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A VERSALITY THEOREM FOR TRANSVERSELY
HOLOMORPHIC FOLIATIONS OF FIXED

DIFFERENTIABLE TYPE

BY

J. GIRBAU

Introduction

The aim of this paper is to give a versality theorem (analogous to that of
Kuranishi for compact complex manifolds [6]) for transversely holomorphic
foliations of fixed differentiable type (Theorem 7.1).
Throughout M will denote a compact C-manifold endowed with a trans-

versely holomorphic foliation -defined by a foliate cocycle {U/, fi, Z,
where {U/} is an open covering of M, fi: Ui -> Z are Coo-submersions, Z is a
complex manifold and {y/y} are local holomorphic transformations of Z such
that fi ")/ij fj. A family of deformations ,_t of parametrized by a germ
of analytic space (T, o) is defined by a family of Coo-submersions, fit: U --> Z,
parametrized by (T, o), depending holomorphically on for each x U/, and
a family y/tj. of local holomorphic transformations of Z parametrized by the
same (T, o), such that fit-. ,yjo fit, with f/o fi and y/. ’)/ij. Two families
of deformations, rt and -,t, parametrized by the same (T, o) are said to
be isomorphic if there exists a Coo-family h of diffeomorphisms of M
parametrized by (T, o), with ,.-,t (ht),z-t.

Girbau, Haefliger and Sundararaman [3] proved the existence of a germ of
analytic space (S, o) (versal space) parametrizing a family of deformations
o- of - (versal family), with the following property: if -,t is another
family of deformations of parametrized by (T, o), then there exists a
morphism of germs of analytic spaces, f: (T, o) - (S, o), such that ,-f<t) is
isomorphic to r,t. Moreover the tangent map dof of f at o is unique.
Most of the computable examples have a smooth versal space; that is, S is

the germ at the origin of a complex vector space, concretely the cohomology
space HI(M, otr), where 0tr is the sheaf of germs of local Coo-vector fields
generating flows preserving -. There is a useful sufficiency criterion for the
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versality of a family of deformations (Corollary 2 on page 126 of [3]): If (S, o)
is a germ of analytic space parametrizing a family of deformations
then (S, o) is the versal space and -s the versal family if the two following
(versality) conditions are fulfilled:

VC1. (S, o) is smooth.
VC2. The Kodaira-Spencer map p: ToS Hi(M, )tr), associated to the

family -s, is an isomorphism.

What can be said about the deformations of o- that do not change -as a
real foliation (those that only change its transverse complex structure)? These
deformations will be called deformations offixed differentiable type. Is there a
versality theorem for these deformations? These are, of course, natural
questions.
The standard machinery of elliptic operators does not work here. In fact,

the equivalence classes of infinitesimal deformations of this type are
parametrized by the Dolbeault basic cohomology space H(Ab’*(Nl’),)
with values in N’, the normal bundle of type (1, 0) of o-. This cohomology
space is finite-dimensional although the Dolbeault basic complex

0------ A’(N1’) A’(N1’)

is not elliptic.
E1 Kacimi and Nicolau [2] gave a versality theorem for these deformations

with the assumption that the initial foliation - is hermitian. It follows from
a careful reading of their proof that it is not necessary to require - to be
hermitian, but only to satisfy the following two hypotheses:

A. There exists a transversely projectable connection (this means that the
tangent bundle of the model manifold Z admits a connection invariant under
the Yij).

B. There is a (sufficiently large) positive real number r such that
(4’ 1(N1’ ))is closed in r-1, 2(N1,0), where 1’ a(N1’) denotes the Sobolev
r-completion of A’I(N1’) (this condition is fulfilled, for example, when
H2(A’*(NI’), ) is finite-dimensional).

When the initial foliation -satisfies conditions A and B (this is the case if- is hermitian) then E1 Kacimi and Nicolau [2] proved a weak versality
theorem for deformations of fixed differentiable type. Concretely they con-
structed a family qz-sb of deformations of - of fixed differentiable type,
parametrized by a germ of analytic space (Sb, o), with the following versality
property: If q-’ is close enough to -, and qz-, is conjugate to -as a
C-foliation, then there exists a diffeomorphism h of M close to the identity
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and sb Sb such that qz-, h.(z-sb). They were not able to prove a strong
versality theorem; that is, given any family of deformations -,t of fixed
differentiable type parametrized by (T, o’), to prove the existence of a
(holomorphic) morphism f: (T, o’) - (Sb, o) such that -f(t) is isomorphic
to ,_-t t.
The purpose of this paper is to prove such a strong versality theorem for

