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UNIQUENESS IN ERGODIC DECOMPOSITION OF
INVARIANT PROBABILITIES

BY

DIETER ZIMMERMANN

Abstract

We show that for any set of transition probabilities on a common measurable space and any
invariant probability, there is at most one representing measure on the set of extremal, invariant
probabilities with the r-algebra generated by the evaluations. The proof uses nonstandard
analysis.

1. Results

There are some well known results in ergodic decomposition of invariant
measures, e.g., J. Kerstan and A. Wakolbinger [9], G. Winkler [22], and R.H.
Farrell [7]. But there are either tightness assumptions (Winkler), or there are
assumptions on the cardinality or on the special structure of the set of
transition probabilities (Kerstan and Wakolbinger or Farrell). Using nonstan-
dard analysis, we do not need such assumptions to prove uniqueness of the
representing measure.
A transition probability on a measurable space (f, -) is a function P:

12 -- [0, 1] whose partial functions P(., F), F -, are --measurable,
and whose partial functions P(o), ), o) f, are (perhaps finitely additive)
probabilities. Usually, transition probabilities are assumed to be countably
additive, but we never use this assumption. In contrast, we always assume a
probability to be countably additive and announce if there is an exception.

DEFINITION 1. (a) Let P be a transition probability on a measurable
space (t2, -). A finitely additive probability p on this measurable space is
called P-invariant if

p" P fP( ,o, .) cO)( oo) p.
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(b) Given a set of transition probabilities, a finitely additive probability
measure p is called -invariant if it is P-invariant for all P .

Let d() be the set of all -invariant probabilities and let d() be the
set of all finitely additive, -invariant probabilities.
We say that a measure on a set of finitely additive probabilities endowed

with the r-algebra generated by the evaluations represents p if p(F)=
q(F) dl(q) for any measurable set F.

THEOREM 2. Let be a set of transition probabilities on a common
measurable space with the tr-algebra generated by the evaluations and let p be a
-invariant (countably additive) probability measure. If p has a representing
measure on the set of extremal, -invariant, countably additive probabilities,
this representing measure is unique.

The proof of this theorem, like the proofs of the following corollary and
the following proposition, are postponed to Sections 3 and 4.

This theorem does not state that there exists a representing measure.
Indeed, there is no additional structure on 12 assumed; thus one cannot
apply any theorem of Choquet type for the existence of a representing
measure, and, in [5], L.E. Dubins and D.A. Freedman even gave an example
of an invariant measure which has no representing measure. But if one gives
up countable additivity, the set of invariant probabilities is compact in the
topology generated by the evaluations, and one can apply Bishop-deLeeuw’s
theorem.

COROLLARY 3. If p is a finitely additive, -invariant probability measure,
then there exists an unique representing measure for p on the set of extremal,
-invariant, finitely additive probabilities.

The main tool in proving the theorem is the following proposition, which in
the case of inverse limits of measure spaces gives us a representation of the
representing measure as, in some sense, a weak limit of an independently
constructed net of measures. For this proposition we need a dual definition
of invariance.

DEFINITION 4. For any transition probability P and any P-invariant prob-
ability p on (, -), the set

a’p,, {F -I1F P(’, F)p-a.s.}

is called the invariance-tr-algebra for P and p. The elements of p,p are
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called P-invariant. We further define

p" p is P-invariant

Remark 5. It is well known and easy to see that the invariance-tr-algebra
is a tr-algebra, even if the transition probability is only finitely additive.
Nevertheless we cannot drop the countable additivity of the invariant proba-
bility.

Let /1(12, ,-) be the set of all finitely additive probabilities endowed with
the topology generated by the evaluations. It is well known that /1(, -) is
a compact space. Now we are able to formulate the aforementioned proposi-
tion.

PROPOSITION 6. Let (I, <) be a directed index set, (Pi)i i a family of
transition probabilities on a common measurable space (, -), (ii)ii a
decreasing family of sub-tr-algebras of c-, and d a set of extremal, 9a-invariant
probability measures such that for any q d, we have

Further, let Yi" - /1(, -), I, be defined by

.)

and let be the embedding of d into the set ’1(1, ,-). Now if l is a
probability measure on d and if the probability p fq dl(q) satisfies

Pi(’, F) Ep(1F[// ) p-a.s.

for any F - and any I, then the net (p y 1)i I converges to I
in the weak topology.

