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FULL NEST ALGEBRAS

ALAN HOPENWASSER AND JUSTIN R. PETERS

I. Introduction

Direct limits of finite dimensional operator algebras have become a source
for many interesting examples of non-self-adjoint operator algebras. This
note will study a special class of such algebras--direct limits of full upper
triangular matrix algebras with nest preserving embeddings. These limit
algebras are members of three important classes of operator algebras: they
are simultaneously nest subalgebras, analytic subalgebras, and strongly maxi-
mal triangular subalgebras of the UHF C*-algebras which they generate.

In what follows, we shall primarily study directed systems with the follow-
ing form:

1, i,,

Tn, ,Tn2 ,Tn3 ,A

where Tn is the algebra of upper triangular n n matrices and each v is a
unital isometric homomorphism. We further require that each embedding v
satisfy the following properties:

(1) v has an extension to a *-homomorphism of Mn.
(2) v maps a matrix unit in Tn to a sum of matrix units in T/.
(3) v maps .at T,, into .zaat T/.
Properties 1 and 2 are standard assumptions (but see [P3, P4] for informa-

tion on what may happen if these assumptions are not satisfied). Property 3 is
satisfied by the refinement embedding, p: T Tk, which is defined as
follows: p[ aij aijlk ], for all aij -- Tn. The embedding most often con-
trasted with the refinement embedding, the standard embedding, tr: Tn T,k,
defined by tr(a) a a (k factors), does not satisfy property 3.

DEFINITION 1.1. An embedding v which satisfies properties 1, 2, and 3
will be called a nest embedding.
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Remark. This definition is more restrictive than the definition used in
[P4], where property 2 is not assumed to be satisfied for nest embeddings. In
the literature, embeddings which satisfy property 2 are sometimes called
regular. The restrictive definition is more convenient for the purposes of this
paper. Thus, in this paper, all embeddings are assumed to be regular.

It can be seen easily that an embedding u: T Tnk is a nest embedding if
and only if its restriction to the diagonal algebra, D, is equal to the
restriction of p to Dn. It is also easy to see that any nest embedding, u, has
the following form: v[aij] [aijUiy] where each U/j is a k k permutation
unitary matrix and the U/j satisfy the cocycle condition UijUjh Uih. Note
that Uii Ik, for each 1, 2,..., n and that v is completely determined by
the n 1 unitaries on the first superdiagonal.

DEFINITION 1.2. If the n 1 unitaries which determine v are all equal,
then u is said to be homogeneous.

Let r Sk be a permutation on k elements. Define U= to be the
permutation unitary matrix whose i, j-entry is 1 if, and only if, zr(j) i. The
homogeneous embedding determined by the unitary U= will be denoted by
v=. A homogeneous embedding is given by the formula v=[ai] [aijU-i].

Clearly, there is a one-to-one correspondence between (n- 1)-tuples of
permutations in Sk and nest embeddings mapping T into T,k. In particular,
the number of such embeddings is (k!)n-l. The number of homogeneous
embeddings is, of course k!.

DEFINITION 1.3. A subalgebra, A, of a UHF C*-algebra which is the
direct limit of a system

where the v’s are nest embeddings, will be called a full nest subalgebra.
Different direct limit systems may yield (isometrically) isomorphic algebras.

A complete invariant, the fundamental relation, introduced by Power in [P1],
is very useful for determining when two direct limits are indeed isomorphic.
This invariant is, in fact, a complete invariant for triangular subalgebras of
AF C*-algebras whose diagonal is a canonical masa. The fundamental
relation can be described in groupoid language: every UHF algebra is a
groupoid C*-algebra and there is a subsemigroupoid which is the support set
of the triangular subalgebra. This support subsemigroupoid can be identified
with the fundamental relation. We shall not need to use the language of
groupoids in this paper; rather, we will work with a particular representation
of the fundamental relation. This representation will be easy to compute and
will effectively determine whether two algebras are isomorphic.
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To describe the fundamental relation in this context, let A li_m(Tni, ui)
be a direct limit of a system with nest embeddings and let D lim(Dn) be
the direct limit of the diagonal algebras of the Tn. D is the diagonal of the
triangular algebra, A. The maximal ideal space of D can be identified with
the Cartesian product X 1-I[ni], where [ni] {0, 1,2,..., n 1}. X car-
ries the product topology, and so is a Cantor space. The fundamental relation
is a topologized relation on X. While this relation is properly defined in
terms of the partial isometries in A which normalize D, it turns out that it is
sufficient to use only the matrix units from the T. It is exactly this point
which makes it feasible to compute the fundamental relation in many
examples.

If e is a matrix unit in A, then e induces a partially defined homeomor-
phism of X, whose graph we may denote by E. The fundamental relation,
FR, is the union of the graphs of all the matrix units in A. The topology on
FR is determined by taking the collection of graphs of matrix units as a basis.
An important result of Power [P2] states that two triangular subalgebras of

AF C*-algebras are isometrically isomorphic if, and only if, their fundamen-
tal relations are isomorphic as topological relations. For full nest algebras
with the specific representation of the fundamental relation as described
above (and the same sequences of multiplicities in their presentations), it
turns out that the topological relation isomorphism is the identity map.
Consequently, we are able to distinguish algebras simply by showing that
their fundamental relations are distinct as sets. Indeed we have the following
lemma:

LEMMA 1.4. Let A lim,(T,vi) and B li_m(T,,/xi), where the Pi
and tz are nest embeddings. If : A B is an isometric isomorphism, then
: A OA* B B* is the identity map. If c: FR(A) FR(B) is the
topological isomorphism offundamental relations induced by , then is the
identity map.