deformations of fixed differentiable type (Theorem 7.1). Hypotheses analo-
gous to A and B above are needed also.
From the intuitive point of view it does not seem that the passage from a

weak versality theorem to a strong one means any significant gain. Neverthe-
less, in the general transversely holomorphic case, the proof of the versality
criterion quoted above when conditions VC1 and VC2 are fulfilled needs the
existence of a strong versality theorem. In the case of deformations of fixed
differentiable type the same thing happens. We give such a criterion in
Section 8 (Theorem 8.1). Since this is one of the criteria most used in
practice, this justifies our interest in proving a strong versality theorem
instead of a weak one.
The proof given here of Theorem 7.1 is based on a Hodge splitting

theorem obtained in Section 2 and on a careful analysis of the construction of
the versal space for transversely holomorphic foliations given in [3]. For this
reason we need to rewrite the construction of [3] and modify some minor
points of that presentation in order that all details work. This is done in
Sections 3, 4 and 5. Section 6 is a preparation for the proof of the versality
theorem given in Section 7.

I thank M. Nicolau for his invaluable help in the preparation of this paper,
for his careful reading of the previous versions of the manuscript as well as
his criticisms and useful observations.

1. Derivations and the space of infinitesimal deformations

A transversely holomorphic foliation on M is determined by the sheaf
ff- of germs of functions f which are constant along the leaves and
transversely holomorphic. Denote by A*(M) the algebra of complex-valued
C-forms and by IF the ideal of A*(M) generated by the differentials of
elements of ’-. In each local chart (x u, z a) adapted to the foliation, where
the x are coordinates along leaves and the z a are transverse complex
coordinates, Iv is generated by {dza}. Let F be the subbundle of CTM whose
sheaf of germs of sections is the sheaf of germs of smooth vector fields which
annihilate ’-. In each -adapted local chart (x u, za), F is generated by
{/x,/}.
Denote by _" the space of degree p derivations of A*(M). Following

Kodaira and Spencer [5], a degree p derivation 6 is given in each local chart
by a pair (q, :) of smooth vector forms of degrees p and p + 1 respectively,
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with

=u o ob- + -b-Y + o’

where qu 6x u, qa 6Z a, q 6Z--a, :u (_ 1),6 dx u, sea (_ 1)p dz a,
s: (- 1)P6 d-a. All the q corresponding to various local charts give rise to
a global vector p-form. But the : do not correspond to a global vector
(p + 1)-form. The differences dq sc are global, where dq means the local
vector (p + 1)-form whose components are (dq", dqa, do).
Denote by . the subspace of 5p consisting of those t such that

(IF) c IF. Then t .- if and only if the local pairs (q, :) of 6 are such
that sa IF for all a.
_@- is endowed with the bracket operation on the derivations, and with

the differential D" _@--+ ._+1 defined by D6 [d, 6], where d is the
exterior differential. D acts on the pairs (q, s) which determine 6 in the
following way:

Denote by A’q(M) the space of basic (p, q)-forms; that is, those forms
which have the following expression in an adapted local chart (x

-. ". a, ape11... qq( Z, . ) dz al A A &ap A dz hi A A dzb,.

Let A Ep+q=iA’q(M). Let .’ be the subspace of

_
consisting of

those .- which satisfy a(A;) c A. The elements of .b will be called
basic derivations of degree p. Given 6 (q,) . then 6 _’ if and
only if in each --adapted local chart (x, za), the components qa, sea, q, Sea
are basic forms and sca e IF.
The bracket of two elements of

_
belongs to . and the differential D

maps _@’ to _q’+ 1, giving rise to an operator Db: ..ff ---) ..ff+ 1.
E1 Kacimi and Nicolau use the complex

0----- A’(N1’) - A’I(N1’) -where N1’ =TM/F is the normal bundle of type (1,0) and Ab’q(N1’)
denotes the subspace of F(( A q Nl’)* () N 1’ 0) consisting of those elements
which are basic. The Dolbeault operator c is well-defined on Ab’q(N 1’0) and
the cohomology space HI(A’*(NI’),) is isomorphic to the space of in-
finitesimal deformations of of fixed differential type ([2], [4]).
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Choose a splitting CTM F N1’ of CTM to be fixed throughout. If
(U, x u, z a) is an adapted local chart, let

Za Oz--.-- + AUa OX u

be the vector field in U defined by the condition that Z is a section of
N1’0 cCTM. The dual basis of {O/Ox u, Za, 0/0--a} is {0u, dz a, d-a}, with 0
dx Xu. aza.

