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FUNDAMENTAL SOLUTIONS FOR POWERS
OF THE HEISENBERG SUB-LAPLACIAN

CHAL BENSON, A.H. DOOLEY AND GAIL RATCLIFF

1. Introduction and statement of results

The Heisenberg group H of dimension 2n + 1 is given by

Hn:=CnXR (1.1)

with product

(z, t)(z’, t’) (z + z’, + t’ ::Im(z "))

for z, z’ Cn, t, t’ R. Differentiation along the one-parameter subgroups

{xy(s) (sey,O)} and {yy(s) (v/-1 sey, O)},

where {ej} is the standard basis for Cn, yields left invariant vector fields Xj
and Yj respectively. Letting Zj Xj + v/- 1 Yj and ,j Xj x/Z- 1 Yj, one
computes that

O -1 0
Zj 2}-j + 2 zj-/,

a
Z =2 Ozj 2 Zj- (1.3)
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The Heisenberg sub-Laplacian is the left invariant differential operator An.
on H,, given by

nn 1 (Zjj jZj)
j=l j=l

n O 0
4 .,

OZj 03.j
[- Zj COZj Ot

j=l j= j=l

1 2 02
/ wlzl Ot 2

(1.4)

AHn d- 02lOt 2 is the Laplace-Beltrami operator for a left-invariant metric on
Hn. The sub-Laplacian is homogeneous of degree 2 with respect to the
dilations d given by

ds(z,t ) (sz,s2t) (1.5)

for s R+. That is, A/_/,(f d)= s2 A/_/n(f) d holds for smooth functions

f’Hn-C.
In [Fol], G. Folland found that AHn has a fundamental solution F given by

the formula

n)2

F
8’W + r-n (1.6)

where

Izl 2)
1/2

r= -- +t (1.7)

The distribution F is tempered, given by a locally integrable function and has
singular support {(0, 0)}. Folland’s result is motivated by the well known fact
that a suitable multiple of IIx[I 2-n is a fundamental solution for the usual
Euclidean Laplace operator A on Rn for n > 2. (See e.g. [H6].) The function
r(z, t) on Hn plays a role analogous to that of Ilxll 2 on Rn, In particular,
r(z, t) is homogeneous of degree 2 with respect to the dilations given by
Formula 1.5.

In this paper we consider the problem of finding fundamental solutions for
(positive integral)powers A/, of AHn. Since A/n is homogeneous with
respect to dilations, existence of a fundamental solution is equivalent to both
local and global solvability [Ba]. The corresponding problem in Rn(n > 2) is
easy. Since A([[xl[ a) a(a + n 2)llxll a-z, we see that a multiple of I]x]] 2p-n

is a fundamental solution for A. The situation for H, is more complicated.
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Since AHn(ra) is not a scalar multiple of ra-2, we cannot use Folland’s result
to derive a fundamental solution for An in a simple fashion.

Let y Izl2/4 it rei where r is given by Formula 1.7 and -7r/2 <
0 < 7r/2. Homogeneous functions of degree 2a on H can be written in
(r, 0)-coordinates as Q(O)r a. An exercise with the chain rule shows that A/_/n
is given in (r, 0)-coordinates by the formula

32 cos(0) 02 O n sin(0)
A/_/ r cos(0) gr 2 + r 302 + ( n + 1)cos(0) dr r

(1.S)

One has

AHn(Q(O)ra) [cos(O)Q"(o) n sin(O)Q’(O)

+a(n + a)cos(O)Q(O)]ra-1. (1.9)

We conclude that a fundamental solution for An should be expressible in
the general form Q(O)rp-n+1. When p is greater than 1, Q(O) will not be a
constant function.
Our main result is the following.

THEOREM A. Let p be a fixed integer with 1 < p < n and let y
1Z[2/4 it rei. For 0 < s < 1 and 101 < zr/2, define

1 f’31as(O) ei(n-p+ l)O fO s
s7 -1X

)p-1(1-s 2io)n-p+ dS1 dsn"

Then, as s --* 1-, Re(Gs(0)) - Op(O) uniformly on compact sets, where
(i) Op(O) is smooth for [01 < 7r/2,

(ii) app(z, t) 2(- 1)P(n p)!
rn_p+l p(O)

extends to a function on Hn which is smooth away from (0, 0),
(iii) p is a tempered fundamental solution for A. with singular support

fro, o)}.