-1

2. Tools from nonstandard analysis

To prove the results we will use some tools from nonstandard analysis.
There are several well known introductions to nonstandard analysis, e.g.,
Stroyan and Luxembourg [21] and Lindstr0m [10].

In this article we only use a polysaturated enlargement of our standard
universe. The symbol * denotes, as usual, the embedding of the standard
world into our nonstandard universe.
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2.1. Some topology.

The symbol st, perhaps with some index denoting a topological space,
denotes the standard part mapping on the set of those points in a Hausdorff
space where a standard part exists.
An element a in the enlargement of an ordered set A is called infinitely

large if for any b A, we have * b < a.

Remark 7. Notice that a net (xi)i I in a (standard) Hausdorff space
converges to an element x if and only if there exists an infinitely large index

0 such that for all > 0, we have st(*xi) --x (cf. Robinson [20], Theorem
4.2.4).

2.2. Loeb measures.

If - is an internal algebra of subsets of the enlargement * lq of fl, then
there always exists a r-algebra generated by the (standard) algebra z-, which
we denote by L(-) and call the Loeb algebra of -. The difference from the
usual definition, where L(-) is further completed by a Loeb measure, is not
deep, but we need this little difference because, in general, we handle more
than one measure on the same measurable space.

If - is a or-algebra in the standard universe, we denote by - the
sub-tr-algebra of L(*r) generated by the standard sets. (Notice that the
standard sets in *-, in general, form an external algebra but not a tr-algebra.)
By the saturation principle every internal algebra - is compact in the

measure theoretic sense. So, if p is an internal, finitely additive measure on-, the mapping F st(p(F)) is automatically countably additive, and we
are able to extend it to L(-). This extension is denoted by L(p) and called
Loeb measure of p.

It is well known from Loeb’s work (see also Cutland [4], Theorem 3.1) that
for any Loeb measurable set, there exists an internal set which differs from
the first only by a nullset. In proving our theorem, especially in the proof of
Lemma 15, we need a strengthened version of this fact.

LEMMA 8. If M is a set of prob@ility measures on a common measurable
space (l), -), then for any set in -, there exists a standard set which differs
from the first only by a set which is an L(*p)-nullset for all p M.

Proof. Let. {F L(*-)lthere exists a G -with L(.p)(FA*G)

0 for any p M}.
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Then it is easy to see that _@ is an algebra which contains the standard
*--measurable sets. We only have to show that .@ is closed under countable
unions. Therefore, let (Fi) N be any sequence in . and let F U iNFi.
We know that there are standard sets G with L(*p)(FIA*Gi) 0. We only
have to show that G U i NGi is a good choice to approximate F. For any
p M, we have

L(*p)(FA*G) < L(*p)( U FiA U *Gi) + L(*p)
iN iN

U *GiA*G )
iN

L(*p)( U (FiAGi))d-
iN

k--. i=1

0. D

We will use many other properties of Loeb measures but we cannot treat
them all here. For the details, Cutland [13] is a good reference for nonstan-
dard measure theory.

2.3. Loeb kernels and their relation to invariant sets.

DEFINITION 9. For any internal transition probability P on the extension
(* 1, *-), we define the Loeb kernel L(P) by

L( P)( w, ) L( P( to, ) )

We have to prove that by our definition Loeb kernels really are transition
kernels.

LEMMA 10. (a) Let P be an internal transition probability on (*f,*-).
Then the Loeb kernel L(P) is a transition probability on the measurable space
ffl L(*,)).

(b) Ifp is a probability on fill, c-), then L(p P) L(p) L(P).
(c) If the probability p is P-invariant, then L(p) is L(P)-invariant.
(d) If P is a standard transition probability on the measurable space

(12, c-), the restriction L(*P)l.a is a transition probability on
,-).

(e) If p is a standard, finitely additive probability, it is P-invariant if and
only if L(*p)l - is L(*P)I, sa --invariant.