Given to Ab’q(Nl’), its local expression will be

Bq( Z, , ) dz bl / / dz bq (R)

where [O/OZ a] is the class of O/OZ a in CTM/F. Denote by to the vector form
defined in each local chart by

q( Z, ) dz bl / / dz bq (R) Za

Then tto is a global vector form. Moreover the pair jto (tto, dto-
defines an element of . since to is global. It is easy to see that
j(A(N 1, 0)) c . and that D j j . Therefore j induces a map

,Hq .(10)j, (Ab N’ (b,Db).

PROPOSITION 1.1. j, is an isomorphbm.

Proof For simplicity we shall suppose q 1, the only case needed. The
injectivity being trivial, we shall prove that the map is onto. Let 6 be an
element in . with D6 0. In each local chart, 6 will be a pair (q, dq)with
the a and q basic forms. We have qa qca dz c + q dz-Z, with (q d)
0. Let to A’ I(N1’) be defined in each local chart by to q d (R) [O/Oza].
to is global. Let q’ q to. We have

a (, de) (,o + ’, d,o + d+’)

o

But the pair (0,-<p’) defines a derivation ’ ..@ since dO- (-q’)=
q’ is global. Moreover q9

ta--" aqc dzc belongs to IF N Ab. We have D’
D(0,-q’) (q’, dq’). Therefore 6 =jto + D6’. Thus 6 and jto determine
the same cohomology class.



A VZRSALITV THEOREM 433

It follows from the proposition that HI(., Db) is isomorphic to the space
of infinitesimal deformations of - of fixed differentiable type. Moreover,
since HI(A,,(N 1, 0), cq) can be imbedded in HI(M, (R)tr) in a natural way, the
space H (.b, D) is finite-dimensional. But the H (_, D) are not finite-
dimensional in general for > 1.

2. A Hodge splitting of

_
adapted to basic derivations

For large enough r R/ denote by r..z- and r., the Sobolev r-comple-
tions of _fi and . respectively. Endow the spaces r..rff with hermitian
metrics. The operator D: r.._ __.)r--1._+1 has an adjoint D* with respect to
these metrics. It is well-known that for r large enough there is a splitting

(1) r.._ Hp ( n(r+ 1..5-- ) D* (r+l.._+ 1),

where the sum is orthogonal.

LEMMA 2.1. D( + 1.r0r) ( r.r/ D( + 1-@2).

Proof. Let 8 (qg, :) be in . with D8 (dq :,-d:) .. This
means that dqa- a, dqga_ , _da and -d:a are basic. Since a IF
and dq is basic then qa is basic and so is :a. Set qa (R) Z-- (in the
same notation as in the preceding section). The components of 0 with
respect to the basis {O/OZ a, 0/0", O/OX u} will be O q, lit 0, t u qaA%.
Let 8’ be the derivation given by the pair (-0,-d0). We have D8
D(8 + 8’), but 8 + 8’ (q 0, sc dff) is basic since q 0 qa (basic),
q b O, a da a (basic) and s dq sc dq (basic). t3

From the splitting (1) it follows that D(r+ 1.) is a closed subspace of
r._. From the lemma it follows that D(r/ 1..)is closed in r.. Since r.._
and r_ are Hilbert spaces, all closed subspaces admit a closed complement.
Let B be such a complement of D(r+ 1..2) in r_.
The following two lemmas concern well-known facts we shall need on

topological vector spaces.

LEMMA 2.2. Let h: E -> E2 be a continuous linear map between two
Frchet spaces. If h(E1) is finite-codimensional than h(E1) is closed in E2.

LEMMA 2.3. Let V and W be closed subspaces of a topological vector space
E. If W c W’ with W’ a closed subspace and E V W’ then V W is
closed in E.
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PROPOSITION 2.4.
closed in r.. If D(r.) is closed in r--l.. then Bb (9 DC+’.) is

Proof. r.., + Ker{D: r..2--"-r-l..2,- --D-1Db(r..,)is closed (recall that
Db denotes the restriction of D to _). On the other hand

(r_d + Ker D)/(r_q + Im{D" r+l.r--r.r})
is a quotient of Hi(M, 0tr) which is finite-dimensional (see [3]). By virtue of
lemma 2.2 applied to the inclusion r. + Im D cr..A -+- Ker D, the space

Bb (9 Im D __r..,A
__
Im D

is closed.