Proof. Since is an isometric isomorphism, maps .Wat (A) onto .zaat
(B) and preserves trace. Since C*(.Wat A) C*(.Wat B) D, the diagonal,
it follows that is the identity map on D. Thus induces the identity map
on the maximal ideal space of D; the Cartesian product of this map with
itself (i.e., the identity) restricted to FR(A) is the fundamental relation
isomorphism b. t2

Remark. There is a natural map from the Cantor space, X, to the unit
interval, [0, 1]. To each x (Xl, x2,... ) simply associate the real number= xi/ni. While we shall not use this map explicitly, it is very helpful for
intuitive purposes to keep it in mind, as it permits a visualization of the
fundamental relation as a subset of the unit square.
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II. Characterization theorems

Full nest subalgebras of UHF C*-algebras have been defined in terms of
specific presentations of the algebras. This section addresses the issue of how
one can recognize a full nest subalgebra of a UHF algebra amongst the
canonical subalgebras of the UHF algebra.

Clearly, each full nest subalgebra, A, of a UHF algebra, B, is both a nest
subalgebra and a strongly maximal triangular subalgebra. The diagonal of A
is the canonical masa, D !i.mDn, where Dn is the diagonal of T and the
nest, //= .atA is the direct limit of the canonical nests for the algebras T.
It is also evident that the nest, //, is multiplicity free (in the sense that its
commutant in A is D). See [PW; {}2] for a discussion of this concept in the
UHF C*-algebra context. In fact, a stronger property is true: 4/ generates D
as a C*-algebra. We remark in passing that C*(//) D by itself implies
that A zC’lg is a strongly maximal triangular algebra. [PW; Cor. 3.16]

Full nest subalgebras satisfy a second intrinsic property:

tr /= {trp" p //} Ko(B ) 3 [0, 1].

This is evident if one keeps in mind the fact that Ko(B) is the dense
subgroup of the rational numbers which consists of all fractions, a/b, where
a/b is in lowest terms and b divides the supernatural number associated with
B. The term "full" in the expression "full nest subalgebra" refers to this
property of tr //.
These two properties "almost" characterize those nest subalgebras of a

UHF algebra which are full nest subalgebras. In fact, there are nest subalge-
bras which satisfy these two properties and yet cannot be written as a direct
limit of full upper triangular matrix algebras with nest embeddings. A
complete characterization theorem requires a third property, which will be
discussed below. On the other hand, it is true that nest subalgebras satisfying
the two properties stated above can be written as direct limits of nest
subalgebras of finite dimensional C*-algebras with nest embeddings. The
conclusion is weaker than the conclusion of the complete characterization
theorem proven later in that the finite dimensional C*-algebras need not be
factors.

In the following theorem, it is more convenient to view UHF algebras as
unions of an ascending chain of finite dimensional C*-algebras than as an
abstract direct limit.

THEOREM 2.1. LetA be a UHF C*-algebra with canonical trace, tr, and let
be a nest in A which satisfies the two properties:

(1) C*(M/) D is a canonical masa in A.
(2) tr(//) {tr p: p //} Ko(A) 3 [0, 1].
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Then, there is an increasing sequence, {An}’= 1, of finite dimensional C*-alge-
bras such that:

(a) A UnAn.
(b) A M/ is a maximal nest in A.; hence A. 3 aaC’lg .IF is maximal

triangular.
(c) The inclusion An An + is nest preserving when restricted to An t I/.

Proof Let B be an increasing sequence of finite dimensional factors
contained in A such that U Bn A and each Bn D is a masa in Bn. While
the fact that A is UHF guarantees the existence of a sequence of factors, Bn,

with dense union in A, it is not immediate that the Bn can be chosen so that
D is canonical with respect to the Bn. However, a result of Renault [R; Cor.
1.16, Chapter 3] states that any two canonical masas are conjugate by an
automorphism of the UHF algebra. (This result is actually stated in the AF
context. A proof free of the language of groupoids is available in the
monograph by Power [P5]). With the aid of this result, we can replace the
original chain of factors by one which also satisfies the requirement that
BnDisamasainBn.
Our goal is to construct (inductively) the sequence of finite dimensional

algebras, An, so thatthis sequence "interweaves" with a subchain of the B..
First, observe that any minimal projection, f, in B D is, in fact, in
C*(//), by condition (1). It then follows from [PW; Lemma 3.1] that f can
be written in the form

f= (P2-Pl) -b (P4-P3) -" "[-(Pn

where P < < Pn are uniquely determined projections in ,///. Now, for
every projection p in .///, there are integers i(p) and n(p)whose greatest
common divisor is 1 such that tr p i(p)/n(p). Note that tr p (and 1/n(p))
lie in Ko(A) [0, 1]. Let j be the least common multiple of the set of
numbers n(p) obtained where f runs through all the minimal projections in
B D and p runs through all the projections which appear in the decompo-
sition of each such f. Condition (2) now assures that for each integer from
0 through j there is a projection, qi, in // such that trqi i/j. The
projections which appear in the decompositions of the minimal projections of
B D will all be amongst the q.
Now let D be the abelian C*-algebra generated by the qi and define

