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THOMAS S. SALISBURY

1. Introduction

Bi-Brownian motion is the process Z(s, t) (X(s), Y(t)), where X and Y
are independent d-dimensional Brownian motions started from 0. Here
d >_ 3. Studying a pair of Brownian motions as a two-parameter process has
proved useful both in probability (for example path intersections--see [DS]
or [FS]) and analysis (see [GS] or [W1]).

Estimates of the hitting probabilities for Z were given in [FS]. They use
capacity (defined analytically) for the kernel u v (R) v, where v(x, y)
c(d)lx y[E-d is the Green function for Brownian motion. In other words, if
z (x, y) and z’ (x’, y’) then

u( z, z’) v( x, x’)v( y, y’).

While the capacity theory for u behaves well (see also [F] and [O]), the same
cannot be said for other potential theoretic objects involving u. The principal
cause is that the maximum principle fails badly (see 4). Since the maximum
principle is closely tied to the strong Markov property this failure is not
unexpected. It is however possible to retain it in a weakened form.
We will establish a "low-intensity" version of the bounded maximum

principle for Z, to the effect that if U/ fu(., z)(dz) is bounded on K and
0 is far from K, in the sense that the probability of hitting K starting from 0
is small, then U/x(O) can’t be large. This would not be hard if "far" were
interpreted using the Euclidean distance. In contrast, our condition can be
thought of as allowing K to be thin at (in a fairly stringent sense). This
permits consideration of sets like thorns or fractal dusts, and forces us to
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achieve a deeper understanding of the issues involved. Our formal statement
is:

(1.1) THEOREM. There exist 1 > 0 and c2 > 0 such that if tz(Kc) 0,
Utx <_ 1 on K, and P(Z hits K) <_ c1 then

Up(O) < c2P(Z hits K).

We will not keep track of the values of the constants. This could in fact be
done, but it is not expected that the values obtained would be of the correct
order of magnitude. In 4 we will consider the following conjecture:

(1.2) U(O) _< log(1/P(Z misses K)).

There we will show by example that if the conjecture is true then it is sharp,
in which case the optimal c2 would be c-1 log((1 cl)-1).
The main argument is given in 2. It uses preliminary estimates, postponed

to 3, that follow from results of [FS]. For completeness, the relevant
arguments of the latter are given in {}3, adapted to the present setting.

2. The maximum principle

We prove Theorem (1.1) using a good point/bad point argument. Loosely,
a point z is good if, conditional on Z hitting z, it is unlikely that Z will hit K
except near z. For example, let d 3 and e (1, 1, 1). Then z--(e, e)
might be considered a good point of the set

D={(e+x,e-x);Ixkl 1
but a bad point of the set

D {(x, y); 0 < xk < 2Vk, ly el < 10-1}.
Figure 1 gives such sets D schematically. Each class of points requires its
own energy-related estimate, proved in 3.
We write B(r) for the open ball in Rd with centre 0 and radius r. As in 1,

P will be a probability under which X and Y are independent Brownian
motions, both started at the origin 0, and Z(s, t)= (X(s), Y(t)). We may
assume that Z is realised on an appropriate path space, so that the shift
operators 0(.) are at our disposal. Of course there are two shifts possible,
one for each parameter, but it will be clear from the context which is meant.
We will also use probabilities Pf Pf’ for z (x, y) and J {0, 1}.

Under px, , X and Y are independent, and start at x and y respectively. If
0 J then X is a Brownian motion, but if 0 J then X is an h-transform of
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FIG. 1.

Brownian motion by h v(., 0). The time reversal

0 _< s <

(where L is the last exit time of X from B(r))will be such an h-transform
under P, started uniformly on OB(r)see [Do]. Likewise, is an h-trans-
form or a Brownian motion under pz depending on whether 1 is or is not inJ
J. We use a similar notation Pf if the initial law (that of (X(0), Y(0))) is v. In
either case, we drop the subscript if J .
Throughout this section, we assume that (Kc) 0 and U/x < 1 on K.

