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THE HENSTOCK AND MCSHANE INTEGRALS OF
VECTOR-VALUED FUNCTIONS

D.H. FREMLIN

Introduction

A familiar formula from undergraduate analysis is the ’Riemann sum’
.g=lf(ti)(bi- bi_ 1) Of a function f with respect to a tagged partition
0 b0 _< _< b _< _< t _< b 1 of [0, 1]. One of the standard defini-
tions of the Riemann integral describes it as the limit of such sums as
max (bg bg_ 1) 0. It is a remarkable fact that the same formula may
be used to define a vastly more powerful integral, if we take a different
limiting process. Instead of requiring all partitions with maxg(b bi_ 1) -< 80
to give good approximations to the integral, we can restrict our attention to
those in which b- bi_ <_ t(ti) for each i, where 8 is a strictly positive
function on [0, 1]. (See 1(c) below.) This refinement yields the ’Henstock’ or
’Riemann-complete’ integral; it agrees with the Lebesgue integral on non-
negative functions but extends it on others (see 4(e) below). An ingenious
modification of the construction, due to E.J. McShane, allows the to lie
outside the corresponding intervals (see l(b)); this brings us back a step, to
the Lebesgue integral precisely.
A common feature of the Riemann, McShane and Henstock integrals is

that the use of Riemann sums gives us obvious formulations of integrals for
vector-valued functions defined on [0, 1]. For the McShane and Henstock
integrals I spell these out in 1(b-c) below. The Henstock integral obviously
extends the McShane integral. In this paper I seek to elucidate the nature of
this extension; in particular, to give criteria to distinguish McShane inte-
grable functions among the Henstock integrable functions. In the real-valued
case this is simple enough; a Lebesgue integrable function is just a Henstock
integrable function with (Henstock) integrable absolute value; equivalently, a
Henstock integrable function which is Henstock integrable over every mea-
surable set. It turns out that the latter criterion is valid in the vector-valued
case (Corollary 9 below). I give priority however to a more economically
expressible result in terms of the Pettis integral: a vector-valued function is
McShane integrable iff it is both Henstock integrable and Pettis integrable
(Theorem 8). The Pettis integral being the widest of the standard integrals of
vector-valued functions (see [7]), this suggests that the difference between the
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Henstock and McShane integrals for vector-valued functions is largely ac-
counted for by the difference between the Henstock and Lebesgue integrals
for real-valued functions.

1. Definitions

I recall the following definitions. Let X be a Banach space, with dual X*.
(a) A function qb" [0, 1] X is Pettis integrable if for every Lebesgue

measurable set E
___

[0, 1] there is a we X such that fef(ck(x))l(dx) exists
and is equal to f(we) for every f X*; in this case wt0 11 is the Pettis integral
of tk, and the map E we is the indefinite Pettis integral of b.

(b) A McShane partition of [0, 1] is a finite sequence (([ai, bi] ti))i< n such
that ([ai, bi]) <n is a non-overlapping family of intervals covering [0, 1] and

[0, 1] for each i. A gauge on [0, 1] is a function 15" [0, 1] ]0, oo[. A
McShane partition (([ai, bi],ti))i<n is subordinate to a gauge if --t(ti)
< a < bi < t + (t) for every < n.
Following [3], I say that a function qb: [0, 1] X is McShane integrable,

with McShane integral w, if for every e > 0 there is a gauge : [0, 1] ]0, oo[
such that

W-- E ( bi ai)dP( ti) <- e
i<n

for every McShane partition (([ai, bi] ti))i< n of [0, 1] subordinate to .
(c) A Henstock partition of [0, 1] is a McShane partition (([ai, bi], ti))i< n

of [0, 1] such that [ai, bi] for every < n. A function b: [0, 1] X is
Henstock integrable, with Henstock integral w, if for every e > 0 there is a
gauge 5: [0,1] ]0, oo[ such that IIw- .,i<n(b --ai)ck(ti)ll < e for every
Henstock partition (([ai, bi], ti)) <n of [0, 1] subordinate to .