Proof (a) and (d) In part (a) the only thing to prove is that for any
F e L(*-), the function L(*P)(., F) is L(*-)-measurable. For part (d) one
has to show that for any F e -, the function L(*P)(’, F) is --measurable.
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Because of the countable additivity of L(*P) it is sufficient to prove part (a)
only for internal sets and part (d) only for standard sets. Since Lf*P)(., F)
st(*P(., F)) both are easily seen to be true (cf. Loeb [11], Theorem 2).

(b) Using Loeb [11], Theorem 3, we know for any set F *-,

Continuity of both sides of this equation yields part (b).
(c) Follows from (b).
(e) The ’if’ part follows easily from (b). The other direction follows from (c)

and (d). H

Loeb kernels yield a characterization for the invariance of sets.

LEMMA 11. (a) An --measurable set F is P-invariant with respect to a
P-invariant probability p if and only if *F is Lf*P)-invariant for L(*p).

(b) Any set F e’p,p is L(*P)-invariant with respect to L(*p).

Indeed, instead of (b) we are able to prove that any F L(*,Jgp, p) is
L(*P)-invariant, but we do not need this fact in the sequel.

Proof
then

(a) If 1F --P(.,F) p-a.s., we know l*F =*P(.,*F) *p-a.s., and

l,F L(*P)(’,*F) L(*p)-a.s.

Conversely, if F is not P-invariant, then there exists an e > 0 such that

-*P ,L(*P)({I1,F-- L(*P)(" *F)I > e}) > L(*P)({II*F ( *F) I>- })
-*e(’,*F)

P({[ IF P(’, F) -> e}) _> .
Hence 1,F is not L(*P)-invariant too.

(b) Follows from (a) by the remark that the invariant sets form a or-algebra.

3. Proof of Proposition 6

First, we need a lemma.

LEMMA 12. Let be a set of transition probabilities on a common
measurable space and let p be a -invariant probability. Then any extremal,
-invariant probability p is atomic on the r-algebra f) 1, e’e, p.
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Proof It is well known and easy to see that for any F e,v with
0 < p(F)< 1, the probabilities p(. IF) and p(-IF) are two different, -invariant probabilities with a weighted mean p. E

Proof of the proposition. There is a theorem in Burkholder [1], with a
similar proof, which tells us that the intersection of a decreasing sequence of
sufficient r-algebras is sufficient. Of course, Burkholder’s statement is not
true for any index set because he uses pointwise martingale convergence. But
we can use his ideas. Since our index set is not necessarily countable, we have
to use LZ-martingale convergence, instead of pointwise martingale conver-
gence.

Let e be any infinitesimally small number. The LZ-martingale convergence
theorem tells us that there is a standard family (fF)F of f) i/e;-mea-
surable functions such that the net of functions (Pi(’, F))iI converges in
quadratic mean, and in probability too, to fF for any F -. For luck of
nonstandard analysis there is an internal *finite algebra 0 c*-containing
all standard sets of *,,-. Hence we can find an index 0 *I such that for any
i>io,

*p({I*P;(’, F) --*fF > e for some F 0}) < e.

Now take any of these indices > 0. The functions fF were chosen to be
f3 iie.-measurable. So, by Lemma 12, for any q *c*ex-((Pi)ii) the
functions fF, F -, are all q-a.s, constant; i.e.

*F f*F q-a.s.

Thus

q({l*Pi(., F) --*fF > e for some F 0}).
Now we have

=*p({I*Pi(’,F) --*fF > e for some F 0}) < e.

q)

For any q *d, define the set Gq by

< e for all F 0).
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Then

f.L( q)(Gq) dL(*lx )( q)

>e for some F 0}))d*lx(q))
>st(l-e) 1.

This yields L(q)(Gq) i for L(*/x)-a.a. q *o. For these q *d, all o) Ga,
and all F 0, we know

L(q)-a.s.,

and, since q *d c*’(.), we have

st((*Pi(oo, F))= fst(*Pi(.,F))dL(q)= st(f*Pi(.,F ) dq) q(F).

