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Introduction

By a surface we shall always mean a closed connected compact orientable
2 manifold. For G a finite group, the symmetric genus or(G) of G is, by
definition, the least integer g such that there exists a surface of genus g on
which G acts in a conformal manner. It is well known that any such action of
G on a surface S must be accompanied by an orientation-preserving action of
Go on S, where GO is a subgroup of index at most 2 in G. In particular, if G
is simple, its conformal action on S must be orientation-preserving. In this
case we have tr(G)= tr(G), where tr(G) denotes the strong symmetric
genus of G, defined to be the least integer g such that there is a surface of
genus g on which G acts in an orientation-preserving manner.

In this paper we determine the symmetric genus of the Higman-Sims
sporadic group HS and substantially improve existing bounds for the spo-
radic groups COl and Co2 of Conway. To do this we rely on the theory of
triangular tesselations of the hyperbolic plane (e.g. see [2], [3], [4]), as well as
a theorem of Tucker on partial presentations of groups which admit cellularly
embedded Cayley graphs in surfaces of prescribed genus (see [7]). This
reduces the problem to one of group generation, which can be handled in
principal by computing relevant structure constants for the group, as well as
for a variety of its subgroups, by means of character tables. (See [9] for
additional details on all of the above remarks.) Throughout, we adopt the
notation used in [1] and [8]. In particular, Aa(K,K2, K3) denotes the
structure constant whose value is the cardinality of the set

{(a, b)" a K1, b K2, ab c},

where c is a fixed element of the conjugate class K3 Of G. Also all conjugate
classes are understood to be G-classes unless otherwise inferred.
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1. The Higman-Sims group

In [8] it was shown that G HS could be generated by two elements, of
respective orders 2 and 3, whose product was of order 11, i.e. that G is
(2, 3, l l)-generated. This sufficed to prove that

r(G) < 1 + &IGI(12 2 3 680001.

It was also proved there that G could not be (2, 3, 7)-generated, giving the
lower bound

o-(G) > 1 +-XlGl(12 2 924001.

In fact the only possible values for tr(G) are

1+ &l G(12 rl sl 1)t
where

(r,s,t) {(2,3,8),(2,4,5),(2,3,10),(2,3,11)}.

In this section we eliminate the first three possibilities, proving that tr(G)
1680001.
By a theorem of Ree on permutations [5] applied to the rank 3 action of G

on the 22-regular graph on 100 vertices, we see that G cannot be (2, 3, 8)-
generated, and that (2, 4, 5)- and (2, 3, 10)-generation can arise only from the
following class structures:

(2B, 4A, 5A), (2B, 4A, 5B), (2B, 4C, 5A), (2B, 4C, 5B),
(2B, 3A, 10A), (2B, 3A, 10B).

Computing the structure constants AG(K1, K2, K3) for the relevant classes
KI, K2 and K3, we see that A(K1, KE, K3) exceeds the order of the
centralizer C(z), z g3, only for the constant

AG(2B, 3A, 10B) 70.

Thus G can only be (2B, 3A, lOB)-generated (see [8]). But a maximal
U3(5) 2 contributes a value of 25 to this constant. There are two classes of
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U3(5)’2 in G; choose representatives U and W with t U N W N 10B.
Then it is easy to show that

UW 51+2"8"2,+

whence U W contributes a total value of 50. But the centralizer in
Aut(G)---HS" 2 of a 10B element is of order 40. This means that any
(2B, 3A, 10B)-subgroup of G, not contained in a U3(5)" 2, must have nontriv-
ial centralizer in Aut(G). We conclude that G cannot be (2B, 3A, 10B)-gen-
erated.

2. Conway’s group CO

The best previous known bounds for the symmetric genus of G Co are

1 + &IGI(12 3 ) < tr(G) < 1 + IlGI(1 2)2 2

(See [8], where (2,3,23)-generation and (2,3, 7)-non-generation are estab-
lished.) Presently, we prove G is (2, 3, ll)-generated, which lowers the upper
bound to 1 + IG[(1 2 3 1-11)"

Let h A(2C, 3D, 11A). We compute h 18546 and observe that the
only maximal subgroups of G which meet each of the classes 2C, 3D and
11A are 211" M24 Co and 36"2M12. The contribution of each of these
classes of groups to the full structure constant h is handled in a separate
lemma.

LEMMA A. Let z llA. Then z is contained in precisely six distinct
conjugates of V" K 211" M24 in G, each of which contributes at most 1122
to h. Thus the total contribution from the class {211" M24} is at most 6732.

