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THE MULTIPLIER OPERATORS ON THE PRODUCT SPACES

LunG-Kee CHEN

Introduction

Let HP(R™ X R"™) be the Hardy space defined on the product spaces (for
more details, see [1]) and let a function a(x,, x,) denote a rectangle p atom
on HP(R™ X R™) if (i) the a(x,, x,) is supported on a rectangle R =1 X J
(I and J are cubes on R™ and R™ respectively), (ii) llall, < |R|"*7'/? and
(iii) one picks and fixes two sufficiently large positive integers k and [
(depending on p) such that

[x{’a(xl, x,)dx; =0 forall x, €Jand |a|] <k
1

j;xga(xl,xz) dx,=0 forall x, € Iand |B] <.

In the paper [3], R. Fefferman gave a very powerful theorem (see Theorem 1)
for studying the boundedness on the HP(R™ X R"2) spaces of a linear
operator. In his theorem, it mentioned that to consider the boundedness on
H? of a linear operator one only needs to look at the boundedness of the
linear operator acting on the rectangle p atoms. This is true despite the
counterexample of L. Carleson which shows that the space HP(R™ X R™2)
cannot be decomposed into rectangle atoms.

We will use A to denote the Fourier Transform and A, to denote the
Fourier Transform acting on the first variable. Throughout this paper, C
represents a constant, although different in different places. 7,, denotes the
multiplier operator associated with the multiplier m, i.e.,

T,.f(£,m) = m(£,7) f(£,m).

Tueorem 1 (R. Fefferman [3)). Suppose that T is a bounded linear
operator on L*(R™ X R™). Suppose further that if a is an H?(R™ X R™)
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rectangle p atom (0 < p < 1) supported on R, we have
‘/;R lT(a) Ip(xb xz) dxl dxz < Cr“’

for all r > 2 and some fixed o > 0, where °R, denotes the complement of the r
fold enlargement of R. Then T is a bounded operator from H?(R™ X R") to
LP(R™ X R™).

The purpose of this paper is to study several multiplier operators on

product spaces by establishing four general theorems, Theorem A, B, C, D.
Suppose C,, C, are the arbitrary two real positive numbers and

E ={(x,9)|Ixl 2C, Iyl =G}, E,={(x,9)|lxl =Cy, lyl <C,},
Ey={(x,9)|Ix] <Cy, Iyl 2 G}, E, = {(x,y)|lxl <Cy, Iyl <C,}.

Let Q(a,, a,, m) denote the following statement.

Statement. Let a,, a,, p,0 <p < 1 be real numbers and let

1 1 .

Suppose m is a bounded function defined on R™ X R"2 satisfying

(1) '/;,<I§|52s1'[

s,<Inl=<2s,

|og 98m(&,m) | d¢ dn

< Cs1—2b1+2(a,—1)|a:|+n,s2—21’;2+2(az—1)|/3|+n2

(2 sup [ |agm(&,m)? dé < Csp2br+2@=Diattm
neR" s <|él<2s
and
2
(3) sup [ la,’;”m(f, 1])| dn < Cs2_2b2+2(“2—1)|3|+"2
£eR™M “s,<Inl<2s,
where

lal < [nl(% - %)] +1 and 18] < [nz(;l; - %)] 1.
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THEOREM A. Let a; >0, a, > 0. Suppose m is supported on E, and the

statement Q(a,, a,, m). Then T,, maps H?(R™ X R"2) boundedly to LP(R™ X
R™), i.e.,

1T, fliLe < Clifllae

THEOREM B. Let a; = 0, a, < 0. Suppose m is supported on E, and the
statement Q(a,, a,, m). Then T,, maps HP(R™ X R"2) boundedly to LP(R™ X
R™2),

THEOREM C. Let a; <0, a, > 0. Suppose m is supported on E; and the
statement Q(a,, a,, m). Then T,, maps H?(R™ X R"2) boundedly to LP(R™ X
R"™),

THEOREM D. Let a; <0, a, < 0. Suppose m is supported on E, and the
statement Q(a, a,, m). Then T,, maps H?(R" X R"?) boundedly to LP(R™ X
R™).

Now we use those theorems to get the following theorems.

THEOREM 2. Suppose 0 <p < 1. Let

1 1 1 1
= [nl(z—i)] +1, l=[n2(5—7)]+1.
Suppose m € C¥(R™) X C'(R™) and

|0g 0Bm(&,m)| < CI&l™n| 71!

where |a| < k, |B| < 1. Then T,, maps H(R™ X R"2) boundedly to LY(R™ X
R™) forp <q < 2.