Henceforth we shall suppose that D(r.) is closed in r-1..ff. Since Bb (9

D(r+ 1_5-) is closed in 2-, it has a topological complement A. From Lemma
2.3 (with V A, W Bb and W’ Bb (9 D(r+ 1.6-)) it follows that Bb (9 A is
closed. Denote by B Bb (9 A. Define H Ker{D: r...__)r--1..2- c B and
Hb H cr.. We have Hb c Bb. On the other hand, Bb B (-)r.. is
closed. Let Cb be a complement of Hb in Bb; that is, Bb Hb (9 Cb. We
shall prove that H -= HI(., D) and Hb HI(.’, Db). We have,

Cb (9 H is closed because Cb (9 H 7r-lrr(H), where r: r..2r-r.r/Cb is
the canonical projection, and H is finite-dimensional, thus closed. Let D be
a complement of Cb (9 H in B. By Lemma 2.3 (with V D, W Cb and
W’ Cb (9 H)Cb (9 D is closed. Let C denote Cb (9 D. We have proved the
following result.

THEOREM 2.5.
splittings

If D(r.) is closed in r-1.. then there are topological

r..2--" C (9 H (9 Im D

r_=Cb (g Hb (9 ImDb,
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with

Ker{D" r..Jr--r-1._} H Im D

Ker{D" r_ --r-l-r/} Hb Im Do

Cb C n r_, t1 H

Remark. The above splitting of r.. is similar to the usual Hodge
splitting. Here C plays the role of ImD* and B=CH the role of
Ker D*. The advantage of the splitting in theorem 2.5 is that it restricts to an
analogous splitting for r..

3. Vector 1-forms and transversely holomorphic foliations

To each transversely holomorphic foliation we associated in Section 1
the subbundle F of CTM generated by {O/OxU, O/O-a} in each -adapted
local chart. This subbundle satisfies the following two conditions:

THF1. F + F =TM.
THF2. [F, F] c F.

A subbundle F of CTM which satisfies THF1 will be called a transversely
holomorphic distribution.

Let - be a transversely holomorphic foliation that we take as an initial
foliation. Let F be its associated bundle. Let AI(CTM) be the space of vector
1-forms. If q AI(CTM) is close enough to the identity in such a way that
q(F) + q(F)=CTM then qffF) is a transversely holomorphic distribution.
Denote by /3 the map p qffF) which carries vector 1-forms close to the
identity to transversely holomorphic distributions close to F.
By using the splitting CTM F N1’ that we chose in section 1, each

transversely holomorphic distribution F’ close to F is the graph of a
morphism of vector bundles o: F NI’; that is, F’ {X + to(X)IX F}.
o can be extended to a morphism CTM CTM with the condition tolN1’ 0.
Denote by a the map F id + o which carries transversely holomorphic
distributions close to F to vector 1-forms close to the identity. Obviously
/3 a id, but a o/3 4: id, in general.
The diffeomorphisms f of M close to the identity act on transversely

holomorphic distributions close to F in the following way: (f, F’) --, f*(F’),
where f*(F’) is the subbundle of CTM with f*(F’) --f-l(Fx)) at each
point x M. The diffeomorphisms f of M close to the identity act on vector
1-forms close to the identity by (f, q) f*(qg), where f*(q) af*(fl(q)).
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4. Derivations and transversely holomorphic foliations

As in the preceding section let F be the subbundle of CTM corresponding
to the initial foliation -. Let q be a vector 1-form close to the identity. In
each --adapted local chart (U, x u, z a) set qu q(O/OxU), (a (/oZa),
q q(0/0-a). We have [qx, q,] C,q, where the indices A, tz, u denote
all the indices a, K, and u. Let C be the vector 2-form

1 0

where z x is to be interpreted as x u when A u. The pair 6 (q, C) gives a
1-derivation 3 .1 such that [3, 3] 0 (see [5]). Then 3 .- if q(F) is
integrable. Let A]nt(CTM) be the subbundle of AI(CTM) consisting of those q
close to the identity such that /3(q) is a transversely holomorphic foliation.
The map q 6 (q, C) is a bijection between Aint(TM) and the set of
elements 3 . close to the exterior differential d such that [3, 3] 0.
To work in a neighbourhood of the origin rather than in a neighbourhood

of d, we take the composite of the two bijections

which gives a bijection between Aint(TM) and the analytic subspace J of .
consisting of those 3

_
close to the identity and satisfying

D3- [,1 =0.

To each 3 J corresponds (by the composite of the inverse bijection and/3)
the transversely holomorphic foliation given by (id q)(F). We shall denote
this map also by/3.