2. For the general theory of the Pettis integral, see [10]; for the McShane
integral, see [3] and [2]; for the Henstock integral see [6], [8]. The most
important fact to note here is that if X--- R then the Pettis and McShane
integrals coincide with the ordinary Lebesgue integral, but the Henstock
integral is a proper extension of the Lebesgue integral ([8], $8.2 and 3.2).
Moreover, every Henstock integrable function is Lebesgue measurable. I
believe that this result is due to R.O. Davies. A proof of a more general
result is in [1], Theorem 2.12; all the necessary ideas are in [2], Proposition
2L (see Proposition 10 below).
We need a couple of elementary lemmas concerning Henstock partitions.

It will be convenient to use the phrase partial McShane partition to mean a
finite sequence (([ai, bi],ti))i< n such that the [ai, bi] are non-overlapping
closed subintervals of [0, 1] and t [0, 1] for each i; and to say that it is a
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partial Henstock partition if t - [ai, bi] for each i, and that it is subordinate
to a gauge 6 if t t(ti) <_ a <_ b <_ d- t(ti) for each i.

3. LEMMA. Let : [0, 1] ]0, [ be a gauge and (([ai, bi] ti)) n any
partial Henstock partition subordinate to i. Then it may be extended to a
Henstock partition (([ai, bi], ti))i ,, of [0, 1] subordinate to .

Proof Use the technique of [8], S1.8.

4. PROPOSITION. LetXbe a Banach space and b: [0, 1] - X, : [0, 1] -> X
Henstock integrable functions with Henstock integrals v, w.

(a) th + qt: [0, 1] - X is Henstock integrable, with Henstock integral v + w.
(b) For any a R, ark: [0, 1] X is Henstock integrable, with Henstock

integral av.
(c) ff 0_<a_<b_< 1 then dP[a, bl d x([a,b]), defined by writing

dp[,b,(t) dp(t) if t [a, b], 0 otherwise, is Henstock integrable.
If f X* then fd: [0, 1] R is Henstock integrable, with Henstock

integral f( v ).
(e) Let 0: [0, 1] X be another function. If for every a ]0, 1] we have a

Henstock integral F(a) of 0 x([a, 1]), and if limaoF(a) w exists in X,
then 0 is Henstock integrable, with Henstock integral w.

Proof. Part (d) is immediate from the definitions. For the other parts use
the methods of 2.1, 2.3 and $2.8 in [8].

5. LEMMA. Let 6: [0, 1] --> ]0, o[ be a gauge. Suppose that A
_

[0, 1] is any
set and that K is a compact subset of [0, 1] q [.J t A] 6(t), t + 6(t)[. Then
there is a partial Henstock partition (([ai, bi], ti))i<n, subordinate to 6, such
that A for each and K c_ [3 i< n[ai, bi].

Proof. (a) Suppose first that A is finite. For this case I induce on #(A),
as follows. For #(A)= 0 the result is trivial. For the inductive step
to #(A)= k > 0, take t* A for which t*-5(t*) is minimal. Then
]t 5(t), t + 5(t)[_]t* 5(t*), t* + 5(t*)[ whenever t A and < t*. Set

A’= {t" t A,t > t*},

K’= {t" t K,t > t* + (t*)}.

Then K’ 13 h’ ]t t(t), t + 8(t)[, SO by the inductive hypothesis we have
a partial Henstock partition (([a’i, bi], ti))i <m, subordinate to i, with t A’
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for every and K’
_
U i<m[ari, bi]. Set

t*a max(ai, ) for < m,

tm t*, am max(O, t* 8(t*)),
min({t* + 6(t*), 1} U {ai" < m});

then (([ai, bi], ti))i< m is a partial Henstock partition, subordinate to 5, with
A for every < rn and K __. U i<m[ai, bi].