Remark. R. Fefferman and K.C. Lin [2] have obtained the result for
p = 1 in Theorem 2 under a weaker hypothesis,

'/;1<|§|52sl‘[

2
|9g 98m(&,m)|" dé dn < CsypHeltmss2flens,
s2<Inl<2s,
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TueorReM 3. Suppose 0 < p < 1 and m is defined on R™ X R™ satisfying

(4

|ag agm(g’ n)l < C(l + |§|)—([n1(1/p—1/2)]+1)(1 + |n|)-—([n2(1/p—1/2)]+1)

for
1 1 1 1
la| < [nl(; - 7)] +1, |B| < [”2(; - —2')] + 1.
Then
T, fll Laqrmix g2y < Cfll Hacrm xrm2y
forp <q<?2.

THEOREM 4. Suppose 0 < p < 1 and m is defined on R™ X R™ satisfying
|m(£, ’)7) | < (1 + |§|)—([n1(1/p—l/2)]+1)(1 + |77 I) —(n(1/p-1/1+1)
and the inverse Fourier transform of m has compact support. Then
T, fll Lacrmix g2y < Clfll racrm x g2y
forp <q<?2.

Proofs of the theorems. Without loss of generality, one assumes C, =
C, =1 in the definitions of E;,, i = 1,2,3,4. The idea of the proof of
Theorem A is basically from [4]. Let a be a smooth rectangle atom with
vanishing moments and suppa cI XJ =R, |all, < [I|V*7'/? |y />~ />
where I and J are cubes on R™ and R"2, respectively. Let us take a smooth

function on R! and its Fourier transform #(#) has compact support {1 /2 <
lt| < 2} such that ©; . ,¢(27/|¢|) = 1 for all ¢ +# 0. Let

m; j(£,m) = m(£,1)$27 €1)$(27|nl)
and
T, f(€,m) = m, J(£&,m)f(&,m) = (Ki* F)" (£,m)

It is clear Tf = T,;T;;f.
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Let us decompose CR,, the complement of R,, into three pieces
R = {(&,m)le el m <)
={(& )¢ e, n e
and
R =R\ (R UR?).

LemmA A. Let a, >0, a, > 0. Suppose m(¢,n) satisfies (1),(2),(3) in
Theorem A and m(¢,n) is supported on E,. Then

(%) | IT;al” dxdy
cR:r;
2p 2-p
<C(,( k(2 p)+n1x 2 4 UG +maX =5 ))
' m(%_l»r%)pu-k(———zz_" G+ L

. |J|(%—— )p+( l(—) +1)(—-—-)+—

,21((a1—1)k+/\1 b1+ )p2}((a2 DI+Ay— b2+ 2)p
b

(6)
A2 p
lp+n2( )2]((112 1)l+)\2-—b2+—)p|]|_ P+ P+2

and

(7)
At p
lpdxdy < Cr- kp+n1( )21((a1 Dk+A;— b1+ )p|I|——P+ P+2

where

s SR MEE

0 <p < 1, Ay, A, are arbitrarily nonnegative integers and A < k, A, <.

Proof. Since m is supported on E,, without loss of generality, we assume
m; (£,m) =0if i <0 orj<O0. After a translation, it suffices to assume the
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origin (0, 0) is the center of the rectangle I X J. Write
T;a(x,y)

= ]K,.j(x —=x',y —y)a(x',y") dx' dy’

(8)
1 a
-/ (Ki,(x ~xy-y) = L pKy(xy —y)(~x)
lal<A;—1
Xa(x',y') dx' dy'
=1, Y a,f f (1- t)'\'_laaK,J(x -,y —y')( x)
Ial /\1 IxXJ70
a(x',y') dtdx' dy'
9
= ['f « —t)““l(afKﬁ(x—tx',y—y')
dlon, 0 TIxJ
1 Nd
- Z Fay a::Kt](x - y)( y) (—X)
Bl<A,—1
a(x',y') dy' dx' dt
(10)
1 1 -1 Ap—1
=04, X oy -.—-{ 1-)"""(1-s)"
d-n, & 1gio, B! f“"[ f

(=x)* (—y )Baf 3?Kij(x —ix',y —sy')
Xa(x',y") dsdtdx’ dy'},

where A; and A, are integers and 0 < A, < k, 0 < A, < /. Here we should
remark that if one sets A, = 0 or A, = 0 then it means one does not subtract

the Taylor polynomial on the equation (8) or (9). For example, if A, = 0 and
A, # 0 then