Since the diffeomorphisms of M close to the identity act on Zint(TM) by
the action defined in the preceding section, they also act on J through the
bijection

Aint(TM) J.

5. Construction of the versai space for the transversely
holomorphic foliations

Let - be a transversely holomorphic foliation on M that we shall take
as an initial foliation. Without loss of generality we can assume that M
and - are of class C,, because any transversely analytic foliation is isotopic
to a real analytic foliation. Fix a large enough positive r and endow the
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Sobolev completions r_ with hermitian metrics. Denote by D* the
adjoint of D: r.--,r-L+ with respect to these metrics. Set
{6 r.D*(D6- 3[6,6])= 0}. E is a Banach manifold in a neighbour-
hood of the origin, with Ker D ToE. We shall work here with germs of
manifolds and germs of analytic spaces. Thus we shall substitute, without
explicit mention, a manifold or an analytic space with a neighbourhood of a
distinguished point of this manifold or analytic space. Set H c Ker D*.

can be defined alternatively (see [3] or [1]) as the set of those 6 r.j
satisfying the elliptic equation

D*(D3 [, ]) + DD*3 O.

Thus all ; are C’. One can easily see that is an analytic Banach
submanifold of (in a neighbourhood of 0 H) having H KerD C
Ker D* as a tangent space at 0. Set S q J. S is an analytic space with
To(S) H. We want to see that the family of foliations {z}s s, with
-/3(s), is versal (where S can be replaced with a suitable neighbourhood
of 0 in S).
As in Section 1.9 of [3] one can construct a C=-morphism

g" S N1’ M

(defined only in a neighbourhood of the origin of {0} T(M), where 3’ is the
zero section of N1’) depending holomorphically on the variable S and such
that:

(i) g(O, y(x)) x k/x M.
(ii) For each sS and xM let gs, be the restriction of g to

{s} Nx1’. For each local chart (U, xu, z’) of M adapted to the foliation
with x U, let ,n-s(U) (z’](u)). With these notations 7rs g,x is holomor-
phic.

(iii) The tangent map of go, x at (o, y(x)) is the canonical inclusion

N1’ CCTx(M).

As in Section 1.9 of [3] let rDiffS(M) be the family {f} of diffeomorphisms
of M of r-Sobolev class which are of the form x ---> g(s, (x)), where sc is a
section of N1’ close to the zero section. Let 54 be (a neighbourhood of 0 in)
the vector space of r-Sobolev class 1-forms mapping F to F. Define

p.r+lDiffS(M ) xr+l-z! A’(CTM)

by P(fs, a) fs*(q) b2 lo q o(id + a), where qs is the first component of
the derivation s (that is, a vector 1-form), bs a(qs) and the symbol
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means composition of endomorphisms. Notice that p(ids, 0) rps because (by
definition) id*(s) a(id*(/3(s)) b.

Let th be the map S xr+ll-’(Nl’) -r+lDiffS(M) given by

(s,s) --(x-g(s,(x))

in a suitable neighbourhood of (0, 0) in S >(r+ IF(N1,0). Endow r+ 1DiffS(M)
with the complex structure given by the local chart (h. With this structure one
can prove that p is holomorphic.

Since qs corresponds to an integrable distribution so does P(fs, a); that is,
p(fs, a) belongs to Aint(TM) in the notation of Section 4. Through the
bijection Aint(TM) J, p gives a holomorphic morphism

p. r+ DiffS(M) xr+ A _..rj.

Here p(ids, 0)= s. If we identity r+lDiffS(M) with S xr+IF(N1’0) in a
neighbourhood of (0, id o) through the local chart (h we shall have

p" S X r+ 1F(N1’) X r+ 1Z rj.

In each adapted local chart (U, x u, Z a) take the vector fields Za and the
1-forms 0" defined in Section 1. If sc F(N1’) is expressed on U by

aZa, define

)b ) d-a + -ff O (R) Za

Then dF is a global vector 1-form. Let r+l_N0 be the subspace of
consisting of those elements 6 + l_,ff;r ( (qg, /t), with q + 11"(N 1, 0)
cr/IF(CTM). The morphism

k.r+’r(N’,O) xr+lA __)r+lNO

given by

k(sc, a) derivation (, d dF + a),

is an isomorphism. Identifying + 1F(N 1, 0) X + z with + 10--0_r_..N cr + 1..5
through k, one can prove that the tangent map of O at (ido, O)r+Diffs

+1 is given by

(dP)(ido,o)(h, 6) h + D6,
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with h H ToS and D the differential r+ 1..5__)r..r. Let

" X r+ 11-" (Nl,o) X r+ 1A ----) r.;

be a holomorphic extension of

p" S xr+IF(NI’) xr+!A __)rj cr..r
to the ambient space. Let be the composition

X’+IF(N1’) xr+!A r-.v- KerD _j_.v E,

where zrg, is the projection on Ker D given by the usual Hodge splitting of
r. and 3’ is a parametrization of E by its tangent space Ker D.

