similarly,

{A(é”l):ﬂ € Ay U {a}}
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is an S.P. family. This contradicts that .MAO is maximal. Therefore, for any
a €A,

Aa =A(;) UA(O%) VR UA("—l) U A®0 UAg"l)
satisfies the property (* *). By induction, we finish the proof. O

LemMA 2.4.  For any nondiscrete locally compact amenable group G, there
are S.P. subsets E, (n = 1,2,... ... ) in G such that E,NE,, = ¢ (n # m)
and y(U5_,E,) <1 for each y € TLIM.

Proof. If G is compact, there is an open dense subset V, in G with
AMV,) < 1 by Proposition 2 of [7]. We can find disjoint S.P. subsets E, of G
such that V, = U%_,E, by Proposition 3.4 of [15]. Since TLIM = {A},
Y(US_1E,) <1 for ¢y € TLIM. We use all the notation as in Lemma 2.3.
Put E, = U _cx,A4A%. Then by Lemma 2.2 and Lemma 2.3 E, is an S.P.
subset in G. Since

UE-(Uxn)

a€A

with A(V,) < 1 (see Lemma 2.3 for 4% and V),

¢:( U E,,) =0<1
n=1
for all ¢ € TLIM by the last proposition of [7]. ]

As in Chou [3], let

#={per®M)*:020,10l = 1and 6(f) = 0

f & I*(N) with lim f(n) = 0}

then BN ~ N C & and | %] = 2°. We are going to prove our first main
result.

THEOREM 2.5. Let G be a nondiscrete locally compact group which is
amenable as a discrete group. Then there exists a positive mapping of L(G)
onto I°(N), say , such that ||m|| = 1 and its conjugate =* is a linear isometry
of I"(N)* into L*(G)* with w*%, C LIM ~ TLIM. Moreover, elements of
7*(BN ~ N) are mutually singular and 7*0 is singular to every ¢ € TLIM for
any 6 € #,.
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Proof. Let {E,:n =1,2,...} be the subsets of Lemma 2.4. Since G is
amenable as a discrete group and E, is an S.P. subset of G there is an
m,, € LIM such that m,(1z) =1 for each n (see [2] p. 48, the proof of
(3) (4)). Define 7 : L°°(G) I”(N) by w(f)(n) = m,(f) for f € L*(G) and
n € N. Then 7 is linear and nonnegative. Since 77(1) =1, and for each
f € L%(G)

l7(F)ll = sup|m,(f)] < lIflle

ll7r|l = 1. For each F € [*(N), define f(x) = F(n) if x € E, and f(x) = 0 if
x ¢ Uy ,E, Then fe L*(G) and w(fXn) =m,(f) =m,f 1) = F(n)
(n €N), ie., m(f) =F and [|fll. = |IFll.. Hence m is onto and =* is a
linear isometry.

For each § € %, m*60 € LIM. Indeed, given f € L*(G) and x € G, since
for each n € N,

T(f)(n) =m,(.f) =m,(f) ==(f)(n)
ie., w(.f) = w(f), we have

7*0(f) = (7. f) = 0(7f) = 7*0(f).

Hence 7*0 is left invariant. Since both 7 and 6 are nonnegative, 7w*6 is
nonnegative. Also, m*0(1) = 6(7r(1)) = 6(1) = 1, hence 7*0 € LIM. Let E
= US_,E,, then

m(1g)(n) =m,(1g) =1 (n €N),

ie, m(l1g) = 1. Hence m*0(15) = 1. By Lemma 2.4, 7m*¢ & TLIM. If G is
not compact then 7*0 is singular to any ¢ € TLIM since sup 7*6c E and
sup ¢ C G ~ E (see [15], p. 35). If G is compact, since m*0(1;.g) = 0 and
MG ~ E) > 0, by Proposition 2.4 and Lemma 2.6 of [15], 7*0 is singular to
A.Let 6,,0, € BN ~ N and 6, # 6,, then ||6, — 6,]| = 2 (see [3], page 208).
Hence

76, — 76, = llm*6, — m*6,1l = 118, — 6,1l = 2.
By the Hahn decomposition theorem, for the signed measure o = m
- m, there are subsets D* and D~ of 9 such that u > 0 on D* and
[.L___S\O on D".Also 2=D*UD™, DN D‘=___¢\.Since el 12,‘||;;671|| =
lm*6,ll =1, and |lull = w(2*) — w(D7), 7*6(D7) =0, w*0,(D*) =0
Hence 7*6, and 7*6, are mutually singular (see [19], p. 134). 0O
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CoROLLARY 2.6. Let G be a nondiscrete locally compact group. If G is
amenable as a discrete group, then there is a subset E C LIM ~ TLIM with
|E| > 2¢ and |lm; — m,|| = 2 for any m,, m, € E. In particular,

|LIM ~ TLIM| > 2¢.