Since Z has continuous paths and U/x is lower semi-continuous (it is a
potential for 2d-dimensional Brownian motion), we will assume without loss
of generality that K is closed. Let R(i) be the closure of [B(2zi+l) \B(22i)],
R(i, j) R(i) R(j), and R U{R(i, j); i, j Z} (see Figure 2). Until the
very end of this section, we’ll restrict attention to K satisfying K c R.

(2.2) LEMMA.
(a) If K c R(i ) then P(Z his K) > cfu(O z)l.(dz).
(b) If K cA x Re and A c R(i) then P(X hits A) >_ cju(O Z)l(dz).

Ixl

FIG. 2.



4 THOMAS S. SALISBURY

Note. Here and in the future, c denotes a generic constant, possibly
depending on d but not on K, i, j or other parameters. Its value may change
from line to line.

Proof. (a) Take v to be the product of uniform probabilities on OB(22i+ 1)
and OB(22J+ 1). Set

e(Ix) ffu( z, z’)tz(dz)l(dz’).

Then e(/z) </z(K) since U/z < 1 on K. Renormalize/z to give a probability
measure /z’ =/x(K)-l/z. By (3.1) and the strong Markov property of X
and Y,

P( Z hits K) > P ( Z hits K)

> c(22i+122j+1)2-Cl/e(tz’ )
2(2-d)[(2i+ 1)+(2j+ 1)l/./,( K)2/e(

> C2(2-d)[(2i+ 1)+(2j+ 1)]/./,(K)

cfu(O, dz),

showing (a).
(b) Let v r/ o, where r/is the uniform probability on 0B(22i+ 1). Then

by (3.4),

P(X hits A) >_ P(Z hits K)

c22-d2i+ l)fv(O, y)lz( dx, dy)

>_ cfu(o,
showing (b). t3

Write K(i, j) for K f’l R(i, j) and K(/’) for U{K(i’, j’); i’, j’ Z, (i’, j’) 4.

(i, j)}. The following would be easy if there were any good strong Markov
property for Z.

(2.3) LEMMA. Suppose that K c R, and that

(2.4) Pf (Z hits K(, j)) <_ 0 VzeK(i,j), VJc{O, 1}.



MAXIMUM PRINCIPLE 5

Then

P(Z hits K(i,j) andK(,j)) < cOP(Zhits K(i,j)).

Proof Consider first

(2.5) K’= [,.J K(i’,j’)
i’,j’Z,j’>j

p P(=Is < s’, < t’ s.t. Z(s,t) K(i,j), Z(s’,t’) K’).

Let

T= inf{t > 0; IY(t)l- 3.22i} and r’= inf{t > 0; IY(t)l- 22i+1}.

Let T’(0) 0,

T(n) T’(n) + To O(T’(n)), T’(n + 1) T(n) + T’oO(T(n)).

Then Z(s, t) can be in K(i, j) only if t is in some interval [T’(n), T(n)]. We
know that P(T(n)< )= (3/2)"2-d and that Y(T’(n)) is uniform when
T(n) is conditioned to be finite. Set

or(n) inf{s > 0; :It [T’(n), r(n)] s.t. Z(s,t) K(i,j)},
-(n) inf{t > T’(n); Z(tr(n),t) K(i,j)}.

Suppose that s, t, s’, t’ are as in (2.5). Let t [T’(n), T(n)]. Then
or(n) < s < s’ and -(n) < T(n) < t’. As a consequence,

P < E P(tr(n) < o, T(n) < , Z hits K’ during [cr(n), oo[ IT(n),
n>0

But (tr(n), T(n)) is a stopping point. That is,

{or(n) < s, r(n) < t} cr{Z(s’,t’); s’ < s, t’ < t}.

At such two-parameter times, Z has the strong Markov property. To see this,
just approximate from the upper right by discrete stopping points, as in the
one-parameter case. See [M] or [W2] for a discussion of the general two-
parameter theory. Now

P(cr(n) < , T(n) < o, Z hits K’ during [cr(n),
P(tr(n) < o, T(n) < o, pX(’(n)),Y(T(n))(Z hits K’)).