Theorem A shows that for s < 1, Gs can be expressed in terms of iterated
antiderivatives of elementary functions. G is determined by the differential
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equation

d )
p ei(n-p+l)Osn

s-d- Gs= -1( 2 e2iO n--p+l
(1 s2) p s + )

(1.10)

together with the initial conditions

s G=0 0 for/" 0,1,...,p 1.

One can recover Folland’s Formula 1.6 for the fundamental solution XI/’ Of
A/_/ from Theorem A by showing that qq(0) is a constant function. In the
case p 2, we have been able to express the general fundamental solution in
closed form. We consider the cases p 1 and p 2 below in Section 3. One
can also use Theorem A to derive various series representations for p. In
particular, we prove the following.

THEOREM B. Let y rei as in Theorem A. The series

(_l)2(n _p), 1
rn-p+l 2m=0 (2m +n)

p_
(-1)l(p+k-2)(

k+l=m k
n p + tcos( ( n-p + 1 + 2/)0)

converges weakly to p.
The series in Theorem B diverges pointwise. One must integrate term-wise

against a test function before summing the series. In this sense, Theorem B is
a weaker result than Theorem A.
The unitary group U(n) acts on Hn via

k (z,t) (kz, t) fork- U(n),(z,t) Hn. (1.11)

The operator At, is invariant under the U(n)-action. The key idea in our/4,
proof of Theorem A is to exploit this invariance by expanding p in terms of
U(n)-spherical functions bx, m on Hn. (See Equation 2.5.) Each b, m satisfies
bx,,,,(0, 0) 1 and is an eigenfunction for /_/, and its powers. In fact,

AH,(bx,m) (-1)PlAI(2m + n)Pdpx,m (1.12)

The set {h,m"/ R\{0}, m Z+t2{0}} has full measure in the space
of positive definite U(n)-spherical functions. Reasoning formally using
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Godement’s Plancherel Theorem [Go], one is led to a decomposition

)%=f E m+n-1 (p
-m=0

m dpx,m)ehx,mlAI n dA (1.13)

for the fundamental solution p of A/.. Moreover,

(%, tA,m ) (-1)
p

(%, A__/n(, ))
ihlP(2m + n)p

(-1) (A(),& m)IAIP(2m + n)
p

(-1)
IAIP(2m + n)

p(a(0,0)

(-1)
p

l, lP(2m + n)
p b*,m(O’ O) (-1)

p

I,Xl(2m + n) p"

Thus we obtain a formal expansion

=o (2m +n)
p m (1.14)

for p.
p is the weak limit of tempered distributions Ps as s 1 defined by

s2m +n ((-1)’f
m
E=o(2m +n)

p m+n-1)am mlAI"-p dA. (1.15)

We show that for s < 1, Ps is given by

2(-1)P(n-P)! Re(G)rn-p+

where G is defined in the statement of Theorem A, and that the limit
distribution p is a smooth function away from (0, 0).

Section 2 of this paper contains the proofs of Theorems A and B. Some of
the detailed analysis parallels that found in [MR1] (see also [MR2]) which
was a source of inspiration for the present work. In Section 3 we recover
Folland’s formula for p 1 and consider the case p 2 in more detail
producing an explicit closed formula for this case. This answers a question of
Korangi (personal communication). Section 4 addresses the scope of our
methods and describes some directions for further research. We expect that
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our methods can be used to find fundamental solutions for other differential
operators (on Hn and on certain solvable groups)which satisfy strong
invariance conditions. Throughout, p, n denote fixed positive integers with
l<p<n.
We gratefully acknowledge the support of the Australian Research Coun-

cil, and the University of Missouri. We also wish to thank the referee whose
comments helped us improve a previous version of this paper.

2. Proofs of Theorems A and B

We begin by reviewing some standard facts about the representation
theory for Hn. The infinite dimensional irreducible unitary representations
zr, of H are parametrized by non-zero real numbers A. For A > 0, zr, can
be realized in the Fock space of entire functions f(w) on Cn which are
square integrable with respect to (A/2,n-) e -xlw12/2 dwd [Br]. The holo-
morphic polynomials C[Wl,..., wn] form a dense subspace of each and
the scaled monomials {ux,, "a (Z/)} given by

[A[ Icl/2w
ux,(w ) (qlla!)l/2 (2.1)

provide an orthonormal basis for (,, ( )). Here we adopt the usual
multi-index conventions w w W,"n,[a[ a +’’’+an and a.
al!." an! for a (al,..., an). One has for > 0,

7r,(z, t)f(w) exp(iAt 1/2Aw. 5 1/4Xlzl2)f(w + z). (2.2)

For h < 0, one defines 1,1 and zr, 1.1" Using Formula 2.2, one
computes that

x(a/.)ux, -IXl(21l + n)u,,. (2.3)

We also require a lemma that appears in [MR1].