Notice that Ker D n r+ a_u0 is finite dimensional. Let rE+ be a complement
of Ker D nr+Lu in r+L. Let W be the subspace of .- consisting of
those elements 6 r+._ of the form i (p, dcp) with p r+IF(F) c
r+lI’(cTm). Notice that r+l..6--’-,_’ir+l.N0; for if 6 r+l..6 --(, ),

@az --[- q3aZa -Jr- qguO/Ox u, and if we set N qaZa and F q qN,
then

( P, ) ( PF, dqF) + ( N, Ill dq)F)"

Observe that the pairs (F, dqgF) and (N I/t F) define global derivations
and that (PF, dq)F) - "- and (PN, dqgF) -’1"
D maps E onto Im D isomorphically because 4’ is contained in Ker D.

The restriction of to H E gives a holomorphic isomorphism t5: H E
in a neighbourhood of the origin (by the inverse function theorem). One

has

p
S X E c J c E (by -1) D X g

p
and the lemma of Douady [1] asserts that S x E -= J in a neighbourhood of
the origin. The holomorphic projection rr

-1

j -___ S X E..._ S

gives the versality of the family {}ss in a neighbourhood of 0 because if
8 J corresponds to a transversely holomorphic foliation then zr(8)
corresponds (by definition of p) to a foliation obtained from by a
diffeomorphism.
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6. Construction of another versal space adapted to basic derivations

Let S be the versal space of the preceding section. To(S fqr..,) is not
isomorphic to HI(_, Db) in general. We would like to find another versal
space S’ fulfilling To(S’ qr_) HI(., Db)= the space of infinitesimal
deformations of fixed differentiable type of -.
Take a Hodge splitting compatible with basic derivations, as in theorem

2.5"

r_= C’ H’ Im D

(for this we must assume, although, that D(r_) is closed in r-1..ff). Here we
write C’ and H’ instead of C and H, since H has a precise meaning in the
preceding section. Define ’ E q (C’ H’), S’ J n (C’ H’). We have

ToITI’ H’ H To I2I. In the preceding section we had

where horizontal arrows are isomorphisms and vertical arrows are injections.
Since ’ is a submanifold of E and fi is a bioholomorphism then /
-1(/,) is a submanifold of E that can be described as the graph of a
holomorphic map f’." / E. Set

Set K =/ c (S E)= graph of f image of r, where f Js and r

6Is. Then

o"SKcSxE

is a biholomorphism. We have p(K) c S’ J (C’ H’). Therefore p
induces a morphism K S’. Let A be the composite

S( K P_ S,.
Let be the composite

p-1
S’ "-> J----> S X E -- S,

where pr is the projection onto the first factor. One has A id s and
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do is injective. This implies that A and are both isomorphisms. Let P be
the composite

p-1
p.J---. SE- S .- S’.

Then P is a projection. If 3 J corresponds to a foliation then P(6)
corresponds to a diffeomorphic foliation by virtue of the definitions of p and
A. The family {/3(s’)}s, s’ is thus versal.

Notice that S’c J r_. Let n be the dimension of M. Choose a real
number k > n/2. Sobolev’s lemma says that the elements of S’ are Ctr-kl-

derivations when r > k, [r- k] being the integer part of r- k. Then
Newlander-Nirenberg’s theorem for class Ctr-kl tells us that each/3(s’) with
s’ S’ is a ctr-k-transversely holomorphic foliation. Recall that in the
preceding section the elements s S were of class C’. Here we cannot say
the same for the elements s’ S’. In the preceding section techniques of
elliptic operators were used and we are not able to use such techniques here.