T a(x,y) = fKij(x =x',y=y)a(x',y") dx'dy
1 1 A—1 5

= = 1-s)*7 (=y)#

ZU§|§A2 B! LXJL ( ) e

X ayﬂ.K,-j(x —x',y —sy')dsdx'dy'.
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Let us look at the integral in the parentheses of (10). It is dominated by

j;x]j:/:l(-xl)&( _Yl)ﬂaﬁaaKU(x -,y —sy')a(x, y')ldsdtdx' dy'
i 172
< (LXJ/()ILII( -x")%( 'Y')Baﬁaa](”(x -,y — sy )l dsdtdx' dy' )

IxXJ

< m1/2~1/1>+)~1/n1|J|1/2-1/p+)\z/nz
1/2
([M[ f |05k (x — &', y — )| dsdtdx’dy)
= IIII/Z 1/p+)\1/n1|J|1/2—1/p+A2/n2Lij(x’ y)
Hence
(11) fDl T,'jalp < CIII(I/Z-1/P+A1/”1)P|J|(1/2—1/P+)‘2/"2)PfD‘Lij(x’ y)rdxdy
for any measurable set D. Next, one will compute the integral

JplL; j(x, Y)IP dxdy with respect to D =°R2, °R! and ‘R2, respectively.
First let us compute

fcﬁ§|Lij(x, y)rD dx dy
- - p
= [ (ARD BV (A (BIV) Li(x, v)) " dvdy
where 4 and B will be given later. By Holder’s inequality, it is not bigger
than

2-p

2p 2p
(f_3(A|xI)"“2_—7)(B|y|)“"ﬂ) dxdy) 2
cRr

2 p/2
-(ﬁ_3|(A|x|)"(BIyI)’L,~,~(x,y)| dxdy)
< CA kPB_IP(r( k(2 )+n1X ) + r( 1(2 )+an—))

TS SE i SN R R
R+ X | g X )(ﬁ-s(A"")Zk(B'y')zl
R;

/2
,[leff|3B3fKij(x—tx’,y—Sy')|2dsdtdx’dy’dxdy)p .
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Since (x,y) €°R? and (x,y)) €I X J,0 < s, t < 1, one has |x| = |x — &'|,
lyl = |y — sy’|. Therefore, the above inequality is equivalent to

CA~ kpB—lp(r( k(2 )+n1)( +r( l(2 )+n2)( ))

2p |1 2-p 2p |1 2—-p
. |I|(_k(ﬁ)”1+lx 3 )IJI( 1(2_p)n2+1)(T)

.(01

') (Bly - sy'l)’

IxJ)°R?

. 2 p/2

xaf K;i(x —tx',y — sy’)l dxdydx' dy’ dsdt) .
After a change of variables, the last inequality is dominated by

2 2—
AkeB=lp(p(- k) +mx 252 )+r<—t(2—_f;)+nsz">)

2p 1 2-p p 2p 1 2—-p P
(12) . III("“E’,T,“XT” 7|J|(—l(ﬁ)n_z+le)+ £

-

k| R laf 2d 2 p/2
Lx 1By 98 93K ,(x, v) | dxdy) .
Here one lets

A =2"4a=-D B = 27 /(@1

From the hypothesis (1), one concludes

i ) 172
(13) (flflzziflmzzf'(Aaf)a(Ba’?)a(g&"Bmi’i(f’"))i d¢ d”)

< C2iA1=b1+n1/2)9 j(Ay=by+n3/2)

for every multi-indexes o, 8. (Recall |@&| = A, and |8| = A,.) Then, applying
Plancherel’s Theorem on the integral (12) and using formula (13), one has

£R3|L,.,.(x,y)|"dxdy

< C( - k(2 y+nx 22 ) 4 (- 1(2 >+n2x—))
2p |1 2-p,. P 2p .1 2-p.. p
. IIl(_k(E)”_l+1XT)+ -flJl(_l(T"_p)—';;+1XT)+E

. ny . na
. i(a1= Dk +A1=b1+ 5)p9 j(az= Di+A2=by+ 3 )p
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From (11) and the above inequality, one has

[RJ T,al” dxdy

< C(,(—k(%)+n,x3;_?) + r(_,(ZZTppanXz;p))

. |I|(%—%+—2—f)p+(—k(%)%+1x%£)+%
)(|J|(%_%+2—§)P+(—l(22Tpp)ni2+l)(2%p)+%

. 9ilay=Dk+A =by+ Zpoy j(az— DI+ Ay=by+ Z)p

(5) is proved.
Since the proofs of (6) and (7) are similar, we show (6). Let Ta = L,T;;a.
Hence, it is clear that

Ta(£,m) = m(&m) 27 n)f(&m) = K(£&,)f (& m).