LEMMA 2.4 (Miiller-Ricci).
constant cN for which

Let f S(Hn) and N N be given. There is a

(1 + I,1) 1 + 211)

A smooth U(n)-invariant function b" Hn C is said to be U(n)-spherical
if b(0, 0) 1 and b is an eigenfunction for both An. and O/Ot. The bounded
U(n)-spherical functions have been computed by many authors [BJR2], [Fa],
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[HR], [Ko], [St], [Str]. The generic bounded U(n)-spherical functions are given
by

CA,re(Z, t) eiXte-lXllzlz/4Ln-1)(IAI Izl2/2)
where A R\ {0}, m Z / t2 {0} and L- 1) is the generalized Laguerre
polynomial of degree m and order (n 1) normalized to have value 1 at 0.
Explicitly,

m()t(mn-1)(X) "-(n- 1)!0
m

j= J (j +n-l)!" (2.6)

The remaining bounded U(n)-spherical functions do not depend on the
variable and can be expressed in terms of Bessel functions. These play no
role in the subsequent analysis.
The spherical function tbx, m is related to rx by

m + n- 1 )CA,m(m z. t) tr(-(z, t)l)_. (’trx(z.t)ux..ux..>x (2.7)

where m C denotes the homogeneous polynomials of degree m. Note
that [m + n-1 / is the dimension of m" It follows from Formula 2.3 and

m !
Proposition 3.20 of [BJR2] (or by direct computation) that

AHn tA,m --]Al(2m + n)tA,m. (2.8)

For each 0 < s < 1, formally define (Ps, f) for f S(Hn) by

<P,,f>=(-1)*’f s m+n-1
=o (2m + n)

p m

fn.dPX, m(Z,t)f(z,t) dzdtlAIn-p dA. (2.9)

LEMMA 2.10. (1) Ps is a tempered distribution for each 0 < s <_ 1 and

Ps ( 1)P2 Refo m + n 1 L(mn-1) a _h.rln_p

=0 (2m +n)
p m e dA

in S’(Hn) where y Iz12/4 it.
(2) lim_, 1- Ps P1 in S’(Hn)
(3) xIp el is a fundamental solution for Af_i, on Hn.
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Proof In view of the relation between A,m and %,

s2m+n
(Ps,f) (- l)Pf E tr(rrx(f)lm)lAIn-p dA

-m=O (2m + n)
p

s2m+n
(- 1) E E )(rr,(f)u, , u, ),1*1 --m=0 ]al--m (2m + n

(2.11)

We will show that this converges absolutely. Indeed, by Lemma 2.4,

(21al / n)
p

CN

(2lal + n)P(1 + 2lal)N(1 + IAI)
NIAIn-p dA

f 1 IXln-< CN
(1 + 21al)

g
(1 + [*l)

g

Here

, (1 +2lal)N
E m+rnn,,,=o (1

1

+ 2m) N

converges for N > n since

re+n-l)~ ran-1
m (n- 1)!

Also, since p _< n,

da < 2f0(1 + a) n-p-N dh

converges for N > n.
The formula for P given in (1) results from substituting Formula 2.5 for

bx, m and manipulating. Here, equality means weak convergence in the space
of tempered distributions.
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Let

m=0 (2m + n) m

fHda,m(Z,t)f(z,t) dzdt.

In the proof for (1) we saw that Igs(A)l is integrable. Since &(A) - gl(A) as
s- 1 and I&(A)I < Igl(A)l, the Lebesgue Dominated Convergence Theo-
rem shows that

as s- 1.

