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ON THE SIZES OF THE SETS OF INVARIANT MEANS

BY

TIANXUAN MIAO

1. Introduction and notation

Let G be a locally compact group with a fixed Haar measure A. If G is
compact, we assume A(G)= 1. Let L’(G) be the associated real Lebesgue
spaces (1 < p < oo). For each f L(G) and x G, xf L(G) is defined
by xf(Y) f(xy), y G. Let P denote the set of all f LI(G)with f > 0
and Ilflll flf(x)l dr- 1. A functional rn L(G)* is called a mean if
rn(1) 1 and rn(f) > 0 for each f L(G)with f > 0. We denote the set of
all left invariant means on L(G) by LIM, i.e. all the mean rn with
m(xf) m(f), (x G, f L(G)). For q e and f L(G), f L(G)
is defined by

q* f(x) fGq(t)f(t-lx) dt, x e G,

and the set of all topologically left invariant means, i.e. the mean m on
L(G) with m(q f) m(f) (q P, f L(G)), is denoted by TLIM. For
any set A, the cardinality of A is denoted by IZl.

Let CB(G) be the Banach space of continuous bounded functions on G in
the supremum norm. We can define a left invariant mean on CB(G) as in the
case of L(G). We denote all left invariant means and all topologically left
invariant means on CB(G) by LIM(CB(G)) and TLIM(CB(G)), respectively.
When LIM d, we say that G is amenable. It is well known that any
topologically left invariant mean is left invariant and G is amenable if and
only if one of the following conditions is true: (a) TLIM :/,: qb. (b)
LIM(CB(G)) :/: . (c) TLIM(CB(G)) : . Also, if G is amenable as a
discrete group, then G is amenable (see [9]).
The size of LIM TLIM was first studied by Granirer [7] and Rudin [18].

They showed independently that LIM TLIM :/: if G is nondiscrete and
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54 TIANXUAN MIAO

amenable as a discrete group. Rosenblatt in [16] proved the following:

THEOREM (Rosenblatt). Let G be a q-compact locally compact group. If G
is nondiscrete and amenable as a discrete group, then there are at least 2c

mutually singular elements of LIM each of which is singular to any element of
TLIM. In particular, ILIM TLIMI >_ 2c.

In Section 2, we use the axiom of choice and Proposition 3.4 of Rosenblatt
in [15] to divide a "small" open dense subset of G into infinitely many
pairwise disjoint P.P. sets, i.e. the set E such that fl ’= lXE is not locally null
for any x, x2,..., x G. Then we apply the technique used in Chou [3] to
embed a large set ,1 into LIM TLIM. This result removes the condition
of (r-compact for the above theorem of Rosenblatt (also see [13] Chapter 7).
The study of the size of LIM was initiated in Banach [1], Day [6] and

Granirer [8]. Chou in [4] and [5] proved that ILIM(CB(G))I > 2c for any
amenable noncompact locally compact group and ILIMI 2211 for a discrete
infinite amenable group. Lau and Paterson in [11] showed that TLIMI
22a(), where d(G) is the smallest cardinality of a cover of G by compact sets.
Since any topologically left invariant mean is left invariant. ILIMI > 22().
The general problem remains open (also see Paterson [13] Chapter 7 and
Yang [20]).

In Section 3, we prove that for any noncompact locally compact metrizable
group G, ILIMI TLIM[. Since we have already known TLIMI, this will
give us the cardinality of LIM in this case. We also give examples which show
that without the condition of metrizability this is not the case. Actually,
ILIMI can be as large as we want without changing [TLIMI for some locally
compact group. In this section, we also answer two problems raised by
Rosenblatt in [15] and [17] on whether any 0 LIM which is singular to
every q TLIM is concentrated on a "small" set of G and whether the
discrete amenability assumption is necessary for a group G where there is an

f CB(G)and 0 LIM(CB(G))with O(f)= 1 and (f)= 0 for every
TLIM(CB(G)). We show that there are such f CB(G) and 0

LIM(CB(G)) if G--G G2, where G is any noncompact q-compact
nondiscrete group which is amenable as a discrete group and G2 is any
amenable group. This confirms Chou’s conjecture LIM(CB(G)) e:
TLIM(CB(G)) for any noncompact amenable group in this case.