Proof. As in the proof of Theorem 2.5, let E = #*(BN ~ N). Then for
any 6,,0, € BN ~ N,

lr*6, — w*0,ll = ll6, — 8,ll = 2.
Since |BN ~ N| = 2¢, |E| = 2¢. ]

Remark 1. Corollary 2.6 removes the condition of o-compact for Corol-
lary (7.20) of [13].

2. Let V,, be an open dense subset of G, with A(V) < 1. Then V =
U,eaXx, Vo is an open dense subset of G. Since V; can be divided into
disjoint S.P. subsets V{? and V{Y, V can be divided into disjoint S.P. subsets
VO = U, caxV® and VO = U, 4x VP, and so on (see Lemma 2.2).
Therefore we can remove the condition of o-compact for Rosenblatt’s
theorem of Proposition 3.5 of [15].

3. The size of LIM for a noncompact metrizable locally compact group

By comparing |LIM| with |TLIM| for a metrizable noncompact locally
compact group, we obtain the cardinality of LIM as the following (see [13],
Chapter 7).

TuaeoreM 3.1. If G is a metrizable noncompact locally compact amenable
group, then

|LIM| = |TLIM| = 2*"?,

where d(G) is the smallest possible cardinality for a covering of G by compact
subsets.

Proof. Let G, be an open and closed o-compact subgroup of G (see [14],
Proposition 22.24) and let {x,G,: a € A} be all the left cosets of G, in G.
Since G, is o-compact, we can find compact subsets K, of G, such that
K,CK,,, K, #K,,, (n=1,2,...) and Gy = U%_,K,. Let E, = K, ~
K,_; (n=1,2,...), where we assume that K, = ¢. Then E, N E,, = ¢ if
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n # m, E, is A-measurable and E, is compact (n = 1,2,...). Since G, =
UO;=1En’

G= Ux.Go= U U=x,E, = U =x.E,
acA a€An=1 (n,a)eNXA
and
X,E,NxyE,=¢ if(n,a)+(n,a).

We first show that d(G) = |N X A|. Since {xaE,,:(n, a) ENXA}is a
compact cover of G,

d(G) < IN X Al.

To prove that d(G) = IN X A], let € be a compact cover of G with
|€| = d(G) and let

’gn= {Cﬁ (xaiGo):Ce ‘g, al,az,...,anEA

n
with C C UxmiG0 and i = 1,2,...,n}.
i=1

Note that the mapping C N (x,G,) = (C, x4, x,,..., x,) from €, to a
subset of € X {0,1}" is 1-1, where x; =1, x; =0 (j # i). Hence |¢€,| <
| €| = d(G). Since for each C € ¢, there are a;, a,,...,a, € A such that
Cc U x,Go Uj,_1%, is a compact cover of G and

U <
n=1

< |4l = d(G).

Therefore we can assume that for each C € €, there is an a@ € A such that
C cx,G, For each a € A, there is C, € € with C, cx,G,. So the
mapping @ — C, is 1-1 from A to a subset of €. Hence I[N X A| = |A| <
| €] = d(G).

Since |LIM| > 22“? (see [13], p. 274) and LIM c L*(G)*, to show that
|LIM| = 22“° it suffices to show that |[L(G)*| < 22“©,

For any subset E of G, let CB(E) be the set of all continuous functions on
E. For each (n, @) € N X A, since x_E, is compact and metrizable, xE, is
separable and

|CB(xaE,,)] <c.
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Hence

|1 <cINX Al =c-d(G) where F= U CB(x,E).
(n,a)eNxXA

Let f € L*(G) and (n,a) € N X A. By Lusin’s theorem (see [19], p. 55),
for each k € N, there is fi; , o) € & such that

Mx € %, fyo o %) # F(2)} < 7

If A-measurable function g on G such that F = {x € G, f(x) # g(x)} is
locally null, then

MFNx,E)=0

for any (n,a) € N X A, i.e.,

1
)t{x exaEn:f(k,,,,a)(x) #* g(x)} < e

for (k,n,a) ENXN X A. So fqu ., is well-defined. Let mapping ¢:
L[(G) » FNXNXA pe defined by

