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THE HENSTOCK AND MCSHANE INTEGRALS OF
VECTOR-VALUED FUNCTIONS

D.H. FREMLIN

Introduction

A familiar formula from undergraduate analysis is the ‘Riemann sum’
Tl f(,Xb;, — b;_;) of a function f with respect to a tagged partition
0=by<t;<b, < -+ <t,<b,=10f [0,1]. One of the standard defini-
tions of the Riemann integral describes it as the limit of such sums as
max, _; (b, — b,_;) — 0. It is a remarkable fact that the same formula may
be used to define a vastly more powerful integral, if we take a different
limiting process. Instead of requiring all partitions with max, (b, — b;,_;) < §,
to give good approximations to the integral, we can restrict our attention to
those in which b, — b,_; < 8(¢,) for each i, where & is a strictly positive
function on [0, 1]. (See 1(c) below.) This refinement yields the ‘Henstock’ or
‘Riemann-complete’ integral; it agrees with the Lebesgue integral on non-
negative functions but extends it on others (see 4(e) below). An ingenious
modification of the construction, due to E.J. McShane, allows the ¢, to lie
outside the corresponding intervals (see 1(b)); this brings us back a step, to
the Lebesgue integral precisely.

A common feature of the Riemann, McShane and Henstock integrals is
that the use of Riemann sums gives us obvious formulations of integrals for
vector-valued functions defined on [0,1]. For the McShane and Henstock
integrals I spell these out in 1(b-c) below. The Henstock integral obviously
extends the McShane integral. In this paper I seek to elucidate the nature of
this extension; in particular, to give criteria to distinguish McShane inte-
grable functions among the Henstock integrable functions. In the real-valued
case this is simple enough; a Lebesgue integrable function is just a Henstock
integrable function with (Henstock) integrable absolute value; equivalently, a
Henstock integrable function which is Henstock integrable over every mea-
surable set. It turns out that the latter criterion is valid in the vector-valued
case (Corollary 9 below). I give priority however to a more economically
expressible result in terms of the Pettis integral: a vector-valued function is
McShane integrable iff it is both Henstock integrable and Pettis integrable
(Theorem 8). The Pettis integral being the widest of the standard integrals of
vector-valued functions (see [7]), this suggests that the difference between the
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Henstock and McShane integrals for vector-valued functions is largely ac-
counted for by the difference between the Henstock and Lebesgue integrals
for real-valued functions.

1. Definitions

I recall the following definitions. Let X be a Banach space, with dual X*.

(a) A function ¢: [0,1] - X is Pettis integrable if for every Lebesgue
measurable set E C [0, 1] there is a wg € X such that [ f($(x))u(dx) exists
and is equal to f(wg) for every f € X*; in this case wy, y; is the Pettis integral
of ¢, and the map E — wy is the indefinite Pettis integral of ¢.

(b) A McShane partition of [0,1] is a finite sequence {(a;, b;], ¢;))i < » such
that {[a;, b;])i< . is a non-overlapping family of intervals covering [0, 1] and
t; €[0,1] for each i. A gauge on [0,1] is a function &: [0,1] »]0,=[. A
McShane partition {((a;, b;],¢,)): <, is subordinate to a gauge & if t, — &(¢;)
<a;<b; <t + 8@4)forevery i <n.

Following [3], I say that a function ¢: [0,1] —» X is McShane integrable,
with McShane integral w, if for every € > 0 there is a gauge §: [0, 1] —]0, [
such that

[» - = @i-ayse)| <

i<n

for every McShane partition {([a;, b;], £,)); < » Of [0, 1] subordinate to &.

(c) A Henstock partition of [0,1] is a McShane partition {({a;, b;],#,))i<n
of [0, 1] such that ¢; € [a;, b,] for every i < n. A function ¢: [0,1] = X is
Henstock integrable, with Henstock integral w, if for every ¢ > 0 there is a
gauge &: [0,1] =10, such that [lw — X,_,(b;, — a)¢(t)ll <& for every
Henstock partition {([a;, b;], t,)): < » of [0, 1] subordinate to 8.