If we now take only standard sets for F, we get

st’l(f gz-)(* i( O) ) ) st,l(f )(*Pi( oo, ") ) st,l(l) 4)( q )

for all o) Gq. Because L(q)(Gq) 1 we can conclude that

st’l(a,) *yi st.(n,-)(q) L(q)-a.s.

for L(*/x)-a.a. q *o, and

L( q ) */--1 st,](, -) EStl(l,D(q

for L(*(/x -l))_a.a. q ./l(f, -).
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By Lemma 10, part (b), it follows that

L(*p) */-1 st/(, r) f q)o* ]//- st_](fl, r)dL(* (]ub /- 1))

fe,(,(q)dL(* (/ 6-1))

Using [14, Corollary 1], we see that L(*p)o ,3//-1 st](a,_ is the standard
part of *p *]/i in the weak topology, and, further,

L(, (1.6 -1)) st/ll(fl, _)__ 1.6o/-1.

Since > i0 is arbitrary, we can use Remark 5 to get the weak convergence of
the net (p y/-)i I to Z r-1. I--]

4. Proof of the theorem

The main problem in proving the theorem now is how to satisfy the
assumptions of Proposition 6. One easily sees that for the index set I the set
of non-empty, finite subsets of would be a pleasant choice. For the
o-algebras o we would like to take the intersections of the invariance
o-algebras for the P i. But if we look at Burkholder’s paper [1] (by
Dynkin’s results [6] there are some parallels of our problem to the existence
of H-sufficient statistics), we notice that there is still some work to be done.

4.1. How to use nonstandard analysis on our problem.

LEMMA 13. Let o be any set of -invariant probabilities and let the ideal
#U be defined by

4/:= {N L(*F)IL(*q)(N ) 0 for any q 0}.

Further let -:= -V ,3/ and

:= {L(*P)I,aIp ,4}.
Then:

(a) is a set of transition probabilities on * f, -) and any probability p
is -invariant if and only if L(*P)ly is invariant.

(b) For any p o, the probability p is extremal in the set of .-invariant
probabilities if and only if L(*p)l is extremal in the set of invariant
probabilities.
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(c) The mapping O" ex(,,) N o ex(,_) defined by

p L(*p)l

is injective and bimeasurable.

Proof First, we have to prove that for any P ,,@, the mapping P
Lf*P)a is a transition probability on the measurable space (’12, ), i.e.,
for all sets G , the functions Lf*P)(., G) are already --measurable. For
G // this is trivial, since by invariance it is easy to see that for any
P 0, the function P(., G) is an L(*p)-nullfunction. For standard G (a
standard measurable set in the nonstandard universe)we can use Lemma 10.
Well known measure theoretic arguments are just remaining.
Now we come to the main problems of this lemma.
(a) If p is a -invariant probability, using Lemma 10, it is easy to see that

L(*p) is an {Lf*P)IP }-invariant probability too. Now one direction is
easy to see.

If, conversely, L(*p)l- is -invariant, we conclude for any P 9 and any

,*F)dL(*p) L(*p)(*F) p(F).

Hence p is -invariant.
(b) Now let p 0. If p is extremal in the set of 9-invariant probabilities

and ql and q2 are two -invariant probabilities with L(*P)l= 5 (ql + q2),
there is no problem in seeing that

q114/= q21t/ 0.

Let us further define Pl and P2 by

Pl F ql(*F) and P2 F q2(F)

It is easy to see that Pl and P2 are additive (indeed, countably additive but
we do not need this) 9-invariant probabilities which satisfy p (pa + Pz).
So, by the extremality of p we see that pl P2, which shows that q and q2
are equal on all standard sets. By countable additivity of q and q2 it follows
that

q11, q2lffr.



UNIQUENESS IN ERGODIC DECOMPOSITION 335

Both results together show that ql and q2 are equal. Thus L(*p)l is
extremal.

Conversely, if L(*p)l is assumed to be extremal in the set of -invariant
probabilities and P and P2 are two P-invariant probabilities with p 3"
(Pl + P2), we know

L(*p) - (L(*pl ) + L(*P2)).

By part (a), L(*pl)l and L(*p2)l are -invariant. Extremality of L(*p)ly
yields the equality of L(*pl)ly and L(*pz)ly and we easily see that
Pl =P2.