(b) The general case now follows, because K is compact, so that there
must be a finite A’

_
A such that K

___
U t A,]t (t), t + 5(t)[.

6. LEMMA. Let g: [0, 1] ---> R be a function. Let 8" [0, 1] --)]0, oo[ and e,
rl > 0 be such that Ei<n(bi ai)g(ti) < q for every partial Henstockpartition
(([ai, bi] ti))i< n subordinate to . Then

U
g(t)>e

It t(t), + (t)[) <

Proof Let K be any compact subset of[0, 1] U g(t)>e]t (t), t + (t).
Then there is a partial Henstock partition (([ai, bi], ti))i <n, subordinate to $,
with g(ti) > e for every and K

_
U i<[ai, bi]. Now

elxK <

_
( b ai) g( ti) < rl,

i<n

so/K _< r//e. As K is arbitrary,

/z([0,1] C U
g(t)>e

]t- (t), t + (t)[) <

7. LEMMA. Let X be a Banach space and th: [0, 1] X a Henstock
integrable function, with Henstock integral w. Suppose that e > 0, 5" [0, 1]- ]0, o[ are such that

whenever (([ai, bi] ti)}i n is a Henstock partition of [0, 1] subordinate to .
Let (([ai, bi] ti) <n be a partial Henstock partition of [0, 1] subordinate to ,
and set H U i< [ai, bi]. Then the Henstock integral fHdp of x(H) exists,
and II fH6 -.i <n(bi ai)ch(ti)ll < e.

Proof As in [8], 3.1.
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8. THEOREM. Let X be a Banach space and b: [0, 1] - X a function. Then
d is McShane integrable iff it is Henstock integrable and Pettis integrable.

Proof. (a) If th is McShane integrable, then it is certainly Henstock
integrable, because the Henstock integral involves a smaller class of parti-
tions. Also b is Pettis integrable by Theorem 2C of [2].

(b) For the rest of this proof, therefore, I assume that b is Henstock
integrable and Pettis integrable, and seek to show that it is McShane
integrable. For measurable sets E c_ [0, 1] write feth for the Pettis integral of
b over E. I seek to show that fth ft0, llth is the McShane integral of b. Note
that from 4(d) above we see that the Henstock integral of b must be fb.

(c) Let e > 0. Write

C {gd:g X*, Ilgll <- 1}.

By 4-1-5 and 4-1-6 of [10], C is totally bounded for the seminorm II
For each k N set ’Ok 2-keEl(2e + 12(k + 1)) > 0.

hko, hk, r(k) C such that

111.
Choose

lh Cli <_ r(k), flh hkil <- lk.

Let tk: [0, 1] - ]0, oo[ be a gauge such that
(i) for every Henstock partition (([ai, bi] ti))i< n of [0, 1] subordinate to

tk,

(ii) for every j < r(k), every McShane partition (([ai, bi], ti))i <n of [0, 1]
subordinate to ik,

f ( b ai)hkj( ti)
i<n

(d) For each k N write Ak
8 by writing

{t: k < (t)II < k + 1}. Define a gauge

6(t) tk(t ) if t Ak.

Let (([ai, bi], ti))i<n be a McShane partition of [0, 1] subordinate to 8, and
take any h C.
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(e) Fix k for the moment. Set

{i:i <n,t Ak},Hk [.J Iti- t(ti) ,t + t(ti) ].
iIk

I seek to estimate fh Ei ik(bi- ai)h(ti)l.
Take j < r(k) such that flh hky[ <_ "ok" Then

kj < "ok’

kJ E (bi ai)hkj(ti)
ilk

because (([ai, bi],ti))iik is a partial McShane partition subordinate to k
([3], Theorem 5).

Set

V= J {]t- 8k(t),t + 8k(t)[" h(t) hky(t ) > e}.

If (([ci, di],ui))i<m is a partial Henstock partition subordinate to tk, and
H U < m[Ci, di], then the Henstock integral of b x(H) must be the
Pettis integral frick, so by Lemma 7 we have

and

fHg E (di ci)g(ui)
i<m

for every g C;

consequently

fH(h hkj) E (di ci)(h hkj)(ui)
i<m

and

ci)(h hkj)(Ui) <-- 3"Ok.
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By Lemma 6,

/z([0, 1] n V) < 3r/k/e.

But of course

.J {[ai, bi]" Ik, h(ti) hkj(ti) > e} \ V

is finite, so

bi- a < 3rlk/e.
Ik, h(ti)--hkj(ti)>e

Similarly, _, bi a < 3rlk/e.
Ik, hkj(ti)-h(ti)>e

So _
(b -a,)lh(t,) -hk(t,)[ < e E (bi ai) + 12r/k(k + 1)/e

i-Ik iIk

because

Ih(t,) h,(ti) < 2114(t/)[1 _< 2(k + 1)

for each Ik.
Putting these together,

h- _, (bi-ai)h(ti)
Hk ilk

(f) Summing over k,

< 2qk + etcHk + 12r/k(k + 1)/e

<_ 2-ke + elxHk.