¢(f) = (f(k,n,a))(k,n,a)eNxNxA‘

Then ¢ is a 1-1 mapping from L*(G) to a subset of & N*NXA Indeed, let
g € L*(G) with f # g. Then there is @ € A such that f +# g on x,G,,. Since
x,Gy = U5 _1x,E,, there is n € N such that f # g on x_E,. Hence there is
k € N such that

Mx €x,E,: f(x) # g(x)} > %

i-([) Stk n, @) # 8k, n, o DY the definition of f, , ., and g , . i€. ¢(f) # d(g).
ence

|L*(G)| <| FVN*A | < (ed(G))H?
since 2 < cd(G) < 249, (cd(G))*® = 24O, Therefore

|L(G)| <249 and |L7(G)*| < 2*“. 0
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CoROLLARY 3.2. Let G be a a-compact metrizable locally compact group.
If G is amenable as a discrete group, then

|LIM ~ TLIM| = 2¢.

Proof. By Corollary 2.6, |LIM ~ TLIM| > 2°. By Theorem 3.1, |LIM ~
TLIM| < 2¢. Hence |LIM ~ TLIM| = 2°. O

As in the proof of Theorem 3.1, we have the following.

TueoreM 3.3. Let G be a locally compact amenable group. If G is
metrizable, then

|LIM(CB(G))| = 1

when G is compact and
ILIM(CB(G))| = 2**”

when G is not compact, where d(G) is the smallest possible cardinality for a
covering of G by compact sets.

Unfortunately, Theorem 3.1 does not hold without the metrizability.

THEOREM 3.4. For any cardinal numbers m, and m,, if m, is infinite, then
there is a locally compact group G such that |LIM| > n, and |TLIM| = 2%™,
Moreover, there is a compact group G with |LIM| > n,.

Proof. Let S be a compact nondiscrete abelian group and let 4 and B be
S.P. subsets in S such that A(4) <1, M(B)<1and A NB = (see [7],
Proposition 2 and [15], Proposition 3.4). Let G, = I1, ., S, where S, = § for
any y € n,. Take a discrete abelian group U with |U| = n,.Let G = U X G,,.
Then G is a nondiscrete abelian group. Note that G, is an open and closed
subgroup of G and {uG, : u € U} is the set of all cosets of G, in G. For each
finite subset A of ; and B € n; ~ A, let

Enp = U u( Il Er)

uelU ‘YEM

where E, =Bif y=8,E,=Aif ye Aand E, =S if y & A U {B)}. Since
I1,c,,E, is an S.P. subset in G, (see [10], 13.22) E, 4, is an S.P. set in G by
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Lemma 2.2. Note that for any B € n,, finite subsets A; of n, ~ {B} and
x,€G(G(=12...,n),

n n
N x:Ex,p 2 N %Eq,p
i=1 i=1

is not locally null since E(A, B) is an S.P. subset, where A = U7_,A,. Also,
the maximal ideal space 2 of G is compact (see the beginning of section 2
and [15], p. 35). Hence the set

Dg= N {;E(A’B):A is a finite subset of n, ~ {B}, x € G}

is a nonempty left invariant and closed subset of 2. By Proposition 3.4 of
[16], there is a left invariant probability measure ppg on Dg. Hence there is
mg € LIM such that 7z = p, (see the beginning of Section 2.IfB,B €n
with g # B/, let A = {B'}, A’ = {B}. Then

Ep,pNEy,py=9

by the definition of E, g. Hence Dy N Dy = & and mg # mg. Therefore
|LIM| > m,. Also, as in the proof of Theorem 3.1, |U| = d(G). Hence

zd(G)

|TLIM| = 2 where d(G) = inf{| €] : € is a compact cover of G}.
If we take U such that |U| =1 or G = G, then G is compact and
ILIM| > n,. 0

Let f e L*(G) and I(f) denote the smallest closed left invariant ideal
containing f. In [15] Rosenblatt showed that if a subset E of G satisfies
ME™1) < 1, then any m € LIM with ker m 2 I(15 . g) is singular to every
¢ € TLIM. He asked if the converse is true and he proved that it is for a
compact group. Our Theorem 3.6 shows that for a class of groups it is not the
case. We need a lemma first.

