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A GENERALIZATION OF MUMFORD’S THEOREM, II

JAMES D. LEWIS

0. Introduction

Let X be a quasi-projective variety (over C) of dimension n. In this paper,
we want to study the Chow group CHk(X) CHn-k(x) of algebraic cycles
of dimension k (respectively, codimension n- k)on X, modulo rational
equivalence, and the corresponding subgroup Ak(X)c CHe(X) of cycles
algebraically equivalent to zero (in the sense of [8]). This work can be seen as
a continuation of [12, Ch. 15] and [13], where the smooth projective case was
studied. According to Deligne [5], [6] the cohomology of X carries a canoni-
cal and functorial mixed Hodge structure (MHS). Using the isomorphism
Hi(X,Q) Hc/(X, Q) v, where Hi(X)is Borel-Moore homology and Hi(x)
is cohomology with compact supports, it follows that Hi(X) carries a dual
MHS. The weights to occurring in Hi(X) satisfy -i < to < 0. There is a
filtration by niveau, N.Hi(X), which induces a corresponding filtration on
W_iHi(X). We will denote this by N.W_iHi(X)(cf. Section 2). Let Hc
lDp, qnp’q be a Hodge structure. We define the level of H as follows"

Level(H) max{lp ql IHp’q =/= O} if H 4= 0

(otherwise Level(H) -). For > 0, one checks that

Level(Nk+lW_2k_lH2k+l( X)) <_ l.

We prove:

(0.1) THEOREM. Let X be quasi-projective, and assume the main standard
Lefschetz conjecture. Suppose Level(Ng+tW_2k_tH2g+t(X)) for some >_
1. Then

non-zero
Ak(X) is

infinite dimensional
ifl=l
ill>2

Received January 20, 1993.
1991 Mathematics Subject Classification. Primary 14 C30.
1partially supported by a grant from the Natural Sciences and Engineering Research Council

of Canada.

(C) 1995 by the Board of Trustees of the University of Illinois
Manufactured in the United States of America

288



A GENERALIZATION OF MUMFORD’S THEOREM, II 289

Next, we define GQN.= Nj./Nj._lo Now under the assumption of the
general Hodge conjecture (GHC), or more precisely, a generalization of the
GHC for singular varieties (Section 2), we can deduce the following:

(0.2) COROLLARY. Let X be quasi-projective, and assume the GHC. If

then

Grk+tN.W_zk_lH2k+t(x) 4: O,

non-zero
Ak(X) is

infinite dimensional
ifl=l
ifl>2

Note that the range of that applies to (0.1) and (0.2) is given by
1 < < n k. We now set A,(X) Dk>oAk(X). As a consequence of
the main theorem, we deduce:

(0.3) COROLLARY. Let X be quasi-projective, and assume the GHC. Then
A, (X) finite dimensional implies Level( i>_oW_iHi(X)) < 1.

(0.4) Remarks. (1) More generally, one can introduce a notion of
Level(A,(X)) (cf. Section 4). One has Level(Ak(X))< 1 if and only if
A(X) is finite dimensional ((1.7)). Then the conclusion of (0.3) generalizes,
namely,

Level(A,(X)) < l= Level( W_iHi(X)) <
i>0

(2) The following examples illustrate the importance of restricting to

Di>oW_iHi(X) as opposed to say i,jGr_iW.Hj(X).

Example 1. Quasi-projective smooth case. Let X c pn be the complement
of a smooth hypersurface Y c pn. Let j: X pn be the inclusion. There is
an exact sequence

_._> Hi(Y ) Hi(Pn) Hi(X) --> Hi_I(Y ) Hi_I(Pn) ....
The weight filtration is given explicitly by

Hi(X) W_(i_l)52) W_i--j*Oi(Pn) D {0},

with

ar_(i_l)W.ni(x ) ker: Hi_I(Y ) Hi_l(Pn).
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Then A,(X)--0; moreover Level(@i>_oW_iHi(X))= O. However
Gr_(n_I)W.H,(X) generally has Hodge level > 2. This is, for example, the
case when dim Y > 2 and deg Y > 5.

