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TOTAL CURVATURE OF FOLIATIONS

R. LANGEVIN AND C. POSSANI

The total curvature of foliations will be studied with the extensive use of
integral geometry. More precisely there is a dictionary between curvature
integrals and counting of contact points. Each correspondence of the dictio-
nary will be called an "exchange theorem".

It is not a surprise that lower bounds of curvature integrals of a foliation
given on the boundary of a domain depend on the integral geometry of the
boundary data.

I. Exchange theorem

Throughout this paper we’ll use the so called "Exchange Theorem". In this
paragraph we will state it and make some remarks. For the proof we refer
the reader to [B.L.R], or [L].

Let W c Rn+ be an open set with compact, U c W an open subset of
W, and -a codimension one foliation of W with isolated singularities. If
u S c Rn+ 1, let L(u) be the oriented line through the origin of Rn/ 1. For
each L(u) let T be the hyperplane orthogonal to L(u) passing through t.
We define [/z[(F, Tt) N U oo to be the number of points of U where the
hyperplane T is tangent to a leaf of F. This number is finite for almost all
pairs (L(u); t).

Let K(x) be the Lipschitz-Killing curvature of the leaf through the point
X.

With these notations we have:

1.1. EXCHANGE THEOREM.

(I.1)

(Both sides of the equality may be infinite).
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This inequality may, of course, be written as

(I.2) 1/2fsnft(u)ltZl(z-,Zt) dtdu fuIgl(x) dx

When n 1, that is when W is an open set in Re with compact closure,
the left integral can be understood as an integral over the space of
non-oriented lines of the plane. This set is endowed with the density m
associated to the form dr dO where r is the distance of the line T to the
origin, and 0 the angle between the axis 0x and the line T. For more details
see [S].
The exchange theorem becomes

(1.3) fuIKl(x) dx fl/x (-, L) dm (L).

Instead of considering contact with lines, we can count contacts between the
leaves of F and line segments of fixed length. Let a be the set of
non-oriented line segments in Re of length d. We parametrize a segment I
of a by coordinates (r, 0, s) where (r, 0) are the coordinates of the line L
supporting I and s the coordinate of the center of I in L. This gives a
density m Idr/x dO/x dsl on a which is invariant by the action of the
isometries, and therefore another version of the exchange theorem is

(I.4) Kl(x) dx 1#,1(9r, I) am(I)

From now on we will denote by K(-) the integral fuIKl(x)dx.
If we consider the analogous situation in a hyperbolic surface M, then,

although the set of geodesics of M cannot be given a measure invariant by
the isometries, the measure m coshr.dr/x dO/x dsl on the set a of
geodesic segments of length d is invariant by the action of "local isometries"
and 1.4 still holds, see [L.L1].

II. Total curvature of foliations of bounded plane domains

In this paragraph we will consider foliations of a given domain D c R2

homeomorphic to the unit disc DE-- {(x, y) RE[x2 + y2_< 1}, and we
suppose that its boundary OD is piecewise 2.
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FIG.

II.1 DEFINITION.
defined by

The distance between two points x and y in D is

d(x, y) inf{l(y)ly [a,b] --, D is a regular curve,

y(a) x, y(b) y and l(y) is the length of y}

It is clear that d is a metric in D. In fact, as D -- D2 there always exists
exactly one curve y joining x and y which satisfies l(y) d(x, y). Such a 3’
is called a geodesic of D.

11.2. DEFINITION. The diameter of D is defined as

d sup{ d(x, y)lx, y D}.
(see Fig. 1)

Let be a foliation of curves of D, tangent to OD, with isolated
singularities of positive index. - need not be orientable.

11.3. THEOREM. With the above notations we have

K(-) >_ l(OD) 2d.

This theorem is analogous to one of R. Langevin and G. Levitt that asserts
if r is an orientable foliation of the disc D2, tangent to the boundary, then

K(,.,-) > 2rr- 4.

Proof. First of all, let us define the index of a singularity of a non-orienta-
ble foliation. The index of a singularity P is an integer which measures the
variation over RP of the field of directions of the leaves of r around a
neighbourhood of P. The index we consider is the above integer index
divided by 2. If the singularity is orientable, then this index is the usual one.
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FIG, 2

We will suppose in this paragraph that - has only singularities of positive
index.
We are going to show that we can suppose - has 2 singularities of sunset

type, which are of index 1/2 (Fig. 2).
All singularities with the property that the oscillation of its field of

directions is uniformly bounded in any circle centered at the singularity, can
be substituted by a sunset or a source increasing the total curvature of 9r as
little as desired.