Let us write

I,

Z:,T,.jalp dxdy = ﬁézll}aV’ dx dy

sLRZ(BlyI)“”’((BIyl)ﬂT,.al)”dxdy
2p @2-p)/2
< ([R%(Blﬂ)_l(f:i)dxdy)
2 p/2
X(léfl(Blyl)le“l d"dy)

2-p
2

2p 2-p
< CB7?|I| © iGN

X|J|(—l(2—2_p—p)zlz+l)(2—;11)
, 2 p/2
.(£R2|(B|y|) T dxdy) :

where the last second inequality is obtained by applying Hoélder inequality.
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Following the same procedure as in the proof of (5), one has

[ By Tl drdy

1 .
<C Blyl)* —y')PBK (x —x',y — sy’
|B'IZ=:/\2'£R3( 7D '/(;’I;XJ( ) 8K y =)

2

Xa(x',y") dx' dy' ds| dxdy.

Since
CR~3 — {lxl < 2m|1|1/n1} N {|y| > rllll/nz]’

by Minkowski’s inequality, the last inequality is less than

1 1A2
¢ EA: {'{yl>rlll‘/”2(B|YI)21('[0 '[le g (flx|<2¢'71|1|1/n|

18

f;’y’;Kj(x -1,y —sy)
s 172 2
dx) dy’ds) dy}.

By Plancherel’s Theorem, the above integral on the parentheses is dominated
by

jl‘y|>r|J|‘/"z(j;,l.’;'yllAz(B|Y|)l
2

| 2 1/2
X(fR,,,'aij(ﬁy—sy’)ﬁ‘(f,y’)l d§) dy’ds) dy

a(x/’ yl) dx’

ﬁ 1 ]
< % Blyl
2f|y|>r|f|‘/"z(fo j;( )

x(fRnl

j:fjj;(”l‘(Blyl)lafk\jl(g’ y—sy')

1 2 1/2 2
35Kj(§,y—sy')ﬁ‘(§,y’)| df) dy’ds) dy

222 g
< |J| na f
Iyl>rlg1/ "2

2
xal(¢, Y')l d€ dy' dsdy

] 2
(Bly — sv'1)'ofK; (¢,y - sy')l dy

A
s,

x|al(¢, y)|* de dy' ds.
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By a change of variables on the last inequality, one has

(14
ﬁRJ(l‘i’lyl)’Tja]2 dx dy

’\2 1 2 2
< ClJ%m ! BlyD)'oPK, (&, y)| ayla(¢,y)| dedy'.
)] e sR | wlae ) aca

Let B = 27/27D_ Ag in the inequality (13), one constructs a similar inequal-
ity

(15) sup (

£ER™M

]; l(Ba,,)a(nB'f(\j(g, 77))|2 d¢ dn)l/2 < C2/O2=bytny/2)

nl=2/
by using the hypothesis (3).

Hence, applying Plancherel’s Theorem on the integral [gn,| - - 1 dy on
(14) and applying (15), the inequality (14) is not bigger than

|J|2A2/”2+1/ f 22j(/\2—b2)+jn2|ﬁ1(£’ y/) |2 df dy’
RmJR™

< C2j(2(Az—b2)+n2)|I‘2(1/2—1/P)|J|2(1/2"1/1’)*'2)'2/"2"'1'
Therefore,

; 2-py L R P
f 1Tal” drdy < €27 Dixhambarna/ Dy =lpend = | " mP w7
.
Ry

This is (6). Lemma A is proved.