7. Versality theorem for fixed differentiable type

The construction of the preceding section leads to the following defini-
tions: Given a germ of analytic space (T, o’) and a large enough positive r, a
cr-family of deformations of the initial foliation ,- parametrized by (T, 0) is
a family {6t}ts T of elements of J cr-r, depending holomorphically on t,
with o 0. Each (6t) is then a ctr-eLtransversely holomorphic foliation
by virtue of Sobolev’s lemma and Newlander-Nirenberg’s theorem. As there
is no Newlander-Nirenberg’s theorem with parameters for class C we are
not able to find a family of deformations of - in the usual sense of [3]
corresponding to {t}t T" A cr-family {t}tT of deformations of is said
to be of fixed differentiable type if for each there is a transversely holomor-
phic foliation tt close to r with 3t a(t) and tt - as real foliations.
This is equivalent to saying that t J c3r_, ’dr. SO a cr-family {t}tT of
deformations of - of fixed differentiable type is a family of elements 3t of
j (-)r_ depending holomorphically on t, with 3o 0. Two families {t}tT
and {3’t}t T of fixed differential type are said to be equivalent if there exists a
family of diffeomorphisms {ft} preserving -as a real foliation such that
ft*((t)) (6’t). With this notation we are able now to state the following.

THEOREM 7.1. Let - be a Coo-transversely holomorphic foliation on a
compact C-manifold M. Suppose that the following conditions hold:
A There exists a transversely projectable connection. This means that the

tangent bundle of the model manifold Z admits a connection invariant
under the Yij (notation of Introduction).
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B There is a (sufficiently large) positive real number r such that D(r-) is
closed in -1_ (this condition holds, for example when 2H (-a, Da) is
finite-dimensional).

Then there is a germ of analytic space (S’b, o) parametrizing a cr-family of
deformations of -offixed differentiable type, {6’,}s, s’, such that for any other
cr-family of deformations of of fixed differentiable type, {t’t}tr,
parametrized by a germ of analytic space (T, o), there is a holomorphic
morphism f: (T, o) (S’b, o’) such that {6’t}tr is equivalent to {f(t)}tT;
moreover the tangent map dof is unique.

Proof We use the notation of the preceding section. Let T/’ke
projection r..2r Ker D given by the Hodge splitting

denote the

r,.z-= C’ t) H’ Im D

Ker D

Let y be a parametrization of E, 3" Ker D E, such that T/’ke 03’ id and
3" 7rker[ ida. Define Eb 3’(Ker Db) c E. H 3"(H) with H H’ n
r_. Set S S’ nr and Jb J nr- To continue the proof we need the
following.

PROPOSITION 7.2. (a) I")r. C b"
(b) ’ nr.t =/--/, n r_t.
(c) H n Jb Sb"

Proof (a) If 6 E nr- then 6 c’ + k with k Ker D, k 7/’ker(t).
Since 6 r.. then k Ker Db, c’ C’b, 3" T/-ker(t ) t, (k), so

(b) is easy.
(c) One has Jb= Jr =(by (b))=’rJ=S’

Continuation of proof of the theorem. Let g be the exponential S
1’ M used in Section 5 (defined only in a neighbourhood of (0, 0)). Let
be a C-extension of g to the ambient space:

if"/Q N1’0 ---> M.

As in Section 5 denote by r+lDiffB(M) the family of cr/l-diffeomorphisms
of the form x ,(h, :(x)), where ff is a cr/ 1_section of N 1, 0 close enough
to the zero section, and h H. To simplify the notation we shall
use instead of r+lDiff/(M). is a differentiable submanifold of
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X + 1Diff(M) with the following local chart

r+IF(NI,)
(h, e)----, (x g(h, e(x))).

Denote by r+ 1Diff(M -) the set of Cr+ 1-diffeomorphisms preserving - as
a real foliation. Hypothesis A implies that + 1Diff(M, -) is a differentiable
submanifold of r+lDiff(M) (by using the exponential given by the trans-
versely projectable connection). Then the intersection ’n (H
/ 1Diff(M, )) is a submanifold of + 1Diff(M) in a neighbourhood of

(0, id) because the following transversality condition holds:

T(o, id)( "/ ) -[- T(o, id)(/- Diff( M, )) T(o id)( Diff(M) ).

Set = 4)- 1(2n ( x + Diff(M, -))). Then 7 is a submanifold of
/_ + 1-’(N 1, 0) in a neighbourhood of (0, 0).