Aa C*(D1, B1). Since each projection, qi, must lie in some Bn, there is an
integer, k 2, such that A c Bk2. Note that A D is a masa in A whose
minimal projections are intervals from //. From this, it follows immediately
that gC’lg (4/) t A is maximal triangular.
The same argument will now yield a finite dimensional C*-algebra, A2,

and an integer k3 such that Bk2 c A2 c Bk3 and s’lg (,///) f3 A2 is maximal
triangular in A2. Continuing by induction, we can produce an increasing
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sequence, {An}, of finite dimensional subalgebras of B and an increasing
sequence, kn, of integers such that Bk, c An Bk,+l and e’lg (d/) n An is
maximal triangular in A. Condition (a) is trivially satisfied, since the Zn’S
interweave the Bk ’s. It is not true that .at (A
(An+ n zet’lg (M/)), but it is easy to check that

.at (An n lg (1/) )
_
l/n _’at (An+ I’ Ig (1/) ),

which is the content of condition (c).

Remark. Neither of the conditions (1) and (2) in the theorem implies the
other. To see that condition (1) can be satisfied while (2) isn’t, let //be the
nest given in [PW; Example 3.17]. In this case, C*(M/) is a canonical masa,
but 1/2 tr 4/, and

U Z.
n=l

To see that (2) can be satisfied without (1), let M/be the uniform multiplicity
2 nest of [PW; Example 2.2.9]. C*(M/) is not a masa, but

trY//= --’0<k<2n, n=l,2,... =K0(A) n[0,1].

In the theorem above, the finite dimensional subalgebras, An, are each
isomorphic to direct sums of full matrix algebras, i.e., algebras of the form

Mml (9 Mm2 (9 (9 Mm. An attempt to add matrix units to An so as to
enlarge it to Mm, where m m + +ink will reveal the need for a
decomposition property defined as follows:

DEFINITION 2.2. Let /" be a nest in a UHF algebra, A, with canonical
masa, D, satisfying C*(,///) D and tr ,A/= Ko(A) [0, 1]. Say that ,///has
the decomposition property relative to A if, for any finite set, -, of partial
isometrics in the normalizer of D, there is a decomposition of the identity,
1 Ev= lei, such that:

(1) Each e is an interval from the nest, 1 < < N.
(2) trei=treiforalll<_i,j<_N.
(3) if v ,-and e < vv*, then v’ely is an interval.
(4) For any positive integer n with 1/n Ko(A), N may be chosen to be a

multiple of n.

The decomposition property together with properties (1) and (2) in the
theorem gives a characterization of the nest subalgebras of a UHF algebra
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which are direct limits of full upper triangular matrix algebras with nest
embeddings.

It is easy to see that if A is the direct limit of a system

1"1 1’2 1"3
Tn,’----Tn2 Tn3 ..--+Z

with nest embeddings, then the associated nest, M/, satisfies the decomposi-
tion property. This results from the fact that any D-normalizing partial
isometry is the product of a partial isometry in D and a sum of matrix units
in one of the Tn’S. [PPW; Theorem 3.6] or [P1; Lemma 6.3]. So we may
assume that the elements of r all lie in some Tn, for large n. The set of
minimal diagonal projections in Tn will now satisfy properties (1), (2), and (3).
Property (4) is met simply by choosing n sufficiently large.

Before presenting a proof of the characterization theorem, we give an
example which shows that it is possible to satisfy all the hypotheses of the
characterization theorem except for the decomposition property. The exam-
ple will actually fail to satisfy the following weaker decomposition property: if
e is an interval from M/and v is a D-normalizing partial isometry with
e <_ vv*, then there are intervals, ei, of equal trace such that e Ee and
o*eio is an interval for each i.

Example 2.3. Let A be the realization of the 2%UHF C*-algebra gotten
by taking A M2n and Vn: An ’-+ An / the refinement embedding. Also, let

e be the usual set of matrix units for An. For convenience, diagonal matrix
units will be denoted as en instead of e!/. The properties of this example
are easiest to apprehend in the representation of A acting on the Hilbert
space L2(0, 1) usually associated with a UHF algebra. In this example, e is
the partial isometry associated with translation of the jth dyadic interval of
length 1/2 to the ith dyadic interval.

Let .za denote the usual nest associated with the limit of the upper
triangular matrices in the system for A, viz:

"la= {O} [’J { e}n): l < j < 2n’ n l’2’’’"

In the representation, the subintervals of [0, 1] associated with nest projec-
tions are just the intervals of the form [0, t], where t is a dyadic fraction.
Next, define an auxiliary nest ’= {1} tO {Pn}n 0 as follows:

Po =0

P e32

PEn PEn- e(2 nn ++22 1, n >_ 1,

PEn+ PEn e(2--11)- a, n > 1.
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This subnest has been defined by specifying all the minimal intervals from it.
The diagram below indicates the first five such intervals as they appear in the
representation.

Finally, we define the nest, ./K, which gives the desired example, as follows:

K= {1} U {p. + (Pn+l
n>O

It is routine to show directly that .///is a maximal, multiplicity free nest
containing .. (Alternatively, use [PW, Lemma 2.20], which covers a more
general situation.) Consequently, ,.Y’lg (K) is a triangular nest subalgebra
of A.

Since C*(.) D, it is sufficient to show that _c C*(./K) in order to
verify that K satisfies condition (1). It is clear that each of the intervals used
in the construction of the auxiliary nest ’ lies in C*(./K). From the
construction itself, it now follows that .’c C*(K). It is also obvious from
the construction that tr(./K) consists of the dyadic rationals in [0, 1], so
condition (2) is also satisfied.