(c) Part (b) tells us that O is well defined. Because -contains all standard
sets, it is easy to see that O is injective.

Furthermore, for any standard set F -, it is easy to see that p
L(*p)I*F) p(F) is measurable, and for any N F, it is trivial that
p L(*p)I(N) 0 is measurable. This yields the measurability of O.

Conversely, O-1 is measurable because for any F -, the mapping

L(*p)l p( F) L(*p)I(*F )

is measurable.

4.2. How the ergodic theorem is used.

The ergodic theorem and martingale convergence are the main tools in
proving our theorem. The assumptions of Proposition 6 deal with some
system of transition kernels representing conditional expectations, while our
theorem does not make such special assumptions. It is a little tricky but
ergodic theorem helps in this situation.

LEMMA 14. Let P be a transition probability on (, .-), (0 be any set of
P-invariant probabilities and let C and - be defined as in the last lemma.
Further, suppose n *N \ N is an infinitely large number, and let Q be defined
by

Q :=L

Then Q is a transition probability on (* ll, -) which satisfies

EI<.,)(1F[.t,,p)=Q(.,F) L(*p)-a.s.

for any p o and any set F -. Furthermore, for any probability p, the
probability L(*P)l is Q-invariant, and Q L(*P)I= Q is valid.
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Proof. By Remark 7, the ergodic theorem (cf. Neveu [16], Proposition
V.6.4) shows that for any p 0 and any F -,

1 E ,pi(. *F) --*Ep(1FlCp p) 0."- i=0 Ll(*p)

Thus it is easy to see that

n-l)_. ,pi (’,*F) st(*Ep(1FlCp, p)) L(*p)-a.s.
i=0

is an -v /A-measurable function. It is further easy to see that this statement
is true if *F is replaced by any set F //. Monotone class arguments and
continuity of Q show that this statement is also true for any set F q-. We
now conclude that Q is a transition probability on (* fl, ).
For standard F -, the function Ep(1FlCe, p) is finite. Hence it is easy

to see (cf. Cutland [4], Theorem 3.5) that

Q( *F) st (*Ep(1Flp, p)) st ( E’p(1.FI*e, p))
El4.p,(1.FlCp,p) L(*p)-a.s.

Both sides are continuous so for any F

EL(,p)(1FIp,p)=Q(’,F) L(*p)-a.s.

If p is a P-invariant probability, we know that for any set F *-,

1 E *Pi(’, F)d*p st(*p(F)) L(*p)(F),st - i=0

which yields the Q-invariance of L(*p)l.
The last equality is valid because, using Lemma 10, for any set F *o-we

have

1 _. *pi L(*P)(’, F)L -i=0
1 _, *pi .,p(., F)=st "" i=0

st -ff

_
*Pi(’, F) st

i=0

=st ’i=0

-ff IF nt- st - pn(., F)
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Our proof of Lemma 14 is now finished.

4.3. How to treat finite sets of transition probabilities.

The next step in proving our theorem is to construct transition probabili-
ties which relate in some sense to given finite sets of transition probabilities.
Following Burkholder’s paper [1], we easily see that nullsets cause some
trouble. The main idea now in the proof of the following lemma is well
known in Hilbert space theory and already used in Burkholder’s paper [1]
and Dynkin’s paper [6].

LEMMA 15. Let {P1,’", Pk} be a finite set of transition probabilities
on a common measurable space ([l, -). For any -invariant probability p, we
denote the invariance-tr-algebra for Pi and p by i, p. We further assume, as in
the last lemma, that o is any set of -invariant probabilities but with the
additional property

Ep(1F],,) Pi( F) p-a.s.

for any p o and any F -. The ideal t/ and the tr-algebra -shall be
defined as in the lemma above. Further, we denote by the tr-algebra

Then there is a transition probability Q on (*, ) with the property

EI4,p)(1F[’) Q(" F) L(*p)-a.s.

for any p o and any F -. Furthermore, for any p (o, the probability
L(*p)l is Q-invariant.

Proof Let P be the transition kernel defined by

P:=P P1.