2. For the general theory of the Pettis integral, see [10]; for the McShane
integral, see [3] and [2]; for the Henstock integral see [6], [8]. The most
important fact to note here is that if X = R then the Pettis and McShane
integrals coincide with the ordinary Lebesgue integral, but the Henstock
integral is a proper extension of the Lebesgue integral ([8], S8.2 and 3.2).
Moreover, every Henstock integrable function is Lebesgue measurable. I
believe that this result is due to R.O. Davies. A proof of a more general
result is in [1], Theorem 2.12; all the necessary ideas are in [2], Proposition
2L (see Proposition 10 below).

We need a couple of elementary lemmas concerning Henstock partitions.
It will be convenient to use the phrase partial McShane partition to mean a
finite sequence {((a;, b;), t,))i<» such that the [a;, b;] are non-overlapping
closed subintervals of [0, 1] and ¢, € [0,1] for each i; and to say that it is a
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partial Henstock partition if t; € [a;, b;] for each i, and that it is subordinate
to a gauge 8 if t; — 8(t;) < a, < b, <t; + 8(¢;) for each i.

3. Lemma. Let 8: [0,1]1 =10, be a gauge and {(a;, b;],t,))i<n any
partial Henstock partition subordinate to 8. Then it may be extended to a
Henstock partition {(a;, b;),t,))i <m of [0, 1] subordinate to §.

Proof. Use the technique of [8], S1.8.

4. ProposITION. Let X be a Banach space and ¢:[0,1] - X, ¢:[0,1] » X
Henstock integrable functions with Henstock integrals v,w.

(@) ¢ + ¢: [0,1] > X is Henstock integrable, with Henstock integral v + w.

(b) For any a € R, a¢: [0,1] > X is Henstock integrable, with Henstock
integral av.

©If 0<a<b<1 then ¢y, = X x(a,b]), defined by writing
b4, 6(t) = &(t) if t € [a, b], O otherwise, is Henstock integrable.

(d) If f € X* then f¢: [0,1] » R is Henstock integrable, with Henstock
integral f(v).

(e) Let 0: [0,1] » X be another function. If for every a €10,1] we have a
Henstock integral F(a) of 0 X x(a, 1D, and if lim, (F(a) = w exists in X,
then 0 is Henstock integrable, with Henstock integral w.

Proof. Part (d) is immediate from the definitions. For the other parts use
the methods of 2.1, 2.3 and S2.8 in [8].

5. LemMmA. Let 8:[0,1] —10, [ be a gauge. Suppose that A c [0, 1] is any
set and that K is a compact subset of (0,11 N U, 41t — 8(¢), ¢t + 8(t). Then
there is a partial Henstock partition {((a;, b;], t,))i < n, subordinate to 8, such
that t; € A for eachiand K c U, _,la;, b;].

Proof. (a) Suppose first that A is finite. For this case I induce on #(A),
as follows. For #(A) =0 the result is trivial. For the inductive step
to #(A) =k > 0, take t* € 4 for which ¢* — §(¢+*) is minimal. Then
It —8@),t + 8(clt* — 6(¢*), t* + 8(¢*) whenever ¢t € 4 and ¢t < t*. Set

A={t:t€A,t>r*},

K ={t:teK,t>t*+5(t%)}.

Then K’ € U, 4]t — 8(), ¢t + 8(¢)I, so by the inductive hypothesis we have
a partial Henstock partition {((a}, b;], t,)); < m, subordinate to 8, with ¢, € A’
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for every i and K’ € U, _,la}, b;]. Set

a; = max(a),t*) fori <m,
t, =t*, a, = max(0,t* — §(t*)),
b,, = min({t* + 8(t*),1} U {a;: i <m});

then {((a;, b;],t,))i<m is a partial Henstock partition, subordinate to 8, with
t;€Aforeveryi <mand Kc U,_,la;, bl

(b) The general case now follows, because K is compact, so that there
must be a finite 4’ € A such that K € U, oIt — 8(2), ¢ + 8(2)l.