All that remains is to show that K fails to satisfy the decomposition
property relative to ,Ig (M/). In fact, even the weak decomposition prop-

() and f= e(22). Then v is aerty stated above fails. To see this, let v e12
D-normalizing partial isometry, f is an interval from ,///, and f <_ vv*. In the
representation, v is the partial isometry which corresponds to the translation
of [1/2, 1] onto [0, 1] and f is the projection corresponding to the interval2

Since f is a subprojection of one of the intervals used to build ’, any
decomposition of f into a sum of intervals from K is also a decomposition
into a sum of intervals from .’. If, then, f Efi, where the fi are intervals
of equal trace, then each fi is a matrix unit from the original system.
(Indeed, trfi q/2p, for some integers p and q, and hence z= trf
mq/2’, where rn is the number of terms in the decomposition sum for f. It
follows that mq 2,-2, and so q is a power of 2. Consequently, each .f is a
matrix unit.) Moreover, in this decomposition, one summand will be e(2k-, for
some k. In the representation, e(2k)- corresponds to the interval [1/2-
1/2k, 1/21.
To see that the decomposition property fails, we need only observe that for, (k) (k)all k >_ 2, v eEk-V e, is not an interval from //. This is clear from the

(k) krepresentation, since e2k corresponds to [1 1/2 1]. For algebraic purists,
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some routine calculations yield

and

e(2n)22n (1 --P2n+l) -I- (P2n --l2n -1),

e(2n + 1)
22n+1 (1 --P2n+3) + (P2n+2--P2n+l) + (P2n --P2n-1)

_(k)again showing that e2 is not an interval from /.
This example shows that not only is the decomposition property necessarily

satisfied by any full nest subalgebra, but it is independent of the other two
necessary properties. The next theorem shows that these three properties are
sufficient to characterize full nest subalgebras of UHF C*-algebras.

THEOREM 2.4. LetA be a UHF C*-algebra with canonical trace, tr, and let
1/ be a nest in A which satisfies the three properties:

(1) C*(I/) D is a canonical masa in A.
(2) tr(,///) {tr p: p //} Ko(A) n [0, 1].
(3) /// satisfies the decomposition property relative to A.

Then there is an increasing sequence, {An}’= 1, offinite dimensional factors in A
such that:

def
(a) D An n D is a masa in An and A O nAn.
(b) ,nde=fC/r3 An is a maximal nest in An and the inclusion A An+

maps into n+ 1" (Hence, the inclusion An An + is a nest
embedding.)

(c) Tn d__ef /’lg (4/) An ’lg (Pn) (3 An is a maximal triangular subal-
gebra ofA and ’lg (,///) Tn.

That is, ’lg (4/) is a full nest subalgebra ofA.

Proof Let {Bn}= be an increasing sequence of factors with U Bn= A
such that D Bn is a masa in Bn, n 1,2, As in the proof of the
previous theorem, the fact that any two canonical masas are conjugate is used
here. Let [n] denote the dimension of the factor, Bn, (so that Bn --- Mtnj). Let
{f’n)}l <i, <[nl be a system of matrix units for Bn compatible with D.

Property (1) implies that each projection in D c B is a sum of intervals
from //; this, together with property (2) implies that there is a subalgebra,
Ex, of D, such that the minimal projections in E are intervals from //, all of
the same trace, say l/n, and D q B c El.
Apply the decomposition property with r= {f.l)}li jtll, the matrix

_(1) l/N, 1 < < N. Letunits of B1, and N such that n IN: 1 E= (1) tr elei
D1 be the C*-algebra generated by {el)}l< N" Since each f/(1) is a sum of
minimal projections in E and each minimal projection in E is the sum of
the minimal projections in D which it dominates, it follows that for each i,
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1 < < [1], there is a subset I of {1, 2,... N} with f/l) Et i,e1). The sets
I1,..., It form a partition of {1,...,Ni with card(I/)= card(I.), for all
1 < i, j < [1]. Furthermore, the decomposition property implies that, for
each fixed i, the collection

0),,()(). 1Jji’tJij tIi’j l,... ]}

is a collection of disjoint intervals from d/ whose (equal) traces sum to 1,
and hence is a decomposition of 1 into intervals of trace 1/N. However,
there is only one decomposition of 1 into disjoint intervals of trace 1/N.
Thus, for each t !i, j {1,..., [1]}, there is a k k(j, t)with fl)el)f.)e1). In other words, each nonzero product el)f.1) is a partial isometry whose
initial and final projections are minimal projections in D1. If el)f) has
initial projection eo) set ,,o)= ,,1)/.1) The o) form a system of matrix’ts "t Jij t"ts

units for C*(D, B).
Now the projections e1) are sums of matrix units in Bk, for some

sufficiently large k. Replacing {Bn} by a suitable subsequence, we may assume
that each matrix unit e1) can be expressed as a sum of matrix units in B2.

(1) of C*(D B1) is a sum of matrix units ofWe claim that each matrix unit ets 1,
<) Eu <2) for some index set Jt it follows thatB2. Writing e Jt J u

(1) ,o(1)e(1) Eets ...t Jij J u Jij

uJt

Since each matrix unit of B1 is a sum of matrix units of B2, the claim is
verified.