This shows that lims_, 1- Ps P1 in S’(Hn). That P1 is tempered follows
from the w*-completeness of S’(Hn).
The distribution To given by a left invariant differential operator D on Hn

is defined by

<To, f> (Dr)(0, 0) for f d(H.). (2.12)

The assertion that p P1 is a fundamental solution for Ar means
Up ]’af, 60. That is, we must show that for f _(Hn),

(2.13)

Using Formula 2.11 we see that

(-(211 + n))PlAIp

Since rra(f * TaL) 7ra(f)zr(A/) and

’/’A(A-/n)UA,o (-(21al + n))PlalPux,, (by Formula 2.3)

we obtain

(%. f. u,) f <,(f)u,.,. u,.>1 [n di

f tr(rra(f))lal n da

=y(o,o)

by the Plancherel formula for H. (See e.g. [Fo2].)
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LEMMA 2.14. (1)

m + n- 1 L-I) Rlz] 2

=o (2m + n)
p m 2

converges absolutely and uniformly for all z and 0 < s < 1 to a Schwartz
function Fs(z, R) characterized by

sd- Fs(z’R) sn
1 s 2

exp
1 S 2 2

and

forj 0,1,...,p 1.

(2) Ps (- 1)P2 Re fo=F(z, R) e-XrRn-p dR where y 1z12/4 it. The in-
tegral converges uniformly for 0 < s < 1 and z bounded away from O. In
particular, P is a smooth function for z 4 O.

Proof Part (1) follows from the classical fact that

rn 1 t (2.15)
m=0 (1 -t)

where convergence is absolute and uniform in t for 0 < t < 1. (See e.g. [Fa].)
Since F(z, R) is divisible by sn and p < n, the appropriate initial conditions
are as claimed.

Part (1) of Lemma 2.10 shows that Ps (- 1)p2 Re fFs(z, R)e-Rn-p dR
as distributions. On the other hand, the differential equation for F(z,R)
given above shows that for 0 < s < 1 and Izl 0, F(z, A) decays exponen-
tially as R oo. This proves part (2).

Proof of Theorem A. Let

es( z, t) z, R)e-XRn-p dR

for s < 1 where Fs(z, R) is as in Lemma 2.14. The lemma shows that

s=0 fo Fs(z’ R) e-XRn-p dR
s=0

=0 forj=0,1,...,p- 1
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and that

s-d- P( z, t ) S-d- F( z, A)e-A"-V dA

1_s2 ) exp 1_s2

sn f( 1 S2)
n e-XaAn-p dA

where

s2 Izl 2
a

l_s2 2 +Y"

e x’An -P dA

Since p < n, the above integral converges to yield

d )P" sn (n-p)!s- P(z,t)
(1 $2) oln-p+l (2.16)

Using the formula for y one obtains

$2/ +a
1 S2

(2.17)

Substituting Formula 2.17 in 2.16 and manipulating yields

where

(-1)P2(n-p)! Re(Gs(0) )rn_P+

d )
p ei(n-p+l)Osn

s- Gs(O )
(1 s2)’-’(s2 + eZi)

n-p+i (2.18)

as claimed.
Lemmas 2.10 and 2.14 show that the weak limit p as s--, 1- of the

functions

2(-1)’(n-P)! Re(Gs)rn-p+

gives a tempered fundamental solution for A.. It remains to prove that we
also have pointwise convergence to a smooth function away from {(0, 0)} as
asserted in the statement of Theorem A.
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The integrand

R(O)
ei(n -p + 1)oS n

(1 sa)p-l(s2 + e2i) n-p+l

is a sum of terms, each with a singularity at one of the points s 1, 1, iei,
or -iei and coefficients which are smooth functions of 0 in the domain
101 < r/2. As s - 1-, we need only consider the terms with singularities at
1 to check for uniform convergence on compacta. The degree of the singular-
ity for such a term is at most p- 1. After p- 2 integrations, the "worst
terms" are of the form

S EsJ.S--1
j=l

After two more divisions and integrations, this becomes ET=lsn/n2, which is
absolutely convergent as s--, 1-. Hence, ,(0) is a smooth function for
101 < 7r/2.
When 0 7r/2, Rs(O) becomes

( 1) n-p+ sn ei(n-p+ 1)rr/2

(1 $2)
n

and the above analysis fails. On the other hand, we know that AHnatt2 I)’l,
where W1 is given by Folland’s Formula 1.6. Since W1 is smooth away
from (0, 0) and AH, is hypo-elliptic (see [FS]), we conclude that W2 is smooth
away from (0, 0). Similarly, the singular support of each Wp is {(0, 0)}. We
conclude that the smooth function Wp for r = 0 and 10l < r/2 must extend
continuously to a smooth function for r = 0. That is, the apparent singulari-
ties at 0 r/2 are an artifact of our choice of coordinates (r, 0). 1