This can be done by considering in the boundary of the disc Dr, with
center at the singular point P and radius r, a homotopy between the angle
function determined by - and the angle function of one of the foliations in
Fig. 3.
A source can be replaced by two sunsets by the modification in Fig. 4.

FIG. 3

_l

FIG. 4
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FIG. 5

If the oscillation of the field of directions of - in the neighbourhood of P
is not uniformly bounded then K(qz-) oo in a neighbourhood of P and we
are done.

Let P and Q be the two sunsets of qz-, and 3’ a geodesic of D joining
them. We are going to estimate the number of points of contact of leaves of

and a line L of the plane. Except for a set of lines of measure zero, each
line L meets D in a finite number of segments.

IfAB is a segment of L N D and AB N y then divides D into two
discs, one of them containing {P, Q}. In the other disc, is orientable and
certainly there’s at least one point of contact between A-- and leaves of -(see Fig. 5).

Let n(L) be the number of segments of L D in which L meets 7, and
c(L) the number of segments of L D in which L doesn’t meet 7. Then we
have

(11.4) L) c(Z).

Cauchy’s formula [S] gives us

1(c) segments L D} - L c c}

if c is a piecewise regular closed curve boundary of a disc D,

l(c) L C c} if c is a piecewise regular arc.

Then we have
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c

FIG. 6

Applying 11.4 and the exchange theorem,

I(OD) < 2/(3,) + I/xl(-; L) 2/(3,) + K(z-),

and then

K(c-) > l(OD) 2/(),) > l(OD) 2d.

With the same techniques we can analyse the case where D is a region of R2

homeomorphic to the annulus A {(x, y) RE10 < r _< X 2 d- y2 < rE}, with
boundary 0D C U C2 where C and C2 are piecewise regular closed
curves (Fig. 4). Suppose C is the interior curve of 0D.

11.5. DEFINITION. If D is a region in R2 homeomorphic to the annulus
A, with piecewise regular boundary OD C1UC2, C being the interior
curve, we call interior convex envelope of C the curve C which is the
boundary of the convex-hull of C in D, that is the boundary of the
intersection of all sets of RE that are contained in the interior of C2 and
convex in D (Fig. 6).

We can then prove in an analogous way:

11.6. THEOREM. /f D c R2 is a region homeomorphic to the annulus A as
above, and if - is a foliation of D, without singularities, tangent to the
boundary then

K(o-) > l(C2) + l(C1) 2/(C)

If, in theorem 11.3, the curve OD is convex then there exists a tight foliation
of D. By a tight foliation we mean a foliation - that realizes the minimum
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0D C2

Fro. 7

of K(r). Analogously, in Theorem 11.6, if C and C2 are convex, C C1,
g(,z-) >/(C1) -/(C1) then there exist tight foliations (see Fig. 7).

If OD in Theorem II.3, or Ci, 1, 2, in Theorem II.6 are not convex then
we can show that there do not exist tight foliations of D.
The non-existence of tight foliations when the boundary of the domain in

not a convex curve follows from the following fact: if P 3D is a point of
inflexion of 3D and a regular point for -, then there will be an open set of
lines in the plane with the property that each line in this set has more than
one point of contact with the leaves of r in a neighbourhood of x.
But in this case we can exhibit a sequence of foliations of D, () with

K( ) I(OD) 2d.

We can think of the limit of this sequence of foliations as a foliation having
0D as critical set (In general, this critical set could be a union of curves), with
the "curvature concentrated in 3D" (see Fig. 8). (More details in [P].)

O

Fro. 8
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III. Foliations in a hyperbolic surface

So far the only known theorem concerning total curvature of foliations in a
hyperbolic surface is due to R. Langevin and G. Levitt [L.L.1] and asserts
that if M is a hyperbolic compact surface, without boundary and - is a
foliation of M whose singularities are all isolated and of saddle type, then

K(,.-) >_ (12 log 2 6 log 3)Ix(M)[.

In this section we will prove a theorem for two orthogonal foliations in a
compact hyperbolic surface M, without boundary. Our approach will be quite
similar to the one Langevin and Levitt used in [L.L.2] to establish an
analogous theorem for two orthogonal foliations in the sphere S2 c R3.

First of all let us recall that the universal covering of a compact hyperbolic
surface without boundary is the hyperbolic plane He and we will think of it
as the Poincar6 disc.