Next, we claim that C*(D1, B1) can be embedded in a factor by adjoining
additional matrix units which are sums of matrix units in B2. Now, C*(D1, B1)
is isomorphic to a direct sum of full matrix algebras, MI $ M; By
relabeling, if necessary, we may assume that the indexing on the minimal
projections {e1} of C*(D1, B1) is compatible with the direct sum decomposi-

(1) to be any sum of orthogonal matrixtion. Define a new matrix unit e, +
units in Ba with initial projection e(X)+ and final projection e.(x) Similarly,
define e(,+ 1, 2 _< s < r. The C*-algebra generated by these matrix units,

(1) defined earlier, is a factor. Denote thistogether with the matrix units est

factor by A 1.

The embeddings, B A ’---> B2, are *-embeddings such that each matrix
unit in the domain of each embedding is a sum of matrix units in the range.
Since the minimal projections in the diagonal, D1, of A are intervals from
the nest, it follows that e’lg (//) A is maximal triangular in A 1. Now
repeat the construction with Ba in the role of B to obtain Ba Aa "--> B3.

Since the minimal diagonal projections of Aa are intervals, and since under
the embedding A Ba Aa each matrix unit in A is a sum of matrix
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units in A2, and, in particular, each interval in 01 is a sum of intervals in
DE, the embedding A A2 is nest preserving.

Continue in this fashion to get factors and embeddings A
Since UAn__ LIBn, we have A UAn. Since ’lg (I/)NAn= Tn is
maximal triangular in the factor An, and since --{0} U {en),en) +
e(En),... } is a maximal nest in An, Tn An ’Ig (1/).

Remark. The characterization theorem presented above is intrinsic within
the context of subalgebras of a UHF algebra. Not all direct limits of finite
dimensional operator algebras are realizable as subalgebras of AF C*-alge-
bras; indeed, the natural category in which to consider such direct limits is
the category of Banach algebras. In fact, the direct limits of finite dimen-
sional operator algebras considered in the literature are almost invariably
abstract operator algebras, at the least. In any event, this suggests the
following problem: determine which Banach algebras are isometrically iso-
morphic to a full nest algebra and which abstract operator algebras are
completely isometrically isomorphic to a full nest algebra.
A special class of full nest algebras was classified in [HP]. The general

classification problem for full nest subalgebras of UHF algebras is probably
very difficult. A (presumably) more tractable classification problem arises
from the consideration of a smaller class of algebras--those which arise from
homogeneous embeddings.
A direct limit of homogeneous nest embeddings satisfies the homogeneity

property which appears in the following definition.

DEFINITION 2.5. A nest subalgebra, A, of a UHF C*-algebra is said to be
homogeneous if, for any two interval projections, p and q, with the same
trace, the algebras pap and qAq are isometrically isomorphic.

The following open question is provocative: if A is a homogeneous nest
subalgebra of a UHF C*-algebra which also satisfies properties (1), (2) and
(3) of the characterization theorem, i.e. is a full nest subalgebra, then can it
be written as a direct limit with homogeneous nest embeddings?

III. Stationary systems

We next consider full nest algebras which arise from systems in which
every embedding is the nest embedding induced by a fixed permutation, zr, in

Sb:

The fundamental relation of such a system will be denoted by FR(Tr), except
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for the fundamental relation of the refinement algebra, which will be denoted
by FR(O).
We now describe FR(.n’) explicitly. The diagonal D of A is the direct

limit of the finite dimensional diagonals D, each of what can be identified
with the tensor product Db (R) Db (R)... (R) Db, (n factors). The minimal
projections of Dbn can therefore be indexed by [b] ... [b] with the
lexicographic order, which we denote by 4. Ordered pairs (i, j)with
i, j [b] [b] and j serve as the indices for the matrix units of
Tbn. The maximal ideal space, X, of D is identified with FIb]. The minimal
projection, ei, in Db, with (il,..., in) corresponds to the subset {x X:
x il,... Xn
Now suppose that eij is a matrix unit in Tb,, where (il,...,ik),

J (Jl,..., Jk) and j. Let Eij denote the graph of the partial homeomor-
phism induced by the matrix unit ei:. We shall describe the points (r, c) in

Ei:. Here, r, c X and are intended to connote "row" and "column." For
(r, c) to be in Eij we must have r il,... rk k and 171 Jl,’’’, Ck Jk"
Beyond this, for n > k each coordinate rn is determined by r, the corre-
sponding coordinate cn, and an exponent for r which depends on all the
preceeding coordinates of r and c. To describe the exponent, let x, y I-l’[b]
and define a "diagonal number" dn by

an(x, y) bn-l(yl Xl) + bn-2( Y2 x2)

+ +b(Yn_l Xn-1) + (Yn Xn)"

We have in mind that x y, so that dn(x, y) > 0; the entry 1 in ei: lies on
the dnth superdiagonal of the matrix. For each n k, k + 1,..., let tn
dn((rl,...,rn),(Cl,...,Cn)). The remaining condition on r and c is that
r,,+ zrt(c,,+ ), for n k, k + 1,

It should be noted that the value of the exponent, n, is significant only
modulo the order of 7r. Consequently, when the order of r divides a power
of the base, b, the formula for tn simplifies. If, say, the order of 7r divides b t,
then only terms involving powers of b less than t are necessary in the sum for
dn. In particular, when the order of 7r divides b itself, then n cn rn.
With this description, the reader will find it a straightforward matter to

work out the fundamental relation, FR(Tr), for specific choices of 7r, espe-
cially if she keeps in mind the canonical projection of FR(zr) into the unit
square. In the simplest case of all, when 7r is the identity permutation, then
rn cn for all n > k and the well-known description of FR(O), the funda-
mental relation of the refinement algebra, results.