I am deeply indebted to Professor Anthony T. Lau for his valuable
suggestions and encouragement. This paper will form a part of my Ph.D.
thesis under his supervision.

2. The size of LIM TLIM

Let _q be the maximal ideal space of E(G). With the Gelfand topology,. is a compact Hausdorff space. The Gelfand transform A is an isometry of



ON THE SIZES OF THE SETS OF INVARIANT MEANS 55

L(G) onto C(.), the algebra of real-valued continuous functions on . with
the supremum norm. Note that if 0 ., LxO . is defined by LxO(f)
O(f) for f L(G) and x G. Each /z LIM can be identified with a
G-invariant probability measure/2 on ’tz f )= tz(f ), f L(G). We say
that two /Xl,/X 2 LIM are mutually singular if /21 and /22 are mutually
singular as measures on .. A A-measurable set E of G is called perma-
nently positive (P.P.) if for any x, x2,..., x G, n ’lXE is not locally
null. E is called strictly positive (S.P.) if V n ’]= lXgE is not locally null for
all open set V and x 1, x2,..., xn G. Note that if G is g-compact, a set E
is P.P. if and only if

for any Xl, Xn G

and E is S.P. if and only if

(see [15] p. 40 for more details).
Throughout this section G will denote a locally compact, noncompact and

nondiscrete group. Let Go be a noncompact g-compact open and closed
subgroup of G (see [14], Proposition 22.24) and let {xGo:a A} be all the
left cosets of GO in G. Then

G= UxGo
otA

is a disjoint union.

DEFINITION 2.1. Let {Av’y f/} be a family of A-measurable subsets of
Go. If y, Y2,... ’n ’, V is an open subset in GO and gi), g(2i), (i) _.

om

GO (i 1, 2,..., n), the set

n mi

F n n g ki)A , n v,
i=1 k=l

the intersection of finite elements of {A’y f}, is called an (FI)-form set
relative to {A’y }. If for any (FI)-form set F relative to {A’y f}
we have A(F) > 0, we call {At" y 12} a strictly positive (S.P.) family in Go.

LEMMA 2.2. /f {A "a A} is an S.P. family in GO and the set A
U Ax,A, then A is an S.P. subset of G.
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Proof
that

For any compact set K of G, there are al, a2,... an A such

n

Kc UxiGo
i=-1

since GO is open. Hence K N A U ’=a(xiA,,)t3 K is A-measurable. By
(11.31) of [10], A is A-measurable. Given an open set V in G and
Xl, x2,..., x G, there is an a0 A with V XoGo dp. Let Vo be an
open set in Go such that V XoVo. For each 1 < < n, there is a a A
such that Yi xloxiX Go. Hence

n n

V ("I N xia V ("I N U xixotaa
i=1 i=1

n

XotoVo (’ N xix,iA
i=1

Also, A(Xao(V0 =lYiZai)) A(V0 C) f"l r/=lYiAai) > 0 since {A,, "a
A} is an S.P. family in Go. Note that Vo t3 f)’=lYiAi is a subset of GO
which is g-compact. Vo t3 f’l ’= lYiZa, is not locally null and so V t3 f’l ’_- lXiA
is not a locally null set. D

Let Vo be an open dense subset of Go with A(Vo) < 1. Then

v= U v lx21= U x Vo
aA aA

is also an open and dense subset in G. Suppose that V U aAXaAa, then
each A is an open dense subset in G0. We shall use Proposition 3.4 of [15]
and the axiom of choice to divide V into infinitely many disjoint S.P. subsets
as the following.