In hyperbolic geometry the interior angle of a regular n-gon is not
determined by n, a priori. Given n, there exist a regular polygon of n sides in
H2, with interior angle a, for each value of a satisfying

n-2
0 <a < .Tr.n

For technical reasons, that will be clear later, we need n odd and a equal
to 7r/2. The smallest n we can get is 5. Given n and a then the length, 1, of
the side of the regular n-gon in H2 becomes determined. For n 5 and
a 7r/2 we have - 4,275.
We can now state our theorem.

III.1. THEOREM. Let M be a compact, without boundary, hyperbolic (that
is, with a metric of constant curvature -1) surface and let and - be
orthogonal foliations ofM with isolated singularities. Then

K(-) + K(r +/-) >

where is the length of the side of the regular pentagon in H2, whose interior
angles are 7r/2.

Before proving this we make some definitions and remarks.

111.2. DEFINITION. We let G be space of all orientation preserving isome-
tries of H E. We define an equivalence relation in G by

gl =g2 Pglg21 =P
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It’s easy to check that = is actually an equivalence relation. We will denote
G/= byG.

111.3. DEFirqn:iorq. As in Section I:
c’ is the space of all geodesics of H2, with the canonical measure given by

the density m cosh r dr dO., is the space of all geodesic segments of length r > 0, with the density
m cosh r dr dO ds.
We identify, in H2, geodesic segments which project by p over the same

geodesic arc in M.

111.4. DEFIrqITIOrq. In we define an equivalence relation by C = C2
# (g G, g(C1) C2 [g] [Id] or [g] [0,], where A is the middle
point of Ce and 0.a is the geodesic symmetry through A).

It’s easy to see that - is an equivalence relation, and we indicate
by r" It’s not hard to check that the measure in induces a measure in
We define now a measure in . Consider a fixed segment CO in H e, of

length r. For each C we have two isometries gi G, 1, 2 with the
property that gi(Co)= C. (They satisfy gl 0, ge). So G is a two-fold
covering of r and we can consider in G a measure induced by r" This
measure induces, through the canonical projection, a measure in G.

Remark. The measures in r and in G could have been obtained by
parametrizing the geodesic segments by the position in Me of its middle
point, and by the direction of the tangent line at this point. The above
construction allows us to think of an equivalence class [g] as a geodesic
segment in M. We return now to our theorem.

Proof of Theorem III.1. Let be a foliation of M and +/- be the
orthogonal foliation. and - +/- induce by p" He M, foliations in He,
and we will also denote them by and +/-. As p is locally an isometry,
and considering the identifications we made above, we have

I1(; If])

where [C] is the equivalence class of a segment C of length r, and/z(q’; [C])
is the number of points of contact between leaves of in He and a
representative of the class [C].
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We can also consider K(-) as an integral on the space G"

1
K(r) Tfll(Z-; [g](C))

where C is fixed, with I(C)= 1, Il(;[g](C)) is the number of contact
points between o- in H2 and g(C), g [g].
The factor appears in this equality since each point of contact between

leaves of 9z-, and a segment C will be counted twice in G.
We can fix C, and let G act on o- to obtain

K(o-) 7 Itxl([g]o-; C),

where I/zl(g, -; C) is the number of points of contact between leaves of
g(,-), g [g] and C.
From now on we will fix P, a regular pentagon in H2 whose interior

angles are rr/2 and count contacts between its sides and leaves of g(o-). We
have

1
K(-) TO-7f I/zl([g]-;P).

III.5. LEMMA. Il([g]-; P) + Il([g]- +/- ;P) > 1.

Proof Here we need an odd number of sides and interior angles r/2.
This idea is due to R. Conelly, after [L.L.2]. Except for a set of isometries

of zero measure, at the vertices U of P we have two cases to consider.
(i) The leaf through vi, L is locally contained in the exterior of P. We call

it an exterior leaf.
(ii) u divides L into two half-leaves, one of them locally contained in the

interior of P, the other contained in the exterior of P. We call it an interior
leaf (see Fig,. 9).
As we have 5 vertices there are two consecutives vertices in which the

leaves of - are both exterior or both interior (see Fig. 9).
If we have two consecutive vertices, say Vl, v2, for which o- has interior

leaves, or for which - +/- has exterior leaves, then there exists a point v on
the edge VlV2, through which the leaf Lv of is either tangent or
perpendicular to the side VlV2. If the leaf is tangent then I/z (-, P) > 1; if it
is orthogonal then (-+/-, P) > 1 (see Fig. 10).
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Fro. 9

FIG. 10

This concludes the proof of Lemma 111.5 and we return to the proof of the
theorem. We have

K(’-) + K(’r-c) i-07 I/.tl([g]’-; P) + ]-0-/ I/l([g]-- ;P)

1 f[ll([g]-;e)/ I/l([g]r "P)]=0"

and then

1 f 1 m().K(-) + K(-+/-) > TO-/ 1

The theorem then follows from the two following lemmas.