Proof of Theorem B. Theorem A together with the binomial expansions

1

(l-s2)p-1 k=O

P +kk-2 S2k

and

S q.- e2iO) n-p+l
(e-2i) n-p+l E n -p +

l=O
e-2i) 1S21
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yield

--e-i(n-p+l)Osn E E 19 + k 2

k=0/=0 k
n-p+l

( e-2i) lS 2(k +/)

--e-i(n-p+l)O E 19 + k 2 n -p + )1 -i210 s2m+n
m=O k =m k (-1 e

This fact together with the initial conditions on G at s 0 gives

1

)PGs e-i(n-p+ 1)Om=oE (2m + n

Applying Formula 2.19 to a test function and setting s 1, Theorem A
now shows

%=
(- 1)P2(n P)

Fn-p+

xRe
1

0 (2m + n)
p E (-1)

p + k- 2 n p "1 --(n--p+l+21)iO

k+l=m k
e

(_l)P2(n _p), 1
rn-p+l 2m=O (2m + n)

p

k+l=m k

where the series converges to p in S’(Hn).

,cos((n p + 1 + 2/)0).

3. The casesp= landp=2

One can recover Folland’s Formula 1.6 for the fundamental solution XI of
AH, from Theorem A by showing that ql(0) is a constant function. Note that
when p 1, the integrand in the definition of Gs(O) has no singularity at
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s 1. Thus, we can write

1(0) Re(G1(0))
einOs

where G1(0)
J0
f

(s --e )

One computes,

 f01 (
einOsn
S2 "F e 2i0)

nds

ineinfol s..n.-1(s 2 e2i0)
( s2 + e2iO )

n+ ds

"0 (S2 + e2iO)n
--iein --i(1)(1 + e2i0) 2 COS(0)

We see that (d/dO)Gl(O) is pure imaginary and hence 1(0) is constant.
Theorem B yields a weak power series representation for alrp. We will

describe an alternative approach to deriving a formula for xlrp from Theorem
A. Rather than expanding 1/(1 s2)’-1 and 1/(s2 + e2i)n-p+1 in power
series, one can form a (finite) partial fractions decomposition for

a

(1 s2)p-I(s2 -!- e 2i0) n-p+l"

In principle, this can be done for all n and p. Unfortunately, integration in s
will yield a log term which one must expand in power series to carry out
successive integrations. Here we will illustrate the procedure for p 2 and
n 2N even.

Let y rei as before and write/3 ei. We must solve

d)
2 n-lsns- G

(1 s2)(s2 + f12)n-1
(3.1)

subject to

d
o0 0
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Letting u s 2 and a j2, Formula 3.1 becomes

U G
uN

(1 u)(u + a)2N-l"
(3.2)

Dividing

UN

(1 U)(U -’]" )2N-1

by u and expanding in partial fractions yields

uN-1
(1 u)(u + a)2N-1

1 1

(1 + a)2N-1 (1 u)
N+k-1

X E (l+a)
1=0 (u+a)j+l"

(1 + a) N

Integrating in u, taking initial conditions into account, gives

1)2N_ log 1 +
(l+a

(1+ a)N y0 ; "1

x[N+-I (l+a)j N+-I (l+a)j]. (3.3)
j=l j(u + a) j=l Jay

We divide Expression 3.3 by u, expand the log terms in power series and
re-write the inner sums using partial fractions. This gives

1 [(_u)-,(1 -t- a)2N-1 k=lE kak

uk-1+ k

+ 1 Yo N 1 -a kN (1 + .a) E +1(I+ a) N 1 + a = Ja m=O (U + a) m

Integrating with respect to u, taking initial conditions into account and
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or equivalently

1)]
4G

1 1 (1 (--1)k/2k)
(2C0S 0)2N-1 k--1E V

1 N-I(N(2cos 0) N Y0---- 1)(-1 )kN+-I (2cosO)J; 2"cos"0
j=l

X [N+k-j-1 log(2/cos 0)
j--1

1 [ N-l+k-j+mE " I O)
m

m (2 COS

Finally, taking the real part of G and multiplying by 2 gives the fundamental
A2solution for Hn"