Proof We apply the method of little groups (see [6]) to obtain vital
information on the characters of V" K. First observe that the action of K on
the irreducible characters Irr(V) of V is contragredient to that of K on V.
Thus Irr(V): K is the splitting extension of 211 by M24 which occurs in
Janko’s sporadic group J4. This means that K has three orbits on Irr(V) of
respective sizes 1, 276 and 1771. As 11 divides 1771, which in turn divides the
degree of all irreducible characters of VK which induce from 211:26:3"$6,
such characters vanish at z so may be ignored in the structure constant
computation. Consider next characters which induce to VK irreducibly from
211" M22 2. As 211" M22 2 fails to meet 3D, all such characters vanish on
this conjugate class, so too may be ignored. This leaves only the faithless
characters of VK, i.e., those irreducible characters with V in their kernel. Let
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b and c represent the two K-classes of elements of order 2, with b Sylow-
central. It is immediate from the permutation character corresponding to the
action of K on 1/" that IC(b)l 27 and IC(c)l 26. (Note that the two
inequivalent irreducible actions of M24 on 211 admit the same permutation
character.) Thus the coset l/’b contains precisely 27 involutions of which 24

are conjugate to b, while l/c contains precisely 26 involutions of which 25 are
conjugate to c. Moreover, the remaining involutions in l/’b are fused under
I/P where P is a Sylow 7-subgroup of Cr(b), while the remaining involutions
in l/’c are fused under I/. By character restriction we see that b 2A. We
assume the worst case, i.e., that the three remaining classes of involutions in
I/K\ l/all fuse to 2C in G. Letting [g] denote the l/K-class which contains
g, we now compute

A t,r([ c], ], z ]) 484

Azr([eb],[t],[z]) 154

A r’r([ elC ], t ], z ]) 484

where represents the unique l/K-class which meets 3D, and [eb] and [elc]
are the aforementioned l/-classes which differ from [b] and [c]. This gives
the value of 1122 as the maximal contribution of I/K to A. As the distinct
l/K-classes z and z- fuse in G, and as Ct,r(z)l 22 and C6(z)l 66,
z is in precisely six distinct conjugates of I/K. The result follows.

LEMMA B. z 11A is in precisely three distinct conjugates of C Co3 in
G, each of which contributes 671 to A. Thus the total contribution from the
class {Co3} is at most 2013.

Proof. That z is in three distinct conjugates of C is immediate as
Cc(z)l 22. By character restriction each of 2C and 3D are seen to meet C
in a single class (these C-classes are denoted 2B and 3C in [1]), and we let x
and y be respective representatives. Then

Ac([X ], [y], [z]) 671

and the result follows.

LEMMA C. z llA is in a unique conjugate of E" M = 36"2M12, which
contributes at most 891 to A.

Proof. We assume zM and that (t)=Z(M). For x,yM with
x 2C and y of order 3, we have AM([X ], y ], Z ]) 0 if y is Sylow-central
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in M (in which case y 3B) and AM([X], [y], [z]) 11 otherwise (in which
case y 3D). Now let a, b EM with a 2C, b 3D, ab z. Then it is
easy to show that a eg, b eh (e E, g, h M) and that g and h have
respective orders 2 and 3. (Note that M has no element of order 9.) One also
sees that g inverts e and so gh z. As e ag, g is conjugate to a in
(a, g)---S3, whence g 2C. Since gh z we now conclude from our
opening remarks that h 3D. This establishes that the number of pairs
(a, b) with a, b EM, a 2C, b 3D and ab z is bounded above by
11k where

k I{e E" g inverts e}l.

(Note that k does not depend on g as M has a unique class of involutions,
distinct from [t], which fuses to 2C in G.) But, as M is perfect, each of its
elements acts with determinant 1 on E, hence inverts an even dimensional
subspace of E. As g does not act as -I on E, k < 81. The result now
follows.

By Lemmas A, B and C, we see that the total contribution of the classes
{211" M24}, {Co3} and {36 2M12} to the full structure constant h 18546 is at
most 7392. This proves that Co is (2,3, ll)-generated.

3. Conway’s group Co2

As in the case of Co 1, the best previous known bounds for tr(G), G Co2,

arise from (2, 3, 23)-generation and (2, 3, 7)-non-generation of G, established
in [8]. So again it is the case that

1 + 1/21GI(1 2 ) < trG < 1 + 1/2IGI(1 z 3 -3),

and again we lower the upper bound to 1 + [G[(1 : 1) by
establishing (2, 3, ll)-generation. Only here the task is much simpler.
We compute A(2C, 3A, llA)= 55 and observe that the only maximal

subgroups of G which have order divisible by 11 are U6(2)" 2, 21’M22"2,
McL, HS" 2 and M23. Clearly then, any proper (2, 3, ll)-subgroup of G must
lie in one of U6(2), 21" M22, McL, HS or M:3. But 21" M22, HS and M:
each fails to meet 3A, while McL fails to meet 2C. One easily checks that
U6(2) meets each of 2C and 3A in a single class (these classes are denoted by
2C and 3B in [1], respectively). An easy computation reveals that
Au(2C, 3B, 11A) 0. Thus G has no proper (2C, 3B, 11A)-subgroup, so is
itself (2, 3, 11)-generated.
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