In the next proposition, which gives the first step in the determination of a
necessary and sufficient condition on 7r so that A is the refinement algebra,
the containment is not merely set-theoretic. Rather, it is containment as a
topologized relation.
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PROPOSITION 3.1.
for some n >_ 1.

FR(O) c_ FR(zr) if and only if the order of r divides

Proof . Let p order(Tr) and suppose that p does not divide bn,
for all n N. Let b" Z Z/pZ be the canonical quotient map. Since
b(bn) 0, for all n > 1, there is an integer d {1,2,..., p 1} such that
b(b) d for infinitely many values of n > 1. Let a [b] be such that
7rd(a) :/: a.
Now let

c (1, a,a,a,...) and r= (O,a,a,a,...).

Clearly, (r, c) FR(O). We claim that (r, c) q FR(Tr).
If (r, c) FR(r), then there exists a positive integer, m, such that for all

n > m, we have r/ "lTtn(Cn+l), where

tn =bn-l(Cl rl) + bn-2(c2- r2) + +b(cn_ rn-1) "q- C rn

Thus, for infinitely many choices for n, t -= d mod p. In particular, n can be
chosen so that a rn+ "trd(Cn+l) ra(a), a contradiction.

=. Assume that p order(Tr) divides bm. Let (il,..., ik)
(Jl,..., Jk) J be given. The graph of the matrix unit e in the refinement
fundamental relation is

E. {(r, c)’rn in, Cn Jn for n 1, 2,..., k and r Cn for n > k}

Since FR(O) O i, jE., it suffices to show that E.
_
FR(r).

For each finite sequence s (Sk/l,..., Sk/m) with all sn [b], let

F/. {(r c) E"ij r=c=s fork + 1 <n <k +m

Then E. U F,J, a finite union. Note that each Fi. is the graph of a matrix
unit in the refinement fundamental relation. It now suffices to prove that

F.
_

FR(Tr), for each s.
We shall show that F. is, in fact, the graph in FR(Tr) of the matrix unit

with row index (il,...,ik, Sk+l,...,Sk+ m) and column index
(J,..., Jk, Sk/l,’’’, Sk/m)" Let (r, c) Fi.. We must show that for n > k +
m, r+ rt"(Cn/l), where t is given by

n bn-l(Cl rl) + bn-2(c2 r2) + +(c,, rn).

But if (r, c) F/. and n is defined by the formula above, then all terms
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except for the first k are equal to 0; thus t’, is actually given by

tn bn-l(jl il) + +bn-k(jk --ik)"

Since n > k + m, every exponent in the sum is greater than or equal to m.
Thus bm divides t’,. But by hypothesis, plbm, so pit,, and rrt- id. Since
r’, c’,, for all n >_ k + m; this verifies that r’,+ rrt"(c’,+l), as required.

This completes the proof that FR(O) is a subset of FR(rr). To see that the
containment is topological, observe that each F.t. is a compact and open
subset of FR(rr), since it is the graph of a matrix unit. It follows that E isij

compact and open as a subset of FR(rr) and hence that the inclusion
FR(O) FR(rr) is a continuous and open mapping. D

Remark 1. While the containment in Proposition 3.1 is topological con-
tainment, the proof of the implication (=) only used set theoretic contain-
ment. Thus, if FR(O) is contained in FR(rr) as a set, it follows automatically
that the inclusion map is continuous and open. In the more general context
of triangular subalgebras of AF C*-algebras, it is possible that two non-iso-
morphic algebras have fundamental relations that are equal as sets (but, of
course, different as topological relations). An example of this phenomenon is
given in [HP]. This raises the following question: if the fundamental relations
of two full nest algebras are identical as sets, must the two algebras be
isomorphic?

Remark 2. When FR(O) is a proper subset of FR(zr), the algebra
contains a proper subalgebra which is isometrically isomorphic to the re-
finement algebra. At first glance this might seem paradoxical, since both
algebras are maximal triangular algebras. But the C*-algebra generated by
the copy of the refinement algebra is a proper subalgebra of the C*-algebra
generated by A, (even though both of these C*-algebras are isomorphic to
the UHF algebra M(b=)), so no problem arises.

In the discussion which follows, fix a base, b, and a permutation, rr; let
p order(-), and let b denote the canonical map Z Z/pZ. If (r, c)
FR(zr), then for large n we have

where

rl) +b’,-2(c2. -r2) + +b(n-1

From this it follows that

rn_l) h- (Cn rn).

tn+ b’,(c rl) + b’,-(c2 r2) +
d- b(c rn) d- (Cn+ rn+l)

c’,+1 rrtn(c’,+) + bt’,.

rn_l)
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This equation, together with the fact that ,//.t ,/./.(t), for any t, suggests
the following definition of a sequence of "exponent" sets for

El= {0,1,2,...,p- 1}
E2 {b(x r"(x) + bn)" x [b], n

E3 {b(x r"(x) + bn)’x [b], n E2}

It is easy to check that E _D E2

___
E3

___
..., and that, once two successive

E are equal, all subsequent ones are also equal. Also obvious: 0 Ei, for all
i. Since E contains p elements, stabilization must occur no later than at Ep.