LEMMA 2.3.
that

For each a A, them are subsetsA), 1, 2,... in GO such

i--1

is a disjoint union and for each >_ 1, {A)’a A} is an S.P. family in Go.
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Proof. Fix a ao A. There are disjoint S.P. subsets A()-o and A.o(1) in Go
such that A.o A()-o tA A.o(1) by Proposition 3.4 of [15] since GO is r-compact.
Suppose Ao is a subset of A with ao Ao. Set

(,)

Ao {A(-)’a Ao. A(-) c A.. A A. A(.) such that {A(./) a Ao)
(o) A(2)= 0.is an S.P. family (i 0, 1) an( Ao

A(1)A)=4)forallaAo

Let Ao {ao}. We can see that such Ao exists and Ao " Take a partial
order in the family of all the nonempty Ao as the following. Put Ao -< A’o
if and only if Ao c A’o and if a Ao, thenA in Ao is the same as in A’o
for Ao c A and o A. Then it is clear that _< is a partial order. For each
chain {A(e):P X}, put Ao O pxA(d’); then Ao c A and ao Ao. If
a Ao, th’en there is p such that a A(6). Let A(,) be the same as in

A(o,). Then A(,) is well-defined since {A(o,)"p } is a chain. Also it is
clear that (,) is satisfied. Since for any a1, a2,..., a Ao, there is p
such that al, a2,... an A(), both

{A(.)’a Ao} and {A(2)’a Ao}

are S.P. families. Hence ’Ao {A(.)’a Ao} is an upper bound of

{A(o.,) :p }. By Zorn’s Lemma, there is a maximal Ao" Claim A Ao. If
not, let a A Ao, then there are disjoint S.P. subsets V.() and V.(1) in GO
such that A. V.() t V.(1). Put

A (ga(0) L) A A(a() A(1)
tXo

A’ (Va(1, I,.J A. t A(.I) A.o.--(o):

then A. A(.) lJ A(.1) is a disjoint union and

(1) (1) (0)A(.) nA.o=(, A. hA.o=4,.

Claim

is an S.P. family. For any (FI)-form set Fo relative to {A)"/3 Ao} and any

g,gE,"’,gm. GO, since {A’I Ao} is an S.P. family and V=
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n r=.l giAa is an open dense subset of Go, we have

( )0<x Fon oi a
i=1

( )A()<, Fon gi a
i--

i.e. for any (FI)-form set F relative to {A()’fl Ao U {a}}, A(F) > 0.
Therefore

is an S.P. family. Similarly, {A)’/3 Ao U {a}} is an S.P. family in Go.
Therefore

Aot,) >- o and Aot-) = Ao
which is a contradiction. Hence A Ao.
Suppose for each a A, A A UA U uAn) is a disjoint union

and for each 1 < < n, {A)" a A} is an S.P. family. Also, .if : j,

( * * ) A(i) nA 4’ for any a AGO

Note that for each 1 < < n, A is an S.P. set in Go. By Proposition 3.4 of
[15] again, there are S.P. sets Ag) and A"g 1) in GO such that Ao) A’g)
u Ag x) is a disjoint union. With the similar order and the argument as
above, there is a maximal Ao for every subset Ao of A with ao Ao, where

{A(an’0)" a Ao, d;ce’a(n’0) c A(an), A(an,1) A(an) An,O)

{A(an’i)’te Ao} is an S.P. family (i 0, 1) and

A(an) o, n A(an, 1, (, A(an)1, n A(an, o, }.
Then Ao A. Indeed, if a A A0, by Proposition 3.4 of [15], there are
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disjoint S.P. sets V’ and Va(n’l) in GO such that A V’> U Va(n’l). Put

A(an’0) (Wa(n’0) u A(an) o A(no o)) A(ano, 1),

A(an’l) (Wa(n,1) u A(an) N A(ano’1)) A(ano’);

then An) An’) U A(an’l) is a disjoint union and

A(an) o) (-) A(an 1) (, A(an) 1) (. A(an o) (

Claim

is an S.P. family. Let Fo be a (FI)-form set relative to {A"’)"/3 Ao} and
gl, gZ,’’’,gm GO" Note that V= f’l=lgA, is open and Fo

m, Ang)i (FI)-form set relative to {A"’)"/3 ao}. Hencefl i= g an

o < Fo n N giA(.n) ) n N gtA,
i=1 /=1

( )< h Fo I gi(A"o’) A,)
i=1

A Fo fl N gi(A")(1 A(.’*’))
i=1

( )<_ Fo n giA(an’O)
i=

since

A. A UA U"" UA’- 1) kJ A(an’O) U A(an’ 1)

A(..o, o) n A(.", 1) (f) and A’o o) n A) =,

if k < n. Hence any (FI)-form set relative to {A"’)’/3 Ao U {a}} has
positive measure. Therefore

{A"’)"/3 Ao U {a}}
is an S.P. family. Similarly,

{A(n’l" Ao U
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is an S.P. family. This contradicts that
aA,

is maximal. Therefore, for any

A, A(.1) UA 0"" A(.’- 1) [..j A(.n,o) U A(.,,, 1)

satisfies the property ( ). By induction, we finish the proof.