Until now E (Sections 5 and 6)were a topological complement of
Ker D C3

r/ 1..N0 in r/ 1_0. Take this complement in the following way. Let

(r+ l.)b __r+ I_N0 n r+ l.b0
Then

KerO cIr+l. c (r+l. ) b.
Take a topological complement Eb of Ker D (-jr+ 1_ in (r/l.N0)b. Since
Ker D r+l0 is finite-dimensional, E (9 (KerD cr+) is closed in
r+ 1_0. Let E’ be a topological complement of Eb (9 (Ker D n r+l_0) in
r+ 1_. Take E E’ Eb. We have by construction:

(2) r+ I_N00 (Ker D (1 r+ 1..N0 ) ( Eb 1

(r+ l_N0)b (Ker D C r+ lrN0 ) ( Eb"

Recall that r+zl denotes the vector space of Cr+ l-vector 1-forms mapping F
to F. Denote now by r/1b the subspace of r/A consisting of those vector
1-forms mapping F to F and L to L, where L is the subbundle of F of
vectors tangent to the leaves of -.
With these notations, 7"xr+ 1Ab and / X E are submanifolds of

/_ r+ 1F(N1,0) xr+
The intersection of these submanifolds is a submanifold in a neighbourhood
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of the origin because

r(o,o,o)(/’xr+lAb) H xr+lFb(N 1’0) xr+IAb

(through id k) H (+ 1.N)b
and T{o,o,o)( E) H E. So the sum of these two tangent spaces is (by
virtue of (2)) the whole space H + 1F(N1, 0) X + 1A H X + 1.U0" Denote
by Cab the intersection (M2 r+ 1Ab) C ( E).

In the notation of the preceding section, set /b -a(H[,),", Kb p- 1(S,).
Then /b is a submanifold of H E contained in/. Let rr be the projection

# X "+ ’F(N’’) X "+ !,4 ---, # /,

where the first arrow is projection on the first factor. Then rr restricted to b
is a projection, rr: b /. Set ,l/t, 7"/’-l(/b), which is a submanifold
of

A simple computation shows that

({o}

By the inverse function theorem, t5 restricted to l/b gives a local isomor-
phism

Let 9a be the composite

9a maps integrable derivations to integrable derivations. On the other hand,
if 3 Jb then 9a(6) is obtained from 6 by a diffeomorphism of Diff(M, -)
acting on 6 followed by an automorphism of L. So 9a(3) Jb. Therefore 9a

gives a differentiable morphism

On the other hand, the composition of the above morphism and the inclusion
S, c S’ coincides with the restriction to J of the morphism
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which is holomorphicI! So the projection .9" Jb -o S’ is holomorphic. This is
all we need in order to prove the versality of the family {s’}s, sg; for if (T, o)
is a germ of analytic space and (t)tT a family of deformations of fixed
differentiable type, since t Jb, if f denotes the holomorphic morphism

then the family {f(t)}t T is equivalent to {t}t_T"

Remark. An (apparently) more general definition of deformation of - of
fixed differentiable type is the following: A cr-family {t}tT of deformations
of .- parametrized by a germ of analytic space (T, o) is said to be of fixed
differentiable type if there is a family of diffeomorphisms {ht}t T of M
parametrized by the same (T, o) such that for each there is a transversely
holomorphic foliation t with 6t a(t) and ht*(t)= -- as real folia-
tions (instead of asking t --)- If one takes this definition, one is lead to
the following definition of equivalence" Two families {St} and {8’t} of deforma-
tions of .- of fixed differentiable type are said to be equivalent if there is a
family {ft} of diffeomorphisms of M with ft*(fl(it))= (’t). A Kuranishi
theorem analogous to Theorem 7.1 with these definitions is immediate. It
suffices to see that if {6t} is a family of deformations of - of fixed
differentiable type according to the latter definition then {8’t} with 8’t h*t(6t)
is a family of deformations of fixed differentiable type according to the
former definition. One then applies Theorem 7.1 to the family {6’t}.

8. The Kodaira-Spencer map and the versality criterion for smooth
Kuranishi spaces

Let {t} T be a family of deformations of - of fixed differentiable type
following the definition of Section 7. Given a derivation O/Ot To(T), let
t (tg/tgt)ott" As /t J [,r., one has

By derivation of this identity at 0 one has [d, t] 0; that is, D
t Ker Db. The map

=0. So

To(T) -- nl(..;, Db),

0/0t cohomology class of t
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is called the Kodaira-Spencer map of the family of deformations {St}. An
elementary result on analytic spaces (as in [3]) gives the following.

THEOREM 8.1 (Versality criterion). Let {tt}t T be a family of deforma-
tions of ,- offixed differentiable type parametrized by a germ (T, o) of analytic
space. Suppose the following conditions hold:
VC1. (T, o) is smooth.
VC2. The Kodaira-Spencer map associated to the family {6t} is an isomor-

phism.
Then the family {6t} is versal and (T, o) is (isomorphic to) the versal space
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