But harmonic measure for B(22i+2) starting from Y(T(n)) is bounded by a
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constant multiple of that starting from Y(z(n)). Therefore

(2.6) Px(’(n))’Y(T(n))(Z hits K’) <_ cpX(’mO)’Y(’("))(Z hits K’) < cO,

and hence

P(tr(n) < oo, T(n) < oo, Z hits K’ during [tr(n), oo[ IT(n),
< cOP(it(n) <

By the strong Markov property of Y at T’(n) the latter equals

cO(3/2)n(2-d)P(Z hits K(i, j) during [0, oo[ IT’, T])
<_ cO(3/2)n(2-d)P( Z hits K(i, j)),

if n > 1, with a similar inequality for n 0. Summing, we get

p < cOP(Z hits K(i, j)).

Similar arguments give that each of

P(=ls > s’, < t’ s.t. Z(a,t) K(i,j), Z(s’,t’) K’)
P(s < s’, t > t’ s.t. Z(s,t) K(i,j), Z(s’,t’) K’)
P(:ls > s’, > t’ s.t. Z(s,t) K(i,j), Z(s’,t’) K’)

is bounded by cOP(Z hits K(i, j)). In each case we first reverse time for one
or both of X, Y and in (2.6) use our hypothesis on P] for some J c {0, 1}
other than J . For example, to handle the first of these, we reverse X
from its last exit from B(22i/ 1) and apply the preceding argument to ,
which is now a v(., 0)-transform started uniformly on OB(22i/l)see (2.1).
Combining these four bounds, we get such a bound on

P(Z hits K(i, j) and K’).

Similar arguments apply if K’ is replaced by LJ{K(i’,j’); j’ <j}, or
13 {K(i’, j’); i’ > i}, or LI {K(i’, j’); i’ < i}. Combining the bounds obtained
yields the lemma, rq

Proof of (1.1).
holds then

By Lemma (2.3), we may choose 0 so small that if (2.4)

P(Z hits K(i, j) but misses K(/))
> P(Z hits K(i,j)) P(Z hits K(i,j) and K(/))
>_ cP( Z hits K( i, j) ).
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Fix such a 0 and let

j z j’ :j

Then

(2.7) U/x(0) < fu(O,z)lx(dz) + E
Jc{O, 1}

(o, z ) .( )

J:{o, )

But (2.4) holds for G, so by Lemma (2.3) and (a)of Lemma (2.2),

(2.8) fGu(O,z)lx(dz) < c E P(Z hits G(i,j))
i,jZ

< c P(Z hits G(i, j) but misses G(/))
i,jZ

<_ cP( Z hits K).

For the time being, fix J and let

A(i) {x; ::ly s.t. (x, y) a(;i)},
A= .JA(i).

iZ

Harmonic measure for {y; 22j-1 < [y[ < 22j+2}, starting from any y R(j),
is bounded by a constant times that starting from any other y’ R(j). Let T
be the first time Y hits R(j). If (x, y) a(; i) and y R(j) then by the
strong Markov property of Y at T,

0/8 "< Px’Y(Z hits K(/’))
<_ cpx,(Px,gr)(Z hits K(/")))
< cpx’(Z hits K).
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Let S inf{s > 0; X(s) A}. Then by the strong Markov property, now
of X,

P( Z hits K) > P(X hits A, Px(s),o ( Z hits K))
> cooP(X hits A)

for some constant Coo > 0. A simple argument using the strong Markov
property of X shows that there is a co > 0 such that

P(X hits A(i)IX misses A(j) tj < i) > coP(X hits A(i)).

Thus

P(X misses A) < I-’I (1 coP(x hits A(i)).
iz

Now let c be a constant less than Coo. Use (b) of Lemma (2.2) and the
inequality

r < log(l/[1 r ])

such thatto get a constant C2

f,()u(O, z)tz(dz) < c _. P(X hits A(i))
iz

_< c E log(l/[1 coP(X hits A(i))])
iz

_< c log( 1/P(X misses A) )
_< c log(1/[ 1 clp(Z hits K)] )
<_ c’2P(Z hits K) if P(Z hits K) < C1.