11.6. LEMMA. The area of a fundamental domain ofM is 2r Ix(M)I.

Proof This is an immediate consequence of the Gauss-Bonnet theorem
applied either to M or to a fundamental domain Fg.
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11.7. LEMMA. m() 47r21x(M)l.

According to the above remark, the measure in G can be viewed as the
measure over segments of fixed length in HE (or in M). The middle point of
a segment varies in Fg (or in M)whose area is 27rlx(M)l. The direction of a
segment varies in a segment [0; zr[. Then the measure of all segments of fixed
length is 22Ix(M)[, and so m() 47rEIx(M)[.

IV. Foliations and envelopes

In this paragraph we turn our attention to the following question. Suppose
we are given in S an n-plane field, 9" Sn - n,n+ 1" We want to calculate
a lower bound for K(oq-), where r is a orientable codimension one foliation
of the unit ball Bn, with isolated singularities, which extends , that is, if
x S such that

First of all note that such a foliation may not exist. As it will be clear in the
following, even in this case our theorem makes sense, as a result on n-plane
fields that extend .
We will suppose that the envelope determined by is a herisson H with

support function h" Sn R. By this we mean that H is the solution of the
system:

(xlz) =h(z)
(xldz) dh(z), zSn

We would like to remark that the notion of a herisson (hedgehog)was
introduced by R. Langevin, G. Levitt, and H. Rosenberg in [L.L.R], and this
paper is the reference for the reader who wants to have more details on it.
The symmetric part of the support function h, is

1
hS(u) -(h(u) + h(-u)), u Sn.

Notice that, h doesn’t depend of the origin in Rn.
We are now able to state our theorem.

IV.1. THEOREM. Let ,tl. Sn __) n; n+l be an n-plane field given along Sn,
and r an orientable codimension one foliation of the unit ball Bn c Rn+l

which has isolated singularities and extends . Suppose the envelope
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L(u)

Fro. 11

determined by is a herisson with support function h. Then

K(r) > fs Ih*(u)l du.

Proof. With the notations of the first paragraph, we have

1 I (-; Zt) dtdu.

We will prove that

1 f Il(-;Zt) dt > Ih*(u)l, Vu an,IV.2.
(u)

and this will give us the inequality of Theorem IV.1.
As H is a herisson, the orthogonal projection PL(u)IH" H --* L(u) has, for

almost all u S’, exactly two critical points x 1, x2. Let’s suppose h(u)=
PL(u)(X1) and say that PL(u)(Xi) 1, 2, and let Yi S" be the points in
Sn where ?(Yi) Tti, 1,2 (see Fig. 11).
We are going to show that for almost all [t2, 1] there exists at least

one point of contact between T and leaves of -. This proves IV.2 above.
As - is orientable we can define in Bn a kind of "Gauss map" y- which

assigns to each regular point, x, of r, the unitary vector n(x) normal, in x,
to xx. The vector n(x) is determined by the orientation of r.

This function 3’. is continuous in B-Sing(qz-). We indicate by 35, it’s
restriction to S, and due to the fact that H is a herisson 3;- is injective and
hence is a homeomorphism over its image in Sn.
With u fixed in Sn, let D B"C T and S ODt. If t [t2, t 1] and

T c Sing(r) then either u or -u belongs to T-(Dt), as we shall now
show.
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In fact, either u q-(St,) or -u "a,-(St:).
e/lu)([t2; tl]) f-) Sn is a cylinder whose image by q- is a cylinder in Sn with

boundary

lr(St1 ) -J /-(St2 )

"(St) is an hypersurface in S that separates S into two hemispheres,
one of them containing u, the other containing -u.
/.-(Dt) must contain one of the two hemispheres determined by "(St),

then %-(Dt) must contains u or -u.
But this means that there is x such that n(x) u or n(x) -u, and

then I1(-; Tt) > 1.
This gives us inequality IV.2., and we are finished with Theorem IV.1.