LEMMA 3.2. IfEp
caL

{0}, then FR(r)
_

FR(O). The containment is topologi-

Proof Assume Ep {0} (and hence, E, {0}, for all n > p). Let (r, c)
FR(zr), where r (r1, r2,...) and c (c 1, c2,...). Then there exists an
integer, k, such that

(ra,...,rk) (1,...,k) and rn+ 7"l’tn(Cn+l) for all n > k.

From the discussion above, it is clear that (tk) El, t(tk+ 1) E2, b(tk+ 2)
g3, etc. In particular, for m > p 1, we have (tk+m) Ep {0}. Thus,

for n >_ k + p 1, 4(tn) 0 and hence %+1 rn+ 1. This shows that FR(zr)_
FR(O) as a set.
To show that the containment is topological, let (il,...,ik) j

(Jl,...,Jk) and E be the graph of the matrix unit eij in FR(r). If
(r, c) E thentj

(1) c, =j, and r i,, for n 1,...,k,
(2) Cn+l is arbitrary for n > k,
(3) rn+l "trtn(Cn+l) for n > k.

As shown above, rn Cn, for n > k + p.
Given

let

p-1

U (k+l,...,Ck+p_l) . H [b],

U U(U)-(’l’l"k(Ck+l),...,q’l’tk+p-2(Ck+p_l)).
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Let jv and iu denote (jl,...,jk, Ck+l,...,Ck+p_l) and (il,...,ik, rk+l,...
rk+p_l) respectively, where, as usual, rn+ "lT"tn(Cn+l ), for k N n < k + p

2. Then,

Ei U Ei,jv.
vFlf-’[bl

Now, by the argument above, Ei,jv "-Eiu, jv; hence Ei,j is a compact
and open subset of FR(O). Since E, is a finite union of the Eiu, jv, Ei is also
a compact and open subset of FR(O). Thus, the inclusion FR(Tr) "--> FR(O) is a
continuous and open mapping, o

LEMMA 3.3. Let 7r be a permutation in Sb with order p. Suppose that
Ep {0}. Then p divides a power of b.

Proof First suppose that 7r has a fixed point, say x, in [b]. Since 1 El,
it follows that b(b) b(x 7r(x) + b) is an element of E2. Similarly,
b(b2) p(x "n’b(x) + b2) E3 and, by induction, dp(bm) Em+ 1, for all
m. But Em+ {0}, for large m, i.e., p divides all large powers of b.
Now suppose only that 7r

n has a fixed point, for some value of n at most
p- 1. If x is the fixed point, then x 7ran(x), for any integer a. Arguing
much as above, n E and bn x TrY(x) + bn implies that h(bn) E2.

Induction now yields dp(bmn) - Era+ for all m, and hence p divides bmn for
all large m.

Since we know that p divides large powers of b when r has a fixed point,
we may now assume that 7r has no fixed points. It suffices to show that if q is
a prime factor of p, then it also divides b. Write 7r as a product of disjoint
cycles of lengths al,...,am. Then b=al + +am, each ai >2, and
p lcm(al,... am).

If qlai, for all i, then qlb. So assume that q does not divide ai, for some i.
Then a < p- 1 and ,’1"ai has a fixed point. Consequently, by the second
paragraph, p divides bmai for large m. Since qlp and q does not divide a i,

we have q divides b, as desired, o

We now come to the main result of this sectionthe characterization of
those permutations for which A is a refinement algebra. As it turns out, the
condition is surprisingly simple and highly computable.

THEOREM 3.4. Let 71" - Sb and letA be the limit algebra of the stationary
system of nest embeddings associated with zt. Let p denote order(Tr). A is a

refinement algebra if, and only if, Ep {0}, where Ep is the pth set in the
sequence of exponent sets for
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Proof First assume that Ev {0}. By the two lemmas, FR(zr)_ FR(O)
and p divides a power of b. Proposition 3.1 now implies that FR(O) c_ FR(r);
thus FR(Tr) FR(O) and A is a refinement algebra.
For the converse, assume that FR(Tr)--FR(O). From Proposition 3.1, we

may conclude that p divides a power of b. We shall consider sequences,
(tn)n : l, which satisfy the property that for each n > 1, there is some x [b]
such that tn qb(x rtn-:(x) + btn_l). A sequence satisfying this property
will be called an exponent sequence.

Observe that if t 0 for some term of an exponent sequence, then tn 0
for all n >_ s. Also, from the definition of the exponent sets, it is clear that
t= E=, for all n (assuming t El).
We next claim that if t is an exponent sequence, then we do indeed have

t= 0 for large n. Suppose, to the contrary, that all t= #: 0. For each n > 1,
choose xn_ b so that

Now let

tn ((Xn_ "l’l’tn-l( Xn_ ) -I- btn_ )

c= (1, xl, xa,...,x,,,...)
r (0, ,n’t(Xl), ,n’t( x2),..., ’rrt"( x,),... ).

Then (r, c) FR(zr). But, since rtn(x) x, for infinitely many n, (r, c)
FR(O). (If 7rt(x) x for all large n, then t is congruent to a multiple of
bk for sufficiently large n; but p lb k so t 0 for large n.)
Not only must the terms of an exponent sequence eventually equal zero,

but actually tp 0 for any exponent sequence. For if not, then 1,..., tp are
all elements of {1, 2,..., p 1}. Consequently, two of them must be equal,
say t and ts, with r < s. But then

(t 1, tr, ts-1, tr, ts-1, tr, )

is also an exponent sequence. This, however, contradicts the fact that the
terms of every exponent sequence are eventually zero.
The conclusion of the theorem now follows from the simple observation

that

Ep {s" there is an exponent sequence with s

Remark. When order (Tr) divides b the calculation of the exponent sets
for 7r and of FR(r) is simplified. (The terms bn in the definition of the
exponent sets may be deleted and the exponents, t, needed to determine
FR(zr) are given by the simple formula tn --cn -rn.) This will occur, for
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example, if order (Tr) is prime, i.e. if 7r is a product of disjoint cycles each of
the same prime length.