LemMma 3.5. Let G be a locally compact noncompact group and let G, be
an open and closed compact subgroup of G. If {x,G: a € A} is the set of all
left cosets of G in G and V), is an open dense subset of G, then N}_,x;}V is
not locally null and

n
/\(xaGO NN x,-V) >,

i=1
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for any x;,%,...x, € G and a € A, where V = U ,cpx,V, and ¢,>0
depends on n only.

Proof. For each n, the function A(N7_;x;V) of (x4, x,,...,x,) on the
compact space G§ is continuous. Since A(N7_,x;V;) > 0 for any
(x4, x5,...,x,) €G§ and G§ is compact, there is &, > 0 such that

MNP xVy) = ¢, for any (x, x,,...,x,) €EG). If a € A, foreach1 <i <
n, there is @; € A such that y;, = x7'x;x, € G,. Hence

n n n
x,Go N N xV 2x,Go N (N (x:x,V0) = xao( N yiVO)'
' i=1

i=1 i=1

This implies that

n n
)t(xaGO NN xiV) > /\( N y,-VO) > g,.
i=1

i=1

Therefore N7 ;x,;V is not locally null. a

THEOREM 3.6. If G is an abelian locally compact noncompact group which
contains an open and closed compact subgroup G, then there is an m € LIM
such that m is singular to every ¢ € TLIM and m(1;) = 0 for any subset E of
G with M(E™') < ». In particular, ker m does not contain I(1; . ;) for any
subset E with A(E™1) < 1.

Proof. For each n, we can find an open dense subset V,,0 in G, such that
AV, ) < 1/n (see [7], Proposition 2). Let V, = U ,cax,V,; then V, is an
open dense subset in G (see Lemma 3.5 for a, A and x,).

For each x € G, let x = x, g, for some o, € A and g, € G, then

1
g, *1,(x) = fGIGO(t)l,,n(t‘lx) dt = M(Go N xV;7 1) = MeoWi!) = A(V,,) < -

since G is abelian. Hence for any € TLIM,

1
v(l,) = v(lg,*1y,) < 5

Let I, be the smallest left invariant ideal of L*(G) containing 15 ., and
all 1, for the subset 4 of G with A(A4) < . Then it is clear that

I,=span{f 1.y, +& 14:f, g €L%(G),x€G,AcG
with A(A) < ).



68 TIANXUAN MIAO

Then fn # L*(G). Indeed, for any f € I, there are g,, &,,..., 8, € G and
subset 4 in G such that A(4) < « and

Ifl < Ilfllw( Y lgagy, + 1A)-
i=1

n m
E=(G~(UG~giI/n))~A= N eV, ~A.
i=1

i=1

Since there is ¢,, > 0 such that A(x ,G, N N7,8,V,) = ¢, for any @ € A by
Lemma 3.5, also G is not compact, E is not locally null. Since f =0 on E,
If — 1ll= = 1, i.e., 1 & I,. By Proposition 2.5 of [15], there is an m, € LIM

with kerm, 2 I,. We can assume that V, 2V, 2V;2 --. Let m be a
w*-cluster point of net {m,}. Then there is a subnet {m,, } of {m,} such that

m = limm,,ﬁ in w*-topology.
B

For each n, there is B, such that ng > n for all 8 > B,. Hence

m(G ~V,) = li;nm,,ﬁ(G ~V,) < ﬁlizn;;,,m""(G ~V,) < Blim"mnB(G ~V,,)

=0

ie, m(V,) =1and supm C 17,, If 4 € TLIM, then

d(supm) < §(V,) = ¥(V,) <

for any n. So ¢(sup 7)) = 0 and m is singular to ¢. If A4 is a subset of G
with A(A~1) < o, then A(A4) < «. So

m(A) = limm, (A) = 0.
B
Therefore ker m can not contain I(15 .. ). m]

Liu and Rooji in [12] showed that if G is noncompact, nondiscrete and
amenable as a discrete group, then LIM(CB(G)) + TLIM(CB(G)).
Rosenblatt in [17] showed the following.
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THeorReEM (Rosenblatt). Assume G is a noncompact o-compact nondis-
crete locally compact group which is amenable as a discrete group. Then there
exist f € CB(G) with 0 <f <1 and 6 € LIM(CB(G)) such that 6(f) =1
and y(f) = 0 for any & € TLIM(CB(G)).

And, he asked if the discrete amenability assumption is necessary. Chou in
[4] speculates that if G is noncompact, nondiscrete and amenable, then

LIM(CB(G)) # TLIM(CB(G))

and he showed in [2] that there exist compact groups which are not amenable
as discrete groups such that LIM # TLIM. Since there are amenable groups
which are not amenable as discrete groups, our theorem 3.8 answers the
problem of Rosenblatt negatively and confirms Chou’s conjecture for some
locally compact groups.