Lemma 14 assures that there is a transition probability Q with the properties

and

L(,p)l. Q L(,p)l

EL,,p)(1Flp,p) Ec(,p)(1Fl@p) Q(’, F)

for any set F and any probability p (0.

L(*p)-a.s.
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The only thing left to show now is

/= @,p mod L(*p),

to get the last equation of the statement.

Part 1. ’G ’. For any G ,,, we shall show

G gp,p [,.d/.

We know that G ,-v d/. Hence there exists a set G’ - satisfying
L(*q)(GAG’) 0 for any q 0. By Lemma 8 this yields the existence of a
standard set F -with L(*q)(GA*F) 0. For < k, it is now easy to see
that G ’e, p v 4/and *F ,,

p v 4/. Using part (b) of Lemma 11, we
conclude that *F is L(*Pi)-invariant for L(*p). Using part (a) of the same
lemma, we see that F is Pi-invariant for p. Because < k is arbitrary, we
have shown

G ,.,p,p v,/[/.

Part 2. ’’. On the other hand, let G@,pvM/. Then we know,
again, that there is a set G’ - with GAG’ 1/, and by Lemma 8 we
know, again, that there is a standard set F with L(*p)(*GA*F)= 0. Using
Lemma 11, we see that the sets G and *F are L(*P)-invariant for L(*p).
Because of Lemma 11, again, we know that the set F is P-invariant for p.
Now define

F’ lim - pi( F) 1
k+ i=0

The ergodic theorem tells us that
q d0. If we now recursively define

p(FAF’) 1 and F’ p,p for all

fo 1F’ and fi+, forO <i < k,

we know by the definition of P that
tions on the kernels Pi yield

P(., F’) 1F, q-a.s. The assump-

fi+l ---Eq(filii+l,q)
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for any < k. Because conditional expectations are orthogonal projections in
LZ(q), we know

]I1F 112-" Ill0112= f + (L-f/+a) Ilfl] 2+ life--fi+ll] 2

i=0 i=0

k-1

II1F[I 2 + IlL f/+1112
i=0

where denotes the norm in L2(q). Hence

fi fo 1F q-a.s.

for any < k. This shows that F is Pi-invariant with respect to q, or

k

*F
i=1

Since L(*p)(GA*F) 0 we can conclude that

i=1 q

Thus we have proved

moo L(*p).

4.4. Another proposition.

For technical reasons we prove the statement of our theorem under some
stronger assumptions.

PROPOSITION 16. Let be a set of transition probabilities and let f be
any set of -inuariant probabilities satisfying

Eq(1Fl,J’p,q) P(" F) q-a.s.

for any F -, any P and any q l. Then for any p 1, there is at
most one representing measure for p on the set ex(() N l of extremal,
-invariant measures in 1 with the r-algebra generated by the evaluations.

Proof. Suppose .@ ; otherwise the statement is trivial.
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We now define the ideal //by

/:= {N L(*F)IL(*q)(N) 0 for any q ’a}
and, as usual, -:= -v M/. Furthermore, we define, as already suggested,
the directed set I by

I {i G ..li is finite, }

and the decreasing system of sub<r-algebras (//)i I of - by

n
Pi, q -’

Let us now construct a family H (Hi)ie i of transition probabilities on
(* f, ) which represents the conditional expectations under //. If the set
has only one element P, we use Lemma 14 to construct Hi, and if has more
than one element, we use Lemma 15 for the construction. If q is an
i-invariant probability (i is a set of transition probabilities), we know by the
lemmas that L(*q)l is Hi-invariant and that Hi satisfies

Ec(,p)(lel /) Ec(,p)(1 I-Ii(’, F) L(*p)-a.s.

Let the set be defined as in Lemma 13. By the definition of II{e}, P ,
and by Lemma 14 we know

II{e L(*p)l,ax= IItel.