Example 2. Singular projective case. Let X--X IO X2
Q p4 be a union

of smooth threefolds meeting transversally. Assume deg X 3 and
deg X2 2. Then Y X X2 Sing(X) is a smooth surface of degree 6
with genus Pg(Y) > 0. One can readily check that i, (A, (X1)) A, (X)
(where i: X X is the inclusion); hence A, (X) is finite dimensional. [Let
us show, for example, i,(AI(X1)) AI(X)(the other cases are easier). Fix a
line X2 and let L be a hyperplane section of Y. Then it is easy to show

rat
that CHI(X2) -Z{/} and hence L 6l (in CHI(X2)). Let sc CHI(X2).
Then rat deg(:)/and hence 6scra deg(sC)L. We conclude, by divisibility, that
AI(X)- 6AI(X) i,(AI(X1)), and hence i,(AI(X1))= AI(X).] If we con-
sider the M- V sequence

Hi(Y) Hi(X1) + Hi(X:z ) Hi(X) --+ Hi_I(Y )

Hi_l(Xl) Hi_l(X2) ---+

then the weight filtration on Hi(X) is given by

Hi(X) Wi_I)Hi(X) D W_iHi(X) Im(a) D {0}

where

Gr_<i_l)W.Hi( X) ker/3: Hi_I(Y ) --+ Hi_( X1) + Hi_l( X2).

For 3, Level(Gr_2W.H3(X)) 2, whereas Level()i>_0W_iHi(X)) < 1.
The results in (0.1), (0.2) and (0.3) remain valid if X is replaced by any

separated, integral algebraic scheme over C (see Section 4). In this direction,
we ask the following:

(0.5) Question. Let X be a separated, reduced algebraic scheme over C.
Is it the case that Level(A,(X)) < if and only if Level()i>__oW_ini(s)) .
l?

I. Some preliminary results

All varieties in this paper will be assumed quasi-projective and defined
over the complex numbers. We will not assume our varieties are irreducible.
Countable unions of projective subvarieties of some Pu are abbreviated
c-closed (el. [18], [19]). All homology will be Borel-Moore, and with Q-coef-
ficients.
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(1.1) DEFINITION. Let X be a variety, and G a subgroup OfAk(X). We say
that Ak(X)/G is finite dimensional, if there exist a smooth (possibly reducible)
projective curve F and cycle z CHk+ I(F X) such that the homomorphism

, Ao( r)
A (X)

induced by F z CHk(X) (where z is defined in [8, 10.3]), is surjec-
tire.

Let X be quasi-projective, with projective closure X. Also let Y X- X
with inclusion j: Y X. There is a s.e.s.

0 Ak(X) j,(CHk(Y)) -Ak(X) Ak(X) - O.

The following two lemmas are useful.

(1.2) LEMMA. Let V, W be projective varieties and g: All(V) ---) Al2(W) a
cycle induced homomorphism. [The examples we have in mind are those g
arising in the case where V is smooth (as in (1.1) with V F) or where g is
induced from a morphism V W.] If Al2(W)/g(Aq(V)) is countable, then
g(Aq(V)) AIz(W).

Outline of proof. Let Al2(W). By a standard argument (cf. [19], and
using the theory of Chow varieties) there exists an abelian variety B and
homomorphism qt: B A2(W) such that qt(B) sC, ker(qt) is countable,
and xIr-l(g(All(V))) is a countable union of closed subvarieties of B. By
construction, B/W-I(g(All(V))) is countable, and by an argument using
Baire’s theorem, this implies B alr-l(g(All(V))), a fortiori g(All(V)).

(1.3) LEMMA. Let f" V- W be a dominating morphism of projective
varieties. There is an integer N 0 such that N CH, (W) c f, (CH, (V)).

Proof By taking general hyperplane sections of V we can assume
dim V dim W and hence f generically finite to one of degree d say. Choose
non-empty Zariski open sets Uw W and Uv=f-l(Uw) V such that
res(f): Uv Uw is (faithfully) flat. Also set Yv V- Uv, Yw W- Uw,
and consider the following commutative diagram:

CH, (Yv) CH, (V) CH, (UV) ,0

1 1
CH, (Yw) CH, (W) CH, (Uw)- 0
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Then d CH, (Uw) f, f*(CH, (Uw)) c f, (CH, (Uv)) and by induction on
dim W, there is an integer NO 4:0 such that NO CH, (Yw) f, (CH, (Yv)).
Now set N d.No. A simple diagram chase shows that N. CH,(W)c
f, (CH, (V)).

(1.4) COROLLARY. Ak(X) is finite dimensional if and only if
Ak(X)/j , (A(Y)) is finite dimensional.