6. LemmA. Let g: [0,1] » R be a function. Let 8: [0,1] =10, and &,
n > 0 be such that ¥, _ (b, — a,)g(t;) < n for every partial Henstock partition
{(a;, b;), t,)>i <n subordinate to 8. Then

“([0,1] n U Jr-6(8),t + 6(t)[) <m/e.

g()ze

Proof. Let K be any compact subset of [0, 1] N U ), It — 8(2), ¢ + 8(¢).
Then there is a partial Henstock partition {([a;, b;], ¢,)); < , subordinate to &,
with g(¢;,) > ¢ for every i and K c U, _,la;, b;]. Now

enK < Y (b, —a)e(t) <m,
i<n

so uK < m/e. As K is arbitrary,

u([o,l]n U ]t—8(t),t+8(t)[) <mn/e.

g()=ze

7. LEMMA. Let X be a Banach space and ¢: [0,1]1 > X a Henstock
integrable function, with Henstock integral w. Suppose that & > 0, &: [0,1]
— 10, o[ are such that

“W - X (b- “i)d’(ti)" =

i<n

whenever {((a;, b;],t,))i<n is a Henstock partition of [0,1] subordinate to §.
Let {([a;, b,],t,)): < be a partial Henstock partition of [0, 1] subordinate to 8,
and set H = U ;. la;, b;]. Then the Henstock integral [;;¢ of ¢ X x(H) exists,
and ||fyd — L; (b, — a)d(t)Il < e.

Proof. Asin [8], 3.1.
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8. THEOREM. Let X be a Banach space and ¢: [0,1] — X a function. Then
& is McShane integrable iff it is Henstock integrable and Pettis integrable.

Proof. (a) If ¢ is McShane integrable, then it is certainly Henstock
integrable, because the Henstock integral involves a smaller class of parti-
tions. Also ¢ is Pettis integrable by Theorem 2C of [2].

(b) For the rest of this proof, therefore, I assume that ¢ is Henstock
integrable and Pettis integrable, and seek to show that it is McShane
integrable. For measurable sets E C [0, 1] write [z¢ for the Pettis integral of
¢ over E. I seek to show that (¢ = [, ;¢ is the McShane integral of ¢. Note
that from 4(d) above we see that the Henstock integral of ¢ must be [¢.

(c) Let ¢ > 0. Write

C={gp:geXx*, gl <1}.

By 4-1-5 and 4-1-6 of [10], C is totally bounded for the seminorm || ||;.
For each k € N set m, = 27%2/(2¢ + 12(k + 1)) > 0. Choose
hios -+« s P, ry € C such that

VheCi<r(k), [Ih—hyl <m.

Let §,: [0,1] =10, [ be a gauge such that

() for every Henstock partition {((a;, b,],¢,))i<» of [0, 1] subordinate to
Ok»

< nk’

H[‘ﬁ - X (b —a)e(t)

i<n

(ii) for every j < r(k), every McShane partition {((a;, b;], ¢,))i<n» of [0,1]
subordinate to &,

< .

= E (6= )

i<n

(d) For each k € N write A, = {t: k < [|¢()|l < k + 1}. Define a gauge
& by writing

5(t) = 8, (1) if t € A,.

Let {(la;, b;],t,)):<» be a McShane partition of [0, 1] subordinate to 8, and
take any & € C.
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(e) Fix k for the moment. Set

Ik = {l: i < n, ti eAk}’ Hk = U [tl - 5(ti)’ti + 8(t,)].

il

I seek to estimate | [y h — L, 1 (b; — a)h(t)I.
Take j < r(k) such that f|h — h;;| < n,. Then

b= I

[H By — X (b — a)hy (L)

iel,

< Mk>

< Ny

because {([a;, b;],¢,))icy, is a partial McShane partition subordinate to §,
(3], Theorem 5).
Set

V=U{lt = 8c(£),t + 8, ()[: h(t) = hyj(1) 2 €}

If {(c;,d;},u;)>i<m is a partial Henstock partition subordinate to §,, and
H = U,;_.,lc;d;], then the Henstock integral of ¢ X x(H) must be the
Pettis integral (¢, so by Lemma 7 we have

“ [6- T - c)oqw)

< Mg
i<m
and
'fg - X (d;=¢)g(u;)| <m, foreveryg e C;
H i<m
consequently
0=k = E (= eplh = h)w)| < 2m,
i<m
and

A c)(h = hi;)(u;) < 3m,.

i<m
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By Lemma 6,
w([0,1] N V) < 3n,/e.
But of course
U {lai b.):i € I, h(2) = hyi(1) = e} \V

is finite, so

i€l h(t)—hy(t) =€
Similarly,
Z bi—ais3'ﬂk/8.
i€L, by (t)—h(t) =€
So
2 (b —a)|h(t;) - hi(t)| <e X (b —a)) + 12n,(k + 1) /e
iel, iel,
because

|h(t) = hei(t)| < 20l 6(2) || < 2(k + 1)

for each i € I,.
Putting these together,

Y (b, — a;)h(t;)

h —
H iel,

<2n +epH + 120, (k + 1) /e

<27k + euH,.