-, (bi ai)h(ti)
i<n

< e E (2-k +/XHk) 3e.
kN

Thus

., (bi- ai)f((ti) )
i<n

< 3e
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for every f in the unit ball of X*. But this means that

i<n

This is true for every McShane partition (([ai, bi], ti))in of[0, 1] subordinate
to 8. As e is arbitrary, b is McShane integrable, as required.

9. COROLLARY. Let X be a Banach space and b: [0, 1] X a function.
Then the following are equivalent"

(i) dp is McShane integrable;
(ii) th x(E) is Henstock integrable for every measurable E

_
[0, 1];

(iii) d is Henstock integrable and "k N fIkt exists in X for every sequence
(Ik)k r of non-overlapping intervals in [0, 1], writing f1 for the
Henstock integral of qb X(I).

Proof. (i) (ii) If b is McShane integrable and E
___

[0, 1] is measurable,
then b x(E) is McShane integrable, by [2], Theorem 2E, therefore Hen-
stock integrable.

(ii) = (i)Assume (ii). If f X* then fb x(E)must be Henstock
integrable for every measurable E c_ [0, 1], so fb is Lebesgue integrable
(because it is measurable, as remarked in 2 above); and fef f(fed) for
every E, f. Thus b is Pettis integrable. By Theorem 8 it is McShane
integrable.

(i) = (iii) If b is McShane integrable, then it is Pettis integrable, so that
Ek N figb exists for any sequence ( Ik >k N of non-overlapping intervals, by
Proposition 2B of [2].

(iii) (i) Assume (iii). If f X* then h fth is Henstock integrable and

kNflkh exists for any sequence (Ik)kr Of non-overlapping intervals in
[0, 1]. Consequently the indefinite Henstock integral fh of h as bounded
variation and h is Lebesgue integrable ([8], 3.2).

This shows that b is Dunford integrable. But now writing v for the
indefinite Dunford integral of b ([2], 2A) we have vI fld X for every
interval I

__
[0, 1], and Ek N,Ik exists in X for every sequence (Ik)k N of

non-overlapping intervals in [0, 1]. So b is Pettis integrable by Proposition 2B
of [21.
Now Theorem 8 shows that b is McShane integrable.

10. The Henstock integral is close to the McShane integral in a further
respect. See [10] for the notion of ’properly measurable’ function from a
probability space to a Banach space.
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PROPOSITION. Let X be a Banach space such that the unit ball of X* is
w*-separable, ff b: [0, 1]- X is a Henstock integrable function then it is
properly measurable.

Proof As 2L of [2].

Acknowledgement. I am most grateful to J. Mendoza for carefully reading
the first draft of this paper and for many helpful suggestions.

REFERENCES

[1]. D.C. CARRINGTON, The generalised Riemann-complete integral, PhD dissertation, Cambridge
University, 1972.

[2]. D.H. FREMLIN and J. MENDOZA, On the integration of vector-valued functions, Illinois J.
Math. 38 (1994), 127-147.

[3]. R.A. GORDON, The McShane integral ofBanach-valued functions, Illinois J. Math. 34 (1990)
557-567.

[4]. R. HENSTOCK, Theory of integration, Butterworths, 1963.
[5]. Linear analysis. Butterworths, 1969.
[6]. Generalised integrals of vector-valued functions, Proc. London Math. Soc. (3) 19

(1969) 509-536.
[7]. T.H. HILDEBRANDT, Integration in abstract spaces, Bull. Amer. Math. Soc. 59 (1953)

111-139.
[8]. R. MCLEOD, The generalized Riemann integral. Math. Association of America, Washington,

D.C., 1980.
[9]. E.J. MCSHANE, Unified integration, Academic Press, San Diego, 1983.

[10]. M. TALAGRAND, Pettis integral and measure theory, Mem. Amer. Math. Soc. 307 (1984).

UNIVERSITY OF ESSEX
COLCHESTER, ENGLAND