Proof The implication () is obvious. To show (), we use the fact that
A(X) is finite dimensional iff there is a smooth projective curve F and cycle
z CH/ I(F X) such that the composite

z," A0(F) -, A (X)
A (X) j,

is surjective. It then follows that the corresponding map

z," A0(V) - A (X)
J,(Ak(Y))

has countable cokernel. Now apply (1.2).

(1.5) Remark. It is also the case that

A (X)A (X)
=0 =0.

Ak() J,(CHk(Y)) J,(Ak(Y))

(1.6) COROLLARY.
is surjective.

Given the setting of (1.3). Then f," A, (V) - A, (W)

Proof Use (1.2) and (1.3).

(1.7) COROLLARY. Ak(X) is finite dimensional if and only if there exists
closed algebraic subset Z c X of dimension k + 1 such that the map Ak(X)
CHk(X Z) is zero.

Proof The implication () is clear. The implication () is left to the
reader. (Use (1.2), (1.6) and an argument involving a Poincar6 divisor.)

For the remainder of this section, we will assume that X is a projective
algebraic manifold of dimension n.
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We recall [11] Ja(X), the kth-Lieberman jacobian with (surjective) Abel-
Jacobi map k" Ak(X) Jka(X)" Now set Ja*(X) e >_lJa(X). There is
a corresponding Abel-Jacobi map : A*(X) - Ja*(X).
We set CHe(X)Q CHe(X) (R) Q. We also recall ([10]):

Standard Lefschetz conjecture B(,). Let Lx be the operation of cupping
with the hyperplane class on X relative to a given (or any) embedding of X
in some pU, and recall the isomorphism, for < n, L%-i"
Hi(X,Q) --) HZn-i(X, Q) (hard Lefschetz). Then the inverse to Lnx-i is
algebraic.

Coniveau ("arithmetic") filtration on H*(X,Q). {NPH*(X,Q)}p>_o c
H*(X, Q) is given by either of the two equivalent formulations below.

(1) NPHt(X, Q) U{ker: Ht(X, Q) - Ht(X Y, Q)IY c X closed,
codimx Y > p}.

(2) NPH(X, Q) U{Gysin images r," nl-2q(, Q) - Hi(X, Q)IY c X
closed, codimx Y q > p and Y desing()}.

The Q Hodge filtration on H*(X, Q).
Hodge structure in

FHt(X,Q) is the maximal sub-

FPH(X, C) N HI(x, Q) HI-P,P(X) Hp, I-p(x)} f3 HI(x, Q).

The following inclusion is well known: N*H*(X, Q)c FH*(X, Q), and
the conjectured equality is the celebrated (Grothendieck amended) General
Hodge Conjecture (GHC).
The main theorem (0.1) generalizes earlier results for the smooth projec-

tive case (over C). In this case W_iHi(X)= Hi(X). For example, there are
these cases:

(i) 1, A(X) An_k(S). By Poincar6 duality,

in-k + 1U2<n-k>+ 1(X) N-1H2k-1( X),

and hence Nn_k+lH2(n_k)+l(X) (R)QR Lie algebra to Ja(X). Therefore

Level(Nn_k+lH2(n_k)+l(X)) 1 Ja(X) * 0

=0 A:( X) * O.

(ii) Ao(X). We have

weakLefschetz
Level(N,Ht(X)) l, r, Level(Ht(X)) H’l(x) =/= O;
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moreover Ao(X) is infinite dimensional if > 2 and non-zero if 1. Thus
we recover Roitman’s generalization of Mumford’s results (cf. [18] and [15])
for rational equivalence.

(iii) The results of [12, (15.34)] are recovered. Namely, under the assump-
tion of B(.), and if X is smooth and projective, then

LeveI(Nk-IH2k-t(X)) = Ak(x) is{ 4:0
infinite dimensional

if/= 1
if/>2"

Under the assumption of the GHC, Level(Nk-tH2k-l(x))= can be re-
placed by Grk-tN. H2k-t(X) 4: O.

In the smooth projective case, (0.3) and (0.5) can be sharpened as follows"

(1.8) COROLLARY [12, (15.48)]. Assume the GHC. Then

A*(X) ", Ja* (X) =* Level(H*(X)) < 1

(1.9) Conjecture [12, (15.49)].

A*(X) ", Ja* (X) Level(H*(X)) < 1.