Question. Does FR(zr)c_ FR(O) (rather than equality) imply that Ep
{0}? In other words, are these two conditions equivalent in the absence of the
condition that p divides a power of b?

IV. Further discussion of stationary systems

The problem of classifying all the algebras, A, which arise as limits of
stationary systems can be broken into two parts:

1. For a fixed base b, classify the algebras, A=, which arise from the
permutations in Sb.

2. Determine when permutations 7r in Sb and z in Sc yield isomorphic
algebras.

With regard to problem 2, one necessary condition is evident: the super-
natural numbers b and c must be equal. (The enveloping C*-algebras,
M(b) and M(c), are isomorphic when the full nest algebras are.) On the
other hand, examples of permutations, 7r and -, with isomorphic limit
algebras are easy to come by. For example, take zr (0 1) in S3 and
(0 3)(1 4)(2 5)(6 7) in S9 or zr (0 2 1) in S3 and z (0 8 4) (1 6 5) (2 7 3) in
S9. These examples are obtained by letting z be the permutation in $9 for
which u, u= u=. Examples obtained in a less trivial way might be more
enlightening.
The algebras obtained from permutations in S3 and $4 shed some light on

problem 1. (But some phenomena do not occur for such low values of b.) The
six permutations in S3 yield six non-isomorphic limit algebras, as can be
checked by direct comparison of the fundamental relations. In S4, four
permutations yield the refinement algebra. In addition to the identity permu-
tation, they are (0 2), (1 3) and (0 2) (1 3). (This can be checked either by
direct calculation or by applying the theorem in the preceeding section.) The
remaining twenty permutations all yield distinct algebras.

Clearly, this can be verified through an inordinate number of direct
comparisions, but several observations greatly reduce the tedium. For exam-
ple, the eight permutations of order 3 in $4 all have fundamental relations
which do not contain FR(O), while the remaining permutations, all of which
have order 2 or 4, do have fundamental relations which contain FR(O). So no
permutation in one set can yield the same limit algebra as a permutation in
the other set.
To separate the permutations of order 3, observe that each one has

precisely one fixed point. If 7r has order 3 and d is a fixed point for zr, then
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FR(Tr) contains every point, (r, c), where

r= (il,...,ik,d,d,d,...)

c= (jl,...,jk,d,d,d,... )

and (il,’’ ik) (Jl,-" Jk). On the other hand, when d is not a fixed point,
FR(r) cannot contain the point (r, c)if, in addition -,l(Jh ih) 0 mod3.
Thus the eight permutations of order 3 are divided into four pairs with no
common algebra associated to permutations in different pairs. The two
algebras in each pair can be separated directly.
Another example of an invariant which can be used to distinguish classes

of permutations is the pair of points rmin (0,0,0,...) and Cmax
(3, 3, 3,... ). These two points are the unique minimal and maximal points in
the maximal ideal space, X, under the fundamental relation. It is easy to
show that, for 7r of even order, FR(r) contains the point (rmin, Cmax) only for
r equal to one of (0 3), (0 3) (1 2), (0 3 1 2) and (0 3 2 1). In a similar vein, if
we let

Gc(Tr) {r" (r,c) FR(Tr)} and Gr(Tr) {c" (r,c) FR(vr)},

then Gr {r: r has a tail of all 3’s} if, and only if, - is one of (0 1), (1 2),
(0 1 2),v (0 2 1)while Grm {C" C has a tail of all O’s} if, and only if, 7r is
one of (1 2), (2 3), (1 2 3), or (1 3 2). With invariants such as these, the labor
needed to separate the twenty non-refinement algebras associated with $3
becomes manageable.
The classification of the permutations in S3 and S4 might suggest that

distinct permutations which do not give the refinement algebra must give
distinct algebras. But it is easy to find examples of the form 7r tr, where/
and tr are disjoint cycles, A is a refinement algebra, and A---A. This
leaves open the possibility that the isomorphism class of A is determined by
those cycles in the decomposition of 7r into disjoint cycles which do not
correspond to refinement algebras. A couple of examples shows that the
situation is more complicated.

First, let b 20 (or any number of the form 4k for k > 5), 7r (2 6 8 10)
and tr (2 14 8 18). The exponent set for either 7r or tr stabilizes at {0, 2}, so
neither permutation gives a refinement algebra. It is not difficult to show that
FR(r) FR(tr), so A -= A. (A point (r, c) lies in the common fundamen-
tal relation when an initial segment of r proceeds an initial segment of s and
one of two conditions hold for the corresponding tails: either rn cn for all
large n or the only possible values for coordinates in the tails are 2 and 8 and
the patterns in r and c are complementary (r cn, all n).)
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In the second example, take b 8,/z (0 2), cr (4 3 1), and r -/zcr
(0 2)(4 3 1). Then A is a refinement algebra while A= A,. In fact, if

c=(1,2,4,2,4,2,4,2,4,2,4,...)
r (0,0,3,0,1,0,3,0,1,0,3,...)

then (r, c) FR(r) and (r, c) FR(tr).
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