LEMMA 2.4. For any nondiscrete locally compact amenable group G, there
are S.P. subsets En (n 1, 2, ) in G such that En 3 Em (n q m)
and (U =lEn) < 1 for each 0 TLIM.

Proof If G is compact, there is an open dense subset Vo in G with
A(V0) < 1 by Proposition 2 of [7]. We can find disjoint S.P. subsets E of G
such that V0 U=IE by Proposition 3.4 of [15]. Since TLIM= {h},
( I,J =lEn) < 1 for TLIM. We use all the notation as in Lemma 2.3.
Put E, U ,AX,A(n). Then by Lemma 2.2 and Lemma 2.3 En is an S.P.
subset in G. Since

n=l aA

with A(V0) < 1 (see Lemma 2.3 for A() and V0),

En =0<1

for all TLIM by the last proposition of [7].

As in Chou [3], let

:0 0, II011 1 and O(f) 0 if

f /(N) with limf(n) O}n

then fin N c 1 and I11 2c. We are going to prove our first main
result.

THEOREM 2.5. Let G be a nondiscrete locally compact group which is
amenable as a discrete group. Then there exists a positive mapping of L(G)
onto/(N), say vr, such that 117rl[ 1 and its conjugate 7r* is a linear isometry
of/(N)* into L(G)* with zr*rl c LIM TLIM. Moreover, elements of
7r*(flN N) are mutually singular and 7r*O is singular to every d/ TLIMfor
any O e z-1
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Proof Let {En:n 1,2,...} be the subsets of Lemma 2.4. Since G is
amenable as a discrete group and En is an S.P. subset of G there is an

m LIM such that mn(le,)= 1 for each n (see [2] p. 48, the proof of
(3) (4)). Define zr" L(G) -o I(N) by 7r(f)(n) m(f) for f L(G) and
n N. Then 7r is linear and nonnegative. Since 7r(1)= l, and for each
f L(G)

 (f)ll sup lmn(f)l < Ilfll
n

I111 1. For each F I(N), define f(x) F(n) if x E and f(x) 0 if
x q [.J=lEn. Then f L(G) and -(f)(n) ran(f) m(f. len) F(n)
(n N), i.e., -(f)= F and Ilflloo- IIFIIoo. Hence 7r is onto and 7r* is a
linear isometry.

For each 0 1, 7r*0 LIM. Indeed, given f L(G) and x G, since
for each n N,

"n’(xf )( n ) mn(xf ) mn( f ) "rr( f )( n)

i.e., 7r(xf) 7r(f), we have

7r*O(xf ) O( Trxf ) O( Trf ) 7r*O( f ).

Hence 7r*0 is left invariant. Since both 7r and 0 are nonnegative, 7r*0 is
nonnegative. Also, 7r* 0(1) 0(zr(1)) 0(1) 1, hence 7r* 0 LIM. Let E

U oO=lE, then

7r(1E) (n) =m,(le) 1 (n.eN),

i.e., 7r(1e) 1. Hence 7r*0(1e) 1. By Lemma 2.4, zr*0 TLIM. If G is
not compact, then 7r* 0 is singular to any TLIM since sup 7r* 0 c E and
sup c G-’ (see [15], p. 35). If G is compact, since r*0(lo~ e) 0 and
A(G E) > 0, by proposition 2.4 and Lemma 2.6 of [15], r*0 is singular to
A. Let 01, 02 N S and 01 4= 02, then 1101 0211 2 (see [3], page 208).
Hence

I]77"01- 7/-’0211 1101- 0211---2.