For some evidence in support of this conjecture, see [14]. From a philo-
sophical perspective, we expect the following. Referring to (0.2) applied to
Ak(x) =An_k(X) the vector spaces Grn_k+lN.W_2(n_k)_ln2(n_k)+l(S)
are defined in terms of suitable graded pieces ([pure] niveau) of the niveau
filtration; moreover the range of is {0,..., k}. In the smooth case, one
expects a decreasing [functorial] filtration involving k steps:

CHk( X) FCHk(X) 23 Ak( X) FICHk( X)
23 {ker k" Ak(x) ---> Jk(x)}
F2CHk( X) 23 23 FkCHk( X) 23 {0},

such that Grk-tN. H2k-l(x) influences the/th graded piece

FtCHk(X)Gr’CHk(X) F’+’CHk(X)

to some degree. A more thorough discussion along these lines appears in [12,
Ch. 15]. We refer the reader to [21], [20], and [16], [17] for some recent
developments in this direction.
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We remark in passing that it is easy to see how one may define filtrations
on Chow groups in the quasi-projective case, given a filtration in the projec-
tive smooth case. For example:

(a) X singular, projective with desingularization A" X--* X. Then

def
AFICHk ( X)Q , FICHk (2)Q

(b) X projective, j’: U X quasi-projective (where U X). Then

FICHk ( U)Qdefj*FICHk ( X)o

(where FICHk(X)Q is defined using (a)).

One should check that these filtrations are independent of respective choices
of and X (i.e., are well defined) and that this should follow from
functoriality of the filtrations in the smooth case.

2. Filtration by niveau and the GHC for singular varieties

Let X be a quasi-p.rojective variety and X a projective closure of X, with
desingularization A" X & X. Also let j: X X be the inclusion.
We recall (cf. [3]) the filtration by niveau"

NkH (X) ImagesH (W) --. H ( X)I W c X is closed algebraic,

of dimension < k}.

The mixed Hodge structure on Hi(X) gives us a filtration {F-IHi(X)}
inducing a Hodge filtration

(F-IW_iHi(X) de=f{F-%(X)} N {W_iHi(X)} }
of weight -i. We denote by FlW_ini(s) the maximal Q subHodge
structure of F-lW_ini(s). We also set

NkW_iHi( X) (NkHi( X) ( (W_iHi( X) },

and prove:

(2.1) PROPOSITION. (i) NkW_iHi(X)_. j* A, (NkHi(X)).
(ii) FIW_iH(X) j* A, (F*Hi()).
(iii) Level(NkW_iH(X)) < 2k i.



296 JAMES D. LEWIS

Proof By an argument involving weights, it follows that j*o A," Hi(X)
W_iHi(X) is surjective [9, Lemmas 7.5, 7.6]. Let Y c X be a closed

algebraic subset of dimension k, and choose a closed subset I7 c " such that
j-I(A(I))- Y. Let _- I7 be a desingularization. Then the image of the

comp.osite Hi() W_iHi(") Hi() is the same as the image Hi(’)
Hi() [5, (8.2.7)], and hence agrees with the image W_iHi(")- Hi().
Next, from the exact sequence

W_iHi(Y ) - W_iHi(X) --) W_iHi(X- Y) -- 0 W_iHi_l(Y),

we deduce that

NW_H(X) {images W_iHi(Y ) - W_iHi(X)lY c X and dim Y < k},

and therefore this agrees with j*o A, (N,Hi(X)). This proves (i).
Part (ii) follows from the surjection j* A," Hi(X) - W_iHi(X) of Hodge

structures together with semi-simplicity of Hodge structures over Q.
Part (iii) follows immediately from (i) and (ii), the fact that

and Poincar6 duality.
Now under the Poincar6 duality (PD) isomorphism

corresponds to

Corresponding to this is the isomorphism

(2.2) COROLLARY.
GHC holds.

NkW_ini(x) c FkW_ini(x) with equality if the

Proof There is a commutative diagram

PD j*oA,
Nn-kH2n-i() NkHi() ,,, NkW_iHi(X)

PD j*o A,
F-kH2n-i() FkHi() FkW_iHi(X).
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By (2.1), the horizontal arrows are surjective, and the first two (from the
left) of the vertical arows (inclusions) are surjective by the GHC. We deduce
that the last vertical arrow is surjective as well.

(2.3) Remarks. (i) By an argument using Chow’s lemma (cf. [9, 7.9]),
Corollary (2.2) remains true for X a separated, reduced algebraic scheme
over C.

(ii) A generalization of the GHC for arbitrary varieties (separated, reduced
algebraic schemes over C) then takes the following form (compare with
[9, 7.21).