The same inequality holds for/3(0). By reversing time for one or both of
X, Y, similar inequalities can be proven for arbitrary a(J), 13(J). Together
with (2.7) and (2.8), these give constants c and c2 for which the theorem
holds, at least for K c R. By scaling, we have it as well for

K c {(x, y); (2x, y) R) or

((x, y); (x, 2y) R), or {(x, y); (2x, 2y) R).

Dividing (resp. multiplying) these c (resp. C2) by four then gives the general
result, r3
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3. Energy

The following result is an immediate consequence of Theorem 4.16 of [FS].
For completeness, we give a direct proof. Recall that

e(lz) ffu(z,z’)tz(dz)lz(dz’) and v(x,x’) c(d)lx x’l 2-d.

(3.1) PROPOSITION. Let K c B(q) B(r), and let v be the uniform proba-
bility on OB(q) OB(r). Then

P(Z hits K) >_ 4-1c(d)E(qr)E-a/I(K),

where

I(K) inf{e(/z); tz(Kc) 0,/z(K) 1}.

Note. The principal result of [FS] was a general reverse inequality, but
this is not needed for our purposes. The argument uses ideas of Murali Rao
IRa] and E.B. Dynkin [Dy]. See also [E] and [Ro].

Proof Without loss of generality, K is compact. Let K(e) be the set of
points within distance e of K, and choose e so small that K(e) c B(q) B(r).
Fix a measure /x satisfying tz(Kc) 0 and /z(K)--1. Without loss of
generality e(/z) < oo. Let

g(x, y) clt0,(Ixl)lt0,(lyl ),

where c is chosen to make g integrate to 1, and then let

Then it is easily checked that

e(lz) ffu,(z, z’)lz(dz)lz(dz’).
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Since v is superharmonic in both components, v ? v as e $ 0. Thus e(/z)
e(/z) by monotone convergence. Simple computations also show that

(3.2)

f’" fL< , y)L<x’, y’)[v(a,x)v(b, y)v(x,x’)v(y, y’)

+v(a,x)v(b, y’)v(x,x’)v(y’, y) + v(a,x’)v(b, y)v(x’,x)v(y, y’)

+v(a,x’)v(b, y’)v(x’,x)v(y’, y)]u(da)u(db) dxdydx’ dy’

4c(d)(qr)-Ue()

and that

(3.3) E (Z(s,t)) dsdt

fffff(x, y)v(a,x)v(b, y)v(da)v(db) dxdy

c(d) 2( qr )2-a

c(d)2(qr)2-d.

If the integrand on the left hand side of (3.3) is non-zero then Z must have
hit K(e), so by the Cauchy-Schwarz inequality

Pv(Z hits r(e)) >_
E[ fofof( Z( s, t ) ) ds at, z hits r(e) ]2

4- lc(d)2(qr)2-ale(Iz).

Letting e tend to zero then completes the proof.

(3.4) PROPOSITION. Suppose K c B(r) Rd, tz(Kc) 0, and Utz <_ 1 on
K. Let v 1 o, where 1 is the uniform probability on OB(r). Then

P(Z hits K) > 4-1c(d)r2-d f y)lz(dx, dy)
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Proof. Now let v 7 o, where 7 is the uniform probability on 3B(r).
Let Iz(Kc) 0 and U/z _< 1 on K. Then /z cannot charge Rd X {0} as if it
did, U/z would be infinite on this set, hence infinite somewhere in K. Thus
without loss of generality/z does not charge Rd X B(tS) for some t5 > 0, so
that fv(0, y)/x(dr, dy ) < .

Define f,/x, and as in Prop. (3.1). Let

f( y, y’) cfn fn v( y + b, y’ + b’)v(O, y + b) dbdb’.
(e) (e)

Computing as before now gives that

E[(f;f;f(Z(s, t)) cldt)]
2c(d)r2-d f." SL(x, y)L(x’, y’)v(x, x’)v( y, y’)

[(0, y) + v(0, y’)] d dr d’ dr’

4c(d)r-effv(x,x’)O(r, r’)(dz)(dz’).