Remark 1. When n 1, the integral fslh(u)l du is called the absolute
length of H [L.L.R].

Remark 2.
have

If - is a foliation of B+ such that S is a leaf, then we

hS(u) 2, Vu Sn,

and

K(,:-) > - 2 du area( an)
n+l

27r 2

F( n+l

where F is the gamma function.

V. Exchange theorem with plane curves

In this paragraph we generalize the Exchange Theorem by "counting
contacts" with a regular curve of R2, instead of line segments. This seems to
be very natural, after the constructions in Section III, where we used a
pentagon to estimate K(-).
We believe it will be possible to improve these ideas in higher dimensions.

For example, if o- is a foliation by surfaces of an open set of R3, we can
"count contacts" of leaves of qz-, with a fixed surface of R3 which will roll
over the leaves by the action of the isometries of R3, and obtain integral
formulas relating the total curvature of 9z-, the principal curvatures of its
leaves and the principal curvatures of the surface.
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In this section, W will be an open set in R2, with compact, r will be a
foliation of W, with isolated singularities and C will be a regular curve fixed
in R2, parametrized by arc length.
We define q W C G by q(x; y; s) g if and only if g is an isometry

of R2 which sends s C to (x, y) W in such a way that x, ) and g(C)
are tangent in (x; y) and have the same orientation.

LEMMA. The Jacobian of the map q satisfies

IJacqg,y,)] lYe(x, y) Kg(s)l

where K-(x, y) is the curvature of the leaf O(x,y at the point (x, y) and
Kg(s) is the curvature of g(C) at s, both considered with sign.

We recall that the space G of all orientation preserving isometries of R2 is
the cylinder RE X S 1, and that in G we have a canonical measure given by
the density

m =dxdydO

Given (x, y, s) W C there are exactly two isometries gi, 1, 2 which
send s to (x, y) in such a way that the leaf ,,) is tangent in (x, y) to the
curve gi(C), 1,2. These isometries differ by a rotation of angle 7r (see
Fig. 12).

Proof of the lemma. We consider two orthogonal bases:
[el, e2, C’(s)] in the tangent space to W C in (x, y, s)where [e1, e2] is

the canonical basis of R2;
[el, e2, f] in the tangent space to U= R2 S where [el, e2] is the

canonical basis of R2, and f is the unitary vector tangent to the family of
isometry classes in G which roll C over .,.

) without sliding in the positive
sense in

FIG. 12

W
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When C rolls over x,y) without sliding then the point of contact
between g(C) and - has, at each moment, velocity of translation equal to
zero and component of rotation equal to K-- Kg. Then

1 0
det 0 1

0 0 Ky(x,y)-Kg(s)
Ig-(x, y) Kg(s)l

The exchange theorem with curves follows directly from this lemma.

THEOREM. If W is an open set in R2, with compact, - is a foliation of
W by curves with isolated singularities, and C is a regular C2 curve in RE,
parametrized by arc length, then

1
IK-(x; y) K(s)l dxdyds,

where I I(-; g(C)) is the number of contact points between leaves of and
g(C), K-(x, y) denotes the curvature of the leaf of through (x, y) at
(x, y), Kg(S) denotes the curvature of g(C) at s (both curvatures take
orientations into account).

Proof

1fG I/l(q-; g(C)) dm(g) fwc IJac q(x; y. )1 dx dy ds.

Remark. An analogous result is valid in any surface of constant curvature.

Example. We consider W ]0, 1[ ]0, 1[ c R2, the foliation of W by
horizontal lines and C S(r) {(x, y) R21x 2 + y2 r 2} the circle of
radius r in R2, 0 < r < 1/2, parametrized by arc length.
Then Kx.y 0 and IKg(s)l 1/r, and

fw fc 1 1"/2-1xclK<x,,,- Kg(s)l area(W). 7 Jo rrdO 27r.

Each isometry g of R2 is determined by the image of the origin, or in other
words by the center of g(C), and by an angle 0 S (its component of
rotation).

If the center of g(C) lies in the rectangle ]0,1[[r, 1- r], then
I/zl(qz-; g(C)) 2, if the center lies in ]0, l[[-r, r] t ]0, 1[[1 r;1 + r]
then [/x I(r; g(C)) 1, and I/z I(-; g(C)) 0 otherwise.
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It follows that

fG I1(-; g(C)) 27r[2(1 2r) + 2r + 2r] 47r.
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