Proof of Theorem A. As in Lemma A, since m is supported on Ej,

without loss of generality, we assume m;;(¢) = 0 if i <0 or j < 0. Let us
write

f-|Ta|P=f’ e 4 i e 4 IR
‘R, ‘R! ‘R? R}

and recall k =[n(1/p —1/2)1+ 1, | =[n,(1/p — 1/2)] + 1. Then there
exists o > 0 such that

max{(_k(’fz?pi) * "1)’(_1(22—1)17) " "2)} = —(2 EP)"'
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Hence

2p 2-p 2p 2-p
r(—k('z':;)+n1)("—2—") + r(—l(z—_p')‘l-ng)(—z—) < 2r—0"

if r > 2. For each rectangle I X J, there exist iy, j € Z such that [I|"/™ =
2% |J|'/"2 = 2o, Therefore, if 0 <p < 1,

(16)
[Jrar <[ |Tal=L T+ E+LL+L L.

izig j=2jo izigy j<jo i<ig j=jo i<ig j<jo

We are going to apply (5) in Lemma A by choosing the distinct A, and A,
on the distinct terms of sums on (16). That is to say, (i) in the sums
Lisilj=j, one picks A; =2, =0, (i) in the sums ¥,,; X, on takes
A =0,A,=1=[n1/p - 1/2)] + 1, (iii) in the sums T, ; X;, ; one lets
M=k=[n(/p-1/21+1, A, =0 and (iv) in the sums T, ; =, ; on
sets A, =k=[n(1/p—-1/D1+ 1, A,=1=[n,(1/p — 1/2)] + 1. Hence,
from (16),

j;_SITa|Ps Z(Z + Z)+ Z(Z + 2)
Ry izig “jzjo  J<Jo i<ig “jzjo  J<io
11 2p (1 2-p..p . n
< Cro Y |1|G TR G R t XS 3 i@~ Dbt 5)p

i>ig

1 1 A 2 1 2-
.{ Z IJI(E_;+n_§)p+(—l(—2-pp)n_2+lx_2_p)+ %2,'((,,2_1)14.)‘2_1,2.,. fZZ)p
J<io
1 1 2p |1 2-p p ny
+ ) |J|<E‘E’P“‘""ﬁ)n—z“XTH52;«a2—1)t—b2+—2—)p}
j=zjo

+Cr_°' 2 ...(E cee 4 Z ...)

i<ip jzjo J<io

1 %k
<Cr° Z III(i_”_l)pzi(_k+%)p{ Z 2 =jon2p /29 in2p /2
ixig i<io

. 1 1 . )
+ Z 2—Jon2(§—n—2)p21(-l+7)p} +Cr° Z .

Jj=jg i<ig

. 1 k .
< Cr—cr{ E 2—t0n1(5—;,—1)p21(—k+ %)p + Z e }
i=ig i<ip

<Cr ¢
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where the last two inequalities are obtained by the fact, n,/2 </ and

n,/2 <k.
On the other hand, for the boundedness of the integrals

ﬁé; Tal’ and [R; Tal,

these can be proved by following the same ideas as the proof in the above
case, applying (6), (7) in Lemma A and the next two inequalities, respectively,

[T = Z 1,

J

p
IZTl.ja'p and LﬂlTal SZ;];R}I%:EJ'“F'

Theorem A is proved.

Proof of Theorems B, C, D. As in the proof of Theorem A, one can prove
Theorems B, C, D by establishing the corresponding lemmas. In the proof of
Lemma A, the equations have nothing to do with the “signs” of a,, a, except
(13) and (15). The existences of (13) and (15) depend on the signs of i and a,
(j and a,), in particular, on ia; > 0 (ja, > 0). Therefore, we omit those
proofs.

Proof of Theorem 2. Taking a smooth function ¢ on R! with compact
support {t] |t| < 2} and ¢(t) = 1if |¢] < 1, let

(17)
m(€,7)

]

(1 =¢(&))A = d(n))m(€,m) + (1 = ¥(€)¥(n)m(£,7)
+ (&) = ¢g(n))m(&,m) + Y(&)Y(n)m(&,m)

my(€,m) + my + msy + my.

Then one applies m;, i = 1,2,3,4, to Theorems A, B, C, D, respectively.
Theorem 2 is followed by setting a; = a, = 0 in Theorems A, B, C, D.

Proof of Theorem 3. Again, we borrow the decomposition (17) of m on
the proof of Theorem 2. Then the boundedness of T is obtained by setting
a, = a, = 1on Theorem A, a, = 1, a, = 0 on Theorem B, a; = 0, a, = 1 on
Theorem C and a; = a, = 0 on Theorem D.
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Proof of Theorem 4. Since the inverse Fourier transform of m has
compact support, there exists a smooth function ¢ such that

m(g’n) B ‘/;inanqu(f —&m - n’)m(§'9 "7l) d¢ dn'.

Theorem 4 is proved by applying Theorem 3.
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