So it is easy to see that any II-invariant probability is P-invariant, too. Now
we consider the mapping

O" n G --’ ex(,..)

defined in Lemma 13. We have seen above that its image is a subset of ’(II).
Thus we will see that our problem can be transferred from the set of
-invariant probabilities to the set of II-invariant probabilities. Let p ’1
be given and let/x and ].L 2 be two representing measures for p on ex’()
r 1" Then 11 o/9--1 and ].L 2 o/9--1 are two measures on

6o: O(ex’() n G) c_ ex’(H).
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(There had to be a reason for introducing the set o in Proposition 6.) Since

p(*F)d(lxo O-’)(p) fL(*q)(*F)dlx(q)
f q(F)dlj(q) p(F) L(*p)(*F)

for any F a-, and

p(N)d(li 0-1) fL(*q)(N)dlj(q) 0 L(*p)(N)

for any N /K, we know that /x -1 and 2 0-1 are two representing
measures for L(*p)l-.
Now it is time to apply Proposition 6. As in this proposition, we define the

mappings %: *1) /1(* 11, ), I, by

,,(co) Hi(o, .),

and let be the embedding of d into /1(*[1, ). We can now apply the
result of this proposition to our invariant probability L(*p)l, and conclude
that the net

(L(*P)l-y[-1)ie,

converges in the weak topology to both
is injective and bimeasurable. Hence

0-1 -1 and jtl, 2 O -1 -1. But

I./, ,0 -1 /-2 0 -1

The same argument used for the mapping O yields

4.5. The proof of the theorem.

Now we are ready to prove our theorem. Let ’0 be the whole set of
a-invariant probabilities. The ideal K, the o--algebra -, the set a of
transition probabilities on (*, ), and the mapping 0 are defined as in
Lemma 13. Further, let ’1 be defined by

’1 {L(*q)llq is -invariant}.

We already know from Lemma 13 that g’l is a set of invariant probabili-
ties.
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In the following, we will show why we introduced the set #’1 in Lemma 15.
For any P a, by Lemma 14 we can find a transition probability Qe on
(*f, ) such that

Qe" L(*P)l*ax Qe

and

EL(,q)(1F],_.CQe, L(.q)I) Op(. F) L(*q)-a.s.

for any F , and L(*q)l is Qp-invariant for any -invariant probabil-
ity q.

Further, we know that for any extremal -invariant probability q, L(*q)l
is extremal in the set of (Qe)p9-invariant probabilities. By Lemma 15 (0
here_is the set of all -invariant probabilities) L(*q)l is extremal in the set
of -invariant probabilities. If /91 and P2 are any two (Qe)prinvariant
probabilities satisfying L(*q)l= 5 (01 + P2), we know by Lemma 13 that
both Pl and P2 are -invariant; thus they are equal.
We have now proved that 0 maps the extremal 9-invariant probabilities

into ex((Qp)p9) n 1. If/1 and/x2 are two representing measures for p
on the set of extremal -invariant probabilities, we easily see that /x 0 -1

and 2 0-1 are two representing measures on ex((Qp)p)n 1. But
Proposition 16 tells us that

/’/’1 ’0-1 JR’2 "0-1"

By Lemma 13 the mapping O is injective and bimeasurable. Hence we
conclude

4.6. Proof of the corollary.

The existence of a representing measure is an easy consequence of
Bishop-deLeeuw’s theorem because the set of finitely additive, -invariant
probabilities with the topology generated by the evaluations is compact.

For the proof of the uniqueness we have to realize the assumptions of our
theorem. Let (.@) denote the set of -invariant finitely additive probabili-
ties and, again, let

-:= {L(*P)I*n -IP }.

Then we can define a mapping to" g,(a) g,(a) by

q L(*q)l,-.
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By Lemma 10, part (e), is well defined. It is easy to see that n is a_ffine,
injective, and bimeasurable. Thus we know that for any extremal q d(),
the probability (q) is extremal in (9).
Suppose -1 and /3, 2 are two representing measures for p on exd(5).

Since

fq(*F)d(li -1)(q) f,,(p)(,F)dlxi(p) f ,(F)dlx(p)
p(F) L(*p)(F) (p)(F)

-1 -1for any set F -, the measures /zl Klex( and 2 /[ex() are repre-
senting measures for (p) on the set ex’(). Our theorem tells us that

-1 -1
1 Klex(9 2 Klex(9).

But by the properties of this yields/z 13 2. [--]
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