By the Hahn decomposition theorem, for the signed measure r r*01
7r’02, there are subsets D+ and D- of . such that/z > 0 on D/ and

/z < 0on D- Also _q D+U D-,D+ND-= b. Since I111 2, liar*0111
liar*0211 1, and II/zll --/(+) -/z(D-), 7r*01(D-) 0, "n’*02(D +) 0.
Hence 77"*01 and zr*O2 are mutually singular (see [19], p. 134). []
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COROLLARY 2.6. Let G be a nondiscrete locally compact group. If G is
amenable as a discrete group, then there is a subset E LIM TLIM with
[El >_ 2c and Jim mE[[ 2 for any ml, mE E. Irt particular,

LIM TLIM[ > 2c.

Proof. As in the proof of Theorem 2.5, let E --7r*(/3N N). Then for
any 01, 02 /3N N,

I1’*01 7r*0211 II01 0211 2.

Sincel/3N~NI =2c,lEI >2c.

Remark 1. Corollary 2.6 removes the condition of tr-compact for Corol-
lary (7.20) of [13].

2. Let V0 be an open dense subset of Go with A(V0)< 1. Then V=
u ,AXI/’0 is an open dense subset of G. Since V0 can be divided into
disjoint S.P. subsets 1/0 and V0, F can be divided into disjoint S.P. subsets

V,() and V) U Aa" 0
g(0) U aAXa 0

l/’(1) and so on (see Lemma 2.2).
Therefore we can remove the condition of tr-compact for Rosenblatt’s
theorem of Proposition 3.5 of [15].

3. The size of LIM for a noncompact metrizable locally compact group

By comparing ILIMI with TLIMI for a metrizable noncompact locally
compact group, we obtain the cardinality of LIM as the following (see [13],
Chapter 7).

THEOREM 3.1.
group, then

If G is a metrizable noncompact locally compact amenable

ILIMI TLIMI 22a(),

where d(G) is the smallest possible cardinality for a covering of G by compact
subsets.

Proof. Let Go be an open and closed tr-compact subgroup of G (see [14],
Proposition 22.24) and let {xGo:a A} be all the left cosets of GO in G.
Since GO is a-compact, we can find compact subsets gn of a0 such that
K,, K,, + 1, Kn 4: K+ (n 1, 2,... ) and Go O=1K. Let E K
K,_ (n 1, 2,...), where we assume that Ko $. Then E,, Em $ if
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nm, En

U En-I n

is A-measurable and En is compact (n 1, 2,... ). Since Go

G U xtao U U xotEn U xotEn
aA aA n--1 (n, a)NXA

and

x,E,, t3 x,,E, b if (n, 5) (n’, ).

We first show that d(G)= IN x AI. Since {x,En "(n, a) N A} is a
compact cover of G,

d(G) <_ IN x AI.

To prove that d(G)> IN A I, let a be a compact cover of G with
I’1-- d(G) and let

-d’,, (C f3 (x,,Go)’C , 51,52,...,5n A

withCc UxGoandi--1,2,.",n
i---1

Note that the mapping C 0 (x,,Go) (C, Xl, x2,... Xn) from to a
subset of {0, 1} is 1-1, where x 1, xj 0 (j 4= i). Hence I’nl -<
I’l--d(G). Since for each C ’, there are 51, 52,... 5n A such that
C c U 7= XotiGo, U _-ln is a compact cover of G and

<- I d(G).

Therefore we can assume that for each C , there is an a A such that
Ccx,Go. For each 5A, there is C, with C,,c_x,Go. So the
mapping 5 - C is 1-1 from A to a subset of ’. Hence IN A[ [A[ _<

I*’1 d(G).
2 2d(G)Since ILIM[ > (see [13], p. 274) and LIM

_
L’(G)*, to show that

22d(o)ILIMI 22d(G), it suffices to show that IL(G)*I <
For any subset E of G, let CB(E) be the set of all continuous functions on

E. For each (n, 5) N A, since xaEn is compact and metrizable, x,E,, is
separable and
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Hence

I] < clN AI c.d(G) where -= [,.J CB( x,E,, ).
(n,a)NXA

Let f L’(G) and (n, ,) N A. By Lusin’s theorem (see [19], p. 55),
for each k N, there is f(,,,) such that