(2.4) Conjecture (GHC for singular varieties). The inclusion

NkW_iHi( X) c FkW_iHi( X)

is an equality.

3. The main theorem

We assume B(, ) throughout the rest of this paper.

(3.1) THEOREM. Suppose Level(Nk+lW_2k_lH2k+l(X)) l. Then

non-zero
Ak(X) is

infinite dimensional
ifl=l
ill>2

Proof The approach we will take is inspired by the ideas in [15] and [18],
[19]. Another approach would be along the line of reasoning in [1], and we
will have more to say about this in Section 4.

Let X be a projective clgsure of X, with desingularization A" X X and
Y X X. Choose Y c X dominating Y and corresponding commutative
diagram

Ay A
q j

Y "->XX,

where q,,j are the respective inclusions. Recall that if Ak(X) is finite
dimensional then A(X)/A(Y) is finite dimensional ((1.4)). There is an

algebraic subset 0 X of pure dimension k + and a (possibly reducible)
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desingularization r: --% E0 such that the composite

j*o A,o/Z, tr," H2k+/() ---+ Nk+lW_2k_lH2k+l(x)

is surjective. By taking k general hyperplane sections of and applying
Bertini’s theorem, we arrive at a smooth (and possibly reducible) projective
algebraic submanifold J0" S of pure dimension such that j" Ht()
Hi(s) is injective. According to B(,), the surjective left inverse (j,)-L
Ht(S) Ht(,) is algebraic (i.e., algebraic cycle ind.uced), a fortiori via
Poincar6 duality, the composite Hi(S) --+ Nk/tH2k/t(X) is algebraic and say

induced by an algebraic cycle w CHe+t(S X) (R) Q. B.y taking a suitable
integral multiple of w, we may assume w CH+t(S X). We deduce that
there exists S of dimension and w as above such that j*oA, ow,.
Ht(S) Nk+tW_2k_lH2k+l(S) is surjective.
Now assume to the contrary that A(X) is finite dimensional if
> 2 or zero.if 1. Using (1.6), there exists a smooth curve F, a cycle sc

CHe+ I(F X) such that

By working with each irreducible component, it will easily follow from the
proof that one can assume for simplicity that S is connected. Fix a point
so S and consider the corresponding map Aw: S -+ Ak(X) given by s
a, {w, (s) w, (s0)}. Based on some standard Chow variety and "c-closed"
arguments in [18], [19] (also, cf. [22]), it is easy to show that there exists a
smooth variety T of dimension r say, and a cycle induced map u,:
T "-’+.,Ak(’) (for some v CHr+k(T1 X l)) for which Aw(S) c
A, 4, v,(T1) + A, ,Ao(F). Again one can argue, as in [181, [19] (cf.
[221), that

def (( Aw(S)mod A,o Ao(r)}No= s,t) S TllA , 4, ov,(t)rat

is c-closed.
By our construction, there exists a subvariety c Vo such that Pr1" E -- S

is a surjective, generically finite to one map of degree d say. Note that E
defines a corresponding cycle E CHt(S T1) and that A, 4, v,
E, =d.A, ow, modh, osC,A0(F)on Ao(S). Now set w=4ouoE-d.
w. Then Im(h, w, ) is finite dimensional.
We first assume > 2, and let B A0(F) be the corresponding abelian

variety with homomorphism ," B Ak(X) satisfying h, w, (Ao(S)) c
h, (sc , (B)). The subset

V= {(s,q) S Bla, off,(s So) a, sC:,(q)}
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is c-closed; moreover by definition of B, one can find a subvariety c V of
dimension (which we can presume smooth, after passing to a desingulariz.a-
tion), dominating S, such that A,o (,(A0()) 0, where
is the. cycle given .by the pullback of Pr3(:)- Pr]3(w) under the .map.- S B .. Since :,(B) is supported on a subvariety in . of
dimension .k + 1, we conclude that the image Hzk+t(l,(B)[)
Nk+lHzk+l(X) has level < 2 l,.which is less that for > 2. We conclude
that the level of Ht() in Hzk+l() is the same as that for Hi(S).
We have shown, that without modifying the Hodge level properties of w,"

Hi(S) -- HZk+I(X), one can assume that h, w," Ao(S) Ak(X) is zero.
Now we assume > 1 with h, w," Ao(S) - Ae(X) zero. Then by replac-
ing w by w {S w, (So)}, we can further assume that
CHg(X) is zero. Let Ck(--) represent the Chow variety of effective cycles of
dimension k, and Cg(-)d C Cg(-) the subset of those cycles of degree d. By
moving (via rational equivalence) the irreducible components of w in general
position (Chow’s= moving=lemma), we can assume w defines a rational map