.2 (n 2)! QI(0) (3.4)

where

QI(0) E 1 + (- 1) * cos(2k0)
k--1 k2(2 cos O) n-1

1 N-I(N 1)(-1 )kN+-I(2cosO)J(2COs0)N y0 ; 2COS0
j=l J

[cos((N 1 + k j)0)log(2 cos 0) + 0 sin(( N 1 + k j)O)

i-1 1 (cos((N- 1 + k -j + m)O)
--m=iE " (2COS0)m

-cos((N- 1 + k-j)O))
and n 2N.
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Moreover,

1 (-1) *1 / ( 1)k+l cos(2k0) Z k2 2 cos(2k0)
k=l k=l

6 E (-1)
= k2 cos(2kO)

(3.5)

The last equality is a nice exercise using the fact that the 27r-periodic
extension of 0(Tr 0) on [0, 7r] has Fourier series

’/7"26 -1
cos(2k0).

k=l

Thus we obtain a finite expression for the fundamental solution (3.4)where

Q(0)
1 (,w2 )(2cos O) n-1

02

N-i(1 N 1
( cos0) ; -1 )kN+k-i O)j,S.., (2cos

2 cos 0
j

J

[cos((N- 1 + k- j) 0) log(2 cos 0) + 0 sin((N- 1 + k- j)O)

(1 cos((N- 1 + k-j + m)O)
m

m=l " (2cos 0)

-cos((N-l+k-j)O))],
and n 2N.
A similar analysis may be carried out for the case where n is odd,

n 2N + 1. In this case, we obtain (after considerable labour) the closed
expression

2 -(_n. 2)!
rn-1 QI(0), (3.6)
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where

rr 1 N (N)( -I )jN+j-IQI()
22N+3(COS O)2N

+
(2COS 0) u 0 j 2COS 0 (COS 0) k

j-- k=0

Here

[(2kk)(- sin(N+j-k-1)0- O(O)cos(N+j-k-1)0)

+ k+l 1 1

t=0 1 k 2

cos(N+j-k- 1)0+ -logtan - + -sin(N+j-k- 1)0-

[(m + 1)/21

2q-1 (-
ql

1 f /2- o
( o )

o

k-l-1

m=l m(2cos O)
m

1)qcos(N+j-k+m-2q)0)].

is the function with Fourier series

log tan dq, 101 < -,

E (-1) ksin(2k
+ 1)0.

k=0 (2k + 1)2

(See Formula 1.32 in [Obj.)
For low values of n, some of the sums in the formulae for I2 collapse and

one can obtain further simplifications by using multiple angle identities. We
used the Mathematica system on a computer to obtain the following forms
for I2 with n 2, 3, 4 and 5.

7-
2 402
8r cos 0

7r(20 sin 0 + 2 cos 0 zr)
32r 2 COS2 t9

7r
2 402 4 cos2 0 80 cos 0 sin 0

32r 3 cos3 0

7r(60 sin 0 + 30 cos20 sin 0 + cos30 + 6cos 0 37r)
64r4 COS4 0

forn 2

forn 3

forn 4

forn 5.

(3.7)
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We used the computer to check that A2Hn(XIt2) 0 for r 4= 0 in each case by
applying Formula 1.8. Using l’Hospital’s rule, one can check that there are
no singularities at 0 7r/2 as asserted in part (ii) of Theorem A.

4. Concluding remarks

In this section we will place some of the preceding discussion in a more
general setting. Let K be a compact subgroup of U(n). We say that (K, Hn)
is a Gel]and pair if the convolution algebra L(Hn) of K-invariant Ll-func
tions is commutative. This condition is equivalent to the action of K on the
space (Cn) of holomorphic polynomials on C being multiplicity free
[Ca],[BJR1], [BJR2]. It is well known that (U(n), Hn) is a Gelfand pair but
one also obtains Gelfand pairs using many proper subgroups K of U(n)
[BJR2]. Suppose below that (K, Hn) is a Gelfand pair and let

’-(Cn) E Vot (4.1)

denote the multiplicity free decomposition of ,_(Cn) into irreducible K-
modules.