1x{x x.Fn" Y(, n,.)(X) f(X) < -.
If A-measurable function g on G such that F {x G, f(x):: g(x)} is
locally null, then

X(F x.e.) 0

for any (n, a) N A, i.e.,

1

for (k, n, a) N N A. So f(k,n, ot) is well-defined. Let mapping
L=(G) __) -NXNXA be defined by

Then (h is a 1-1 mapping from L=(G) to a subset of 9rNNxA. Indeed, let
g L(G)with f 4: g. Then there is a A such that f 4: g on x,Go. Since
x,Go (J ,,=lX,,En, there is n N such that f :/: g on x,E,,. Hence there is
k N such that

2A{x xo,En’f(x) 4: g(x)} >

SO f(k,n,a) ::: g(k,n,a) by the definition of f(k,,,,,) and g(k,n,a), i.e. (h(f) 4: 4)(g).
Hence

IZ(a)l _1A I_ (ca(G)) d()

since 2 < cd(G) < 2d(G), (cd(G))d(G) 2d(G). Therefore

22d(G)IL=(G)I < 2d(6) and IL=(G)*[ < tz
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COROLLARY 3.2. Let G be a tr-compact metrizable locally compact group.

If G is amenable as a discrete group, then

LIM TLIM 2c

Proof. By Corollary 2.6, [LIM TLIM[ > 2c. By Theorem 3.1, [LIM
TLIM[ < 2c. Hence [LIM TLIM[ 2c. r

As in the proof of Theorem 3.1, we have the following.

THEOREM 3.3.
metrizable, then

Let G be a locally compact amenable group. If G is

LIM(CB(G))I 1

when G is compact and

ILIM(CB(G))I 2

when G is not compact, where d(G) is the smallest possible cardinality for a
covering of G by compact sets.

Unfortunately, Theorem 3.1 does not hold without the metrizability.

THEOREM 3.4. For any cardinal numbers 9/1 and 9/2, if 9/2 is infinite, then
there is a locally compact group G such that ILIM[ >_ 9/1 and TLIM] 2272.
Moreover, there is a compact group G with ILIM[ > 9/1.

Proof. Let S be a compact nondiscrete abelian group and let A and B be
S.P. subsets in S such that A(A) < 1, A(B) < 1 and A n B (see [7],
Proposition 2 and [15], Proposition 3.4). Let GO 1-lnlS where Sr S for
any y 9/1. Take a discrete abelian group U with uI 9/2. Let G U G0.

Then G is a nondiscrete abelian group. Note that Go is an open and closed
subgroup of G and {uGo:u U} is the set of all cosets of Go in G. For each
finite subset of r/1 and/3 r/1 A, let

whereEy=Bify=/3, Ey=AifyA andEy=SifyAu{/3}.Since
I-Iv ,Ev is an S.P. subset in Go (see [10], 13.22) Ea,o) is an S.P. set in G by
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Lemma 2.2. Note that for any /3 r/l, finite subsets A of /1 {fl} and
x G (i 1,2,...,n),

n n

i=1 i=1

is not locally null since E(A,/3) is an S.P. subset, where A U =IAi. Also,
the maximal ideal space . of G is compact (see the beginning of section 2
and [15], p. 35). Hence the set

n is a finite subset of */1 {/3}, x G)
is a nonempty left invariant and closed subset of .. By Proposition 3.4 of
[16], there is a left invariant probability measure/ze on De. Hence there is
me LIM such that rhe =/ze (see the beginning of Section 2). If/3,/3’ r/1
with fl /3’, let A {/3’}, A’= {/3}. Then

by the definition of Ea,e. Hence De n Da, and me me,. Therefore
ILIMI > r/1. Also, as in the proof of Theorem 3.1, UI d(G). Hence

TLIMI 22d) where d(G) inf{I is a compact cover of G}.

If we take U such that uI 1 or G G0, then G is compact and
LIM > "01" I

Let f L(G) and I(f) denote the smallest closed left invariant ideal
containing f. In [15] Rosenblatt showed that if a subset E of G satisfies
A(E-1) < 1, then any m LIM with ker rn __. I(1~ e) is singular to every
d/ TLIM. He asked if the converse is true and he proved that it is for a
compact group. Our Theorem 3.6 shows that for a class of groups it is not the
case. We need a lemma first.