(f) Summing over k,

<& E (2_k + l.ka) = 38.
keN

Jh= T (6= aphce)

i<n

Thus

< 3¢

}f( [6) - T (b- a)i(o(4))

i<n
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for every f in the unit ball of X*. But this means that

< 3e.

|f6- £ = ape

i<n

This is true for every McShane partition {([a;, b;], t,)); < » of [0, 1] subordinate
to 8. As ¢ is arbitrary, ¢ is McShane integrable, as required.

9. CoroLLARY. Let X be a Banach space and ¢: [0,1] - X a function.
Then the following are equivalent:
() ¢ is McShane integrable;
(i) ¢ X x(E) is Henstock integrable for every measurable E C [0, 1];
(iii) ¢ is Henstock integrable and L, o[, @ exists in X for every sequence
(I.)ken Of non-overlapping intervals in [0,1], writing [, for the
Henstock integral of ¢ X x(I).

Proof. (i) = (i) If ¢ is McShane integrable and E ¢ [0, 1] is measurable,
then ¢ X y(E) is McShane integrable, by [2], Theorem 2E, therefore Hen-
stock integrable.

(i) = (i) Assume (ii). If fe X* then f¢ X y(E) must be Henstock
integrable for every measurable E C[0,1], so f¢ is Lebesgue integrable
(because it is measurable, as remarked in §2 above); and [rf¢ = f([z¢) for
every E, f. Thus ¢ is Pettis integrable. By Theorem 8 it is McShane
integrable.

(i) = (iii)) If ¢ is McShane integrable, then it is Pettis integrable, so that
YienN 19 exists for any sequence {I;)ren Of non-overlapping intervals, by
Proposition 2B of [2].

(iii) = (i) Assume (iii). If f € X* then h = f¢ is Henstock integrable and
Lien/ph exists for any sequence (I )xen of non-overlapping intervals in
[0, 1]. Consequently the indefinite Henstock integral ¢ — [jh of h as bounded
variation and % is Lebesgue integrable ([8], 3.2).

This shows that ¢ is Dunford integrable. But now writing v for the
indefinite Dunford integral of ¢ ([2],2A) we have vI = [;¢ € X for every
interval I [0, 1], and X, o yvI, exists in X for every sequence {[; ) en Of
non-overlapping intervals in [0, 1]. So ¢ is Pettis integrable by Proposition 2B
of [2].

Now Theorem 8 shows that ¢ is McShane integrable.

10. The Henstock integral is close to the McShane integral in a further
respect. See [10] for the notion of ‘properly measurable’ function from a
probability space to a Banach space.
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ProrosiTiON. Let X be a Banach space such that the unit ball of X* is
w*-separable. If ¢: [0,1] = X is a Henstock integrable function then it is
properly measurable.

Proof. As 2L of [2].

Acknowledgement. 1 am most grateful to J. Mendoza for carefully reading
the first draft of this paper and for many helpful suggestions.

REFERENCES

[1]. D.C. CARRINGTON, The generalised Riemann-complete integral, PhD dissertation, Cambridge
University, 1972.

[2]. D.H. FRemMLIN and J. MENDOZA, On the integration of vector-valued functions, Illinois J.
Math. 38 (1994), 127-147.

[3]. R.A. GorDON, The McShane integral of Banach-valued functions, Illinois J. Math. 34 (1990)
557-567.

[4]. R. Henstock, Theory of integration, Butterworths, 1963.

[5]. , Linear analysis. Butterworths, 1969.

[6]. , Generalised integrals of vector-valued functions, Proc. London Math. Soc. (3) 19
(1969) 509-536.

[7). T.H. HiLpEBRANDT, Integration in abstract spaces, Bull. Amer. Math. Soc. 59 (1953)
111-139.

[8]. R. McLEeoD, The generalized Riemann integral. Math. Association of America, Washington,
D.C., 1980.

[9). E.J. McSHANE, Unified integration, Academic Press, San Diego, 1983.

[10]. M. TALAGRAND, Pettis integral and measure theory, Mem. Amer. Math. Soc. 307 (1984).

UNIVERSITY OF EsseEx
COLCHESTER, ENGLAND