DerniTION 3.7. For f € CB(G) with 0 < f < 1, f is called permanently
near one if for any ¢ > 0 and x;, € G (i = 1,2,...,n), there is x, € G such
that

|1 -, f(x)|<e (i=1,2,...,n).

The function f € CB(G) in the theorem of Rosenblatt above can be taken
as a permanently near one function with the property that for any £ > 0
there is a ¢ € P(G) and f,, € CB(G) such that |l¢* f,,|l. <& and the
support of f — f,, is compact.

THEOREM 3.8. Let G, be a noncompact o-compact nondiscrete group
which is amenable as a discrete group. If G, is any amenable locally compact
group and G = G, X G,, then there exist F € CB(G) with 0 < F <1 and
0 € LIM(CB(G)) such that 6(F) =1 and ¢(F)=0 for any ¢ €
TLIM(CB(G)).

Proof. Suppose f; € CB(G,) is a permanently near one function as in
Rosenblatt’s theorem above. Let F;, € CB(G) be defined by Fy(x,y) = fi(x)
for any (x, y) € G and let

H = span{, ,,F — F:(x,y) € G, f € CB(G)}.
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Note that for any (x, y) € G and F € CB(G),

cnF = F = (. F —@nF) + (enF — F)
= [(x,e)(e,y)F) - ((e,y)F)] + [(e,y)F - F]’

where e is the group unit of G; or G,. Hence for any h € H, there are
x; € Gy, ¥; € G,, F, € CB(G), F, € CB(G) and constants @, (i = 1,2,...,n)
such that A = h; + h, where

n

n
h, = .Zlai((x,',e)Fi - F,), h, = Ya ((e y;) F)

i=1

Then [|F;, — hll» > 1. Indeed, for any ¢ > 0, by the Fglner condition argu-
ment, there are x;, € G, A, > 0(k =1,2,..., N) with ©¥_ A, = 1 and

N
Z ’\k(x'k,e)hl <e.
k=1 ©
Hence
N
IE,, — hllo = h)
k= ®
N
woln = L Akooha| — e
k=1 ®
Note that

N N N _
Z k(xy, e)h2 Z a; [(e v ( Z k(x},e) ) - (kz Ak(x},,e)Fi)]
k=1 k= -1
n
= E ai((e,y,»)Ti - Tl)
i=1

whefe T, = chv=1)‘k(x;¢, e_)Fi. Since f; is a permanently near one function and
G, is amenable, there is a x, € G, such that

|1 - fi(x)| <e (k=1,2,...,N)

and m, € LIM(CB(G,)). For any F € CB(G), let F*9 € CB(G,) be de-
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fined by F*9(y) = F(x,, y) for any y € G,. Then

IF;, = hll.

N (JCo) n
= (kzl)‘k(x'k,e)Ff,) - (Z ((e y;)T T))
= i=1

n

2|1 = Lo, ()™ - (1))

i=1

(x o)

0o

- 2¢

©

> mz(l - a(,(T) - (T»"‘*”)) -2

i=1

=1-2e.

Therefore ||F; — hll« > 1 for any h € H.

Let 6 € LIM(CB(G)) such that O(Ff) = 1. For any ¢ € TLIM(CB(G)),
¥(F;) = 0. Indeed, for any & > 0, let f), € CB(G,) and ¢, € P(G,) such
that the support of f,, — f, is compact and ¢, * fy,ll« < €. Take a ¢, €
P(G,). Then ¢ defined by

¢(x,¥) = ei(x)¢a(y) for(x,y) €G

is an element of P(G). Also, for any (x, y) € G,

|‘P*FfM(x’ Y)l =‘chp1(t1)qo2(t2)fM(t[1x)dt1 dty| =|ey* fu(x)| <e,

where F;, € G is defined by F,(x,y) = f,(x) for (x,y) € G. So
llg * F, (0|l < &. Since the support of fy, —f; is compact on G,, the
support of F,, — F;, is contained in C X G, for some compact subset C of
G,. Also, G, is not compact. Hence m(F; )=m(F;) for any m €
LIM(CB(G)). Therefore

‘/J(Ffl) = l//(FfM) = dj(‘P * FfM) <e
for any ¢ € TLIM(CB(G)); i.e., $(F;) = 0
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