LEMMA 3.5. Let G be a locally compact noncompact group and let GO be
an open and closed compact subgroup of G. If {x,Go :a . A} is the set of all
left cosets of GO in G and Vo is an open dense subset of Go, then n ’= XiV is
not locally null and

A x.Go n n XiV en
i=1
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for any XI X2 Xn

depends on n only.
and a A, where V= OAX,,Vo and en > O

Proof. For each n, the function h(f3 7=lXiVo) of (Xl, x2,... Xn) on the
compact space G is continuous. Since h(Cl’___lXiVo) > 0 for any
(Xl, X2,...,xn) G and G is compact, there is en > 0 such that
h(f) ’=lXiVo) > en for any (x 1, x2,..., xn) G. If a A, for each 1 < <
n, there is a A such that Yi X21xix, Go" Hence

n N =- n N (XiXotil/rO) Xao N ryo
i=1 i=1 i=1

This implies that

A xGo N xiV i N YiVo En"
i=1 i=1

Therefore f) ’= lXiV is not locally null.

THEOREM 3.6. If G is an abelian locally compact noncompact group which
contains an open and closed compact subgroup Go, then there is an m LIM
such that m is singular to every q TLIM and m(1E) 0 for any subset E of
G with A(E -1) < oo. In particular, ker m does not contain I(1G~ E) for any
subset E with A(E- 1) < 1.

Proof For each n, we can find an open dense subset Vno in Go such that

A(Vno) < 1/n (see [7], Proposition 2). Let Vn LI AXVno; then Vn is an
open dense subset in G (see Lemma 3.5 for a, A and x).
For each x G, let x X,ogo for some a0 A and go Go, then

1Go*lv(X ) f61oo(t)lv(t-lx) dt A(Go nxVff 1) A(goVo1) A(Vno) < Xn
since G is abelian. Hence for any TLIM,

1
@(lv) @(1o. 1v) < n

Let In be the smallest left invariant ideal of L(G) containing 1G~V,
all 1 for the subset A of G with A(A) < . Then it is clear that

and

In span{f.xl~y,, + g. 1A" f, g e L(G), x e G, A
_
G

with A(A) < }.
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Then In 4: L(G). Indeed, for any f In, there are gx, g2,..., g,, G and
subset A in G such that A(A) < oo and

(m )Ill < Ilflloo E 16~gv. + 1A
i=1

Let

((nG U G
m

A [’] giV A.
i=1

Since there is e > 0 such that A(x,G0 f’l = giVn) >- em for any a A by
Lemma 3.5, also G is not compact, E is not locally null. Since f 0 on E,
IIf- 111oo > 1, i.e., 1 /7,. By Proposition 2.5 of [15], there is an m,, LIM
with kerm,

___ ,. We can assume that V
_

V2
_

V3
_

"". Let m be a
w*-cluster point of net {ran}. Then there is a subnet {m,} of {ran} such that

rn limrn in w*-topology.
/3 n#

For each n, there is/3n such that n > n for all/3 > fin. Hence

m(G Vn) limmn(G Vn) <

=0

lim mn(G Vn) -< lim tuna(G Vn)
/3>/3.

i.e., m(Vn) 1 and sup th
__
ln. If q TLIM, then

q(sup th) _<
1

q’(Vn) < n

for any n. So (sup th) 0 and rn is singular to 0. If A is a subset of G
with A(A -1) < 0% then A(A) < oo. So

m(A) limmn(A) 0.

Therefore ker rn can not contain I(1G~ A)"

Liu and Rooji in [12] showed that if G is noncompact, nondiscrete and
amenable as a discrete group, then LIM(CB(G)) 4= TLIM(CB(G)).
Rosenblatt in [17] showed the following.
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THEOREM (Rosenblatt). Assume G is a noncompact g-compact nondis-
crete locally compact group which is amenable as a discrete group. Then there
exist f CB(G) with 0 <_ f <_ 1 and 0 LIM(CB(G)) such that O(f)= 1
and @(f) 0 for any , TLIM(CB(G)).