Let D/(Hn) denote the algebra of left-Hn-invariant differential opera-
tors on H, that are also invariant under the action of K. For example,
Du(n)(Hn) C[Ann, O/Ot]. In [BJR2] it is shown that in general

OK( nn) C[O (4.2)

where D1,..., D are certain "fundamental" homogeneous differential oper-
ators of even degree (with respect to the dilations given in Formula 1.5).
When K acts irreducibly on C", An, will be one of the generators D,..., D
and the remaining generators each have degree at least 4. Below, we consider
the problem of finding a fundamental solution for a given differential
operator D D/(H).
A smooth function b:H --, C is said to be K-spherical if b(0, 0) 1 and

4 is a simultaneous eigenfunction for all operators E D/c(H,). A K-
spherical function is bounded if and only if it is positive definite [BJR1]. Let
A(K, H,,) denote the set of bounded K-spherical functions. The spherical
transform S(f):A(K, H) C of an integrable function f:H C is

S(f)(dp) fH,f(n)b(n) dn (4.3)

where 4(n).’= b(n-1). Godement’s Plancherel Theorem [Go] shows that
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there is a measure v on A(K, H,,) for which the formula

fa S(f)(dp)dp(n) dr(C)f(n)
(K,N)

(4.4)

holds for all positive definite functions f LIK(Hn).
It is shown in [BJR2] that a set of full measure in A(K, H,,) is parametrized

by pairs

(A,a) (R\{0}) A)
using the formula

1 dim(V,,)

E ( "if’A( Z, t)Ui, Ui) h (4.5)b4.,(z, t) dim(V,) i=1

where {vi} is any orthonormal basis for V, c ,.(Cn) C A"
general form

4)4,. has the

dp4,, ( z, t) q,( l/z)e-1411zl2/4ei4t (4.6)

where q, is a homogeneous polynomial of even degree in (z, 2). Note that
the identity (4,, b-"x,, follows. The polynomials {q, "a A} are, in princi-
ple, computable for given K.
Formula 4.4 is related to the usual Plancherel Formula for Hn and in terms

of our parametrization one has

dv(b4,,) dim(V,)lh n dh. (4.7)

(Recall that d/x(Tr4) IAI n dh is Plancherel measure on n [Fo2].) We
rewrite Formula 4.4 as

f(n) foo E dim(V,)S(f)(d4,,)(b4,,(n)lhln dh.
-oi,

(4.8)

Suppose now that we are given D D/(H,,) and that D is positive
definite. Otherwise, (D*), P will be a fundamental solution for D if P is a
fundamental solution for D, D*. If D has a fundamental solution then
K-averaging will yield a K-invariant fundamental solution P. This is clear
since both D and 60 are K-invariant. Formally we can use Formula 4.4 to
expand P in terms of K-spherical functions provided we can compute the
coefficients S(P)(4,) ( e,

Recall that V, can be regarded as a subspace of the representation space
,x for rx. Since D is K-invariant, 7r4(D)must preserve V, and commute
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with the action of K. Schur’s Lemma implies that 7rx(D)lv is a scalar
operator Xx,(D)Iv say. In fact, Xx,(D) is the bx,-eigenvalue for D
[BJR2],

D(6a,,) Xa,,(D)6,,,. (4.9)

Similar reasoning shows that for f Llr(Hn), one has

rx(f)lz (f, (4.10)

Since rx(D)Trx(P) 7rx(to) I, we see that

1’n’,x(P)lv, XA,(D) Ip.

and conclude formally from Formula 4.10 that

1(P, 6a,> X,,,,(D)" (4.11)

Combining Formulas 4.6, 4.8 and 4.11 produces a formal expression for a
fundamental solution for D.

dim(V,)
inP(z,t) -aT-f("j Xx,(z,t)]A dA

aA dim(V) _iXtqa ( _IAIIz12/4 inf_oo i-(’)) e A] z)e ]A dA. (4.12)

One is left with the problem of determining whether or not this expression
yields a well defined distribution. Some problems related to this were studied
in [BaDo].

Finally we mention that the formal method described above carries over to
certain more general solvable Lie groups G. Suppose that G is connected,
simply connected and solvable, K c Aut(G) is compact and (K,G) is a
Gelfand pair. That is, the convolution algebra Lit(G) is commutative. This
situation is studied in [BJR1]. One can hope to apply the techniques here to
find fundamental solutions for left G- and K-invariant differential operators
on G.

[Br]

[Ba]
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