For fixed y and y’, we have ,(y, y’) --, v(y, y’)v(O, y) as e $ 0. Moreover, if
e </5/2 then v(0, y + b) is bounded for y B(iS) and b B(e). Using
superharmonicity of v as before, we see that is dominated by a multiple of
v on Rd x (Rd \B(t)). As before we have v ’ v, so by dominated conver-
gence

4c(d)r2-dffu(z,z’)v(O, y)tx(dz)lx(dz’)

< 4c(d)r2-a fv(o, y)tx(dz),

the latter since U/x < 1 on K. Similarly

c(d)r2-d fv(o, y)(a).
Now use the Cauchy-Schwarz inequality as before, to give the result.
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4. Examples and problems

(4.1) Example. The maximum principle fails.

Let S(r) OB(r). For fixed n and e > 0 let

K U E(k)
k=O

n-k)

(see Figure 3). Let/xk be the product of the equilibrium measures on S(ek)
and s(en-k), SO that UtZk(Z)= Pz(z hits (k)). Thus Ulzk can be made
arbitrarily small on E(k’) for k’ 4: k, by making e sufficiently small. Let

n

/Zk.
k=0

We have that U/x(0)= n, but U/z can be made arbitrarily close to 1 on K.

Recall the inequality (1.2):

Conjecture. U/z(O) < log(1/P(Z misses K)).

The right hand side arises as follows. Suppose that K can be partitioned
into pieces K(k), and that if N of them are hit then Utz(z) EZ[N]. If N
has a Poisson distribution then (1.2) is just the statement that P(N-- O)
exp(-E[N]).

lyl

Fm. 3.
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To support the conjecture, let A" R R and consider bounds of the form

(4.2) misses K)).

(4.3) Example. Suppose (4.2) is valid for every compact set K and every
finite measure on K satisfying U < 1 on K. Then

A(p) > log(l/p).

Let p e-L Replace S(r) from the last example, by rF, where F c S(1)
and P(X hits F)= /y/n. Again let UlZk(Z)= Pz(z hits K(k)), where
K(k) [ekF] [en-kF]. Then U/z(0) y.. By choosing e sufficiently small,
U/x can be made arbitrarily close to 1 on K, and P(Z misses K)can be made
arbitrarily close to (1 yn-1)n. Letting n o establishes the result, r

Finally, let us return to the context of (3.1), so that attention is restricted to
sets K c B(q) B(r). Call F(K) c(d)-2(qr)d-2P(Z hits K) the capacity
of K, so that K has capacity zero if and only if it is almost surely missed
by Z.

(4.4) PROPOSITION. Let K be a compact subset of B(q) B(r). Then
F(K) 0 if and only if there is a finite measure Ix of finite energy such that
Utz oo on K.

Proof Let F(K) 0. By Proposition (3.1), I(K) oo. By Lemma 2.3.4 of
[F] we can find open sets Kn $ K with I(K,,)$ oo. Moreover, by Theorem 2.4
of [F], the probability/-n on K of minimal energy satisfies U/zn > e(/x,) on
K,. By passing to a subsequence, we may assume that
The desired measure/x is then just Ee(/x,)-1/x. The converse holds by the

energy principle (see (1) on p. 164 of [F]), as it is shown in [FS] that if
F(K) > 0 then K supports a measure v of finite energy, yet fUtz dv would
be infinite.

This criterion would be easier to apply if the restriction to finite energy
measures was removed. Call a set K polar if there is a finite measure/x with
U/x oo on K. The above shows that capacity zero implies polar.

(4.5) Problem. If K is polar, does it have capacity zero?

Note that if F(K) > 0 then, by the results in [FS], K supports a measure v
of finite energy. By Theorem 2.4 of [F], we may assume that Uv is bounded
on the support of v. If the bounded maximum principle held then Uv would
be bounded and (4.5)would be answered in the affirmative (by the law of
reciprocity, fUu d fU du). It would be interesting to know it there is a
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valid version of the maximum principle that is strong enough to resolve the
problem.
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