And, he asked if the discrete amenability assumption is necessary. Chou in
[4] speculates that if G is noncompact, nondiscrete and amenable, then

LIM(CB(G)) : TLIM(CB(G))

and he showed in [2] that there exist compact groups which are not amenable
as discrete groups such that LIM : TLIM. Since there are amenable groups
which are not amenable as discrete groups, our theorem 3.8 answers the
problem of Rosenblatt negatively and confirms Chou’s conjecture for some
locally compact groups.

DEFINITION 3.7. For f CB(G)with 0 _< f _< 1, f is called permanently
near one if for any e > 0 and x G (i 1,2,...,n), there is x0 G such
that

I1 -xif(xo) < 8 (i 1,2,...,n).

The function f CB(G) in the theorem of Rosenblatt above can be taken
as a permanently near one function with the property that for any e > 0
there is a q P(G) and fM CB(G) such that I1 * fMIIoo < e and the
support of f fM is compact.

THEOREM 3.8. Let G be a noncompact tr-compact nondiscrete group
which is amenable as a discrete group. If G2 is any amenable locally compact
group and G G )< G2, then there exist F CB(G) with 0 <_ F <_ 1 and
0 LIM(CB(G)) such that O(F)= 1 and (F)= 0 for any
TLIM(CB(G)).

Proof Suppose fl CB(G1) is a permanently near one function as in
Rosenblatt’s theorem above. Let Ffl CB(G) be defined by Ffl(x, y) fl(x)
for any (x, y) G and let

H span{(x,y)F F’(x, y) G, f CB(G)}.
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Note that for any (x, y) G and F CB(G),

(x, y)F F ((x, y)F -(e, y,F) + (,e, y)F F)

[(x,)(,y)F)- ((e,y)F)] + [(,y)F- F],

where e is the group unit of G_I or G2. Hence for any h H, there are

Xi G1, Yi " G2, Fi " CB(G), F CB(G) and constants a (i 1, 2,..., n)
such that h h d- h E where

n n

hi E Ri(‘x,,e)Fi Fi), h2 E Ri(‘e,yi)ff/ if/)"
i=1 i=1

Then Ilgfl h Iloo 1. Indeed, for any e > 0, by the. FOlner condition argu-
ment, there are x, G, Ak > 0 (k 1,2,..., N)with E__IAk 1 and

Z ’k(xk, e)hl
k---

Hence

IIF I

Note that

N

E Ak(X’k, e)h2
k=l

-, a (e, yi) Z /k(x’, e)ffi
i=1 k=l

n

E ai((e, yi)Ti Ti)
i=1

(N )Z ’Ak(X’k,e)i
k=l

where T/= Ev__ 1,,k(x,k,e). Since fl is a permanently near one function and
G2 is amenable, there is a xo G such that

I1-,If1(xo) [<e (k=l,2,...,N)

and m2 LIM(CB(G2)). For any F CB(G), let F(xo) CB(G2) be de-
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fined by F(X0>(y) F(x0, y) for any y G2. Then

k--1

>_ 1 E ag y,(T/)(x- (Ti)( 2

>. m2 ( n )1- ai(y(Ti)(x- (T/)() 2e
i=1

=1-2e.

Therefore IIF- h Iloo 1 for any h H.
Let 0 LIM(CB(G)) such that O(F,1) 1. For any O TLIM(CB(G)),

6(Fq) 0. Indeed, for any e > 0, let fM CB(G1) and ql P(G1) such
that the support of ft- fl is compact and I1 * fnlloo < e. Take a 02

P(G2). Then tO defined by

(X, y) q)l(X)q2(Y) for (x, y) G

is an element of P(G). Also, for any (x, y) G,

fGql( tl)q2( t2) fM(t{ lx) dtl dt2

where FfM G is defined by FfM(x,y)---ft(x) for (x,y) G. So
I1* F,(x)lloo < e. Since the support of fu-fl is compact on G1, the
support of F/u- F/I is contained in C G2 for some compact subset C of
Gx. Also, G is not compact. Hence m(Fu)= re(F:) for any m
LIM(CB(G)). Therefore

for any ff TLIM(CB(G)); i.e., (Ffl) 0o
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