{w}:=S C(_.X) Ce(X), which restricts to a regular map (f,g): SO

C(X) Cg(X) on some non-empty open subset So S. Likewise, we can
assume (by possibly shrinking So if necessary), that the corresponding
map(A, f, A, g): So _Cg(X) Cg(X) is also defined and regular. Using
(only) the projectivity of X, together with similar arguments to those in [18],
[19] and [22], one can show that there exists a smooth quasi-projective variety
To a dominant morphism e" T0--*So and a morphism H: plT0
Ck(X)dl Ck(X)d2 such that

A,o fo e + (PrlO H[ooTo) + (Pr2 HIoTo)

** goe + (p/-1 HIOTo) + (Pr2o HlooTo)

where_ "+" denotes the sum on the Chow variety: Ck(X)dl Ck(X)d2--
Ck(X)dl+d2"_.

Let T- To be a non-singular projective closure of T0, with inclusion map

v0: TO T. Note that H defines a cycle in CHn-k(P TO ) (cf. [22,
(1.3)]), and by taking closures, a corresponding cycle E/4 CHn-e(P T
). Likewise, there are cycles Ef, g -CHn-k(s .,) corresponding to
f, g. Note that /4 PrlO/4 Epr2o/4, where ’Pr 14

is the cycle associated to Prj H. Now /4 deines a cylinder map" on
homology, /4,," Ht(P T) Hzk+l(). To see this, and quite generally,
we consider the following setting. Let W be a smooth projective variety of
dimension m, Z projective, and assume given a cycle z CHa(W Z).
Then z determines a corresponding homology class cl(z) Hza(W Z). By
the Kfinneth formula applied toHza(W Z), together with the intersection
pairing on H, (W) (using W smooth, projective), the component of cl(z) in
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H2m_.(W) (R) H2a_2m+.(Z) determines a cylinder homomorphism z," H.(W)
"-) H2a_2m+.(Z). Applying these considerations to /_/, we obtained the
aforementioned cylinder homomorphism /_/,,. Now let

io" To O X To ,-+ P1X To, i. To= X To ,-+ P X To

be respective inclusions. On singular homology, we clearly have

a,o .f,,o e, -- PrloH, o(1 o) ,o ion,, - pr H,, o(1 X Vo) ,o io,,

oe +E oU,.(1 Vo) ,oio,l, Og,, , pr

-1- Pr2oH,, o(1 Uo), ion,,

Using the results in [5, 6], one can easily show that the dual map

is a morphism of mixed Hodge structures. Hence there is an induced map

[/-/1"" Gr2k+lW.H2k+l() _+ H/(p1 T).

Applying Hodge theory, we end up with the commutative diagram:

{Gr2k+lw.H2k+l()}k+l,k [XH]* O(p1..., Hl’ X T)

pr,(r H,O(r

(i i*)o(1 Vo)*

H,O(ro).

We conclude that on {Gr21+tW.H21+t()}l+t’l,

and since e is dominating, we arrive at

Iwl*oa* 0

Translating this in terms of (Borel-Moore) homology, we deduce that
level(a, w,(Ht(S))) < 2 < (in Nk+lW_2k_lH2k+l(X)).
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Now recall d w, 4, v, 2;, w,. From the commutative diagram

Ay,.
/-/(s)

oy, , o4, ,

H2k+l(Y)
q* j*

H2k+l(X) n2k+l(X)

we deduce that
contradiction.

level(j* w, (Ht(S)) level(Nk+tW_2g_iH2g+t(X)) < l,

4. Concluding remarks

(1) It is possible to give another proof of (3.1), along the line of reasoning
in [1], based on an argument in [23]. To be specific, and referring to the
notation in (3.1), we have that the image of Ag(X) in CH(X-
{Y t3 IA, so, (B)I}) is zero. As in the proof of (3.1), one first reduces to the
case where S is irreducible, with a choice of embedding k(S) c C, where S
can be viewed as defined over a subfield k c C of finite transcendence

degree over Q. Then one would show that N. (1 A), (w)rat F1 + F2 + 1_.3
in CHk/I(S X), where N > 0 is some integer and

(i) I" is supported on D X for some divisor D
(ii) F2 is supported on S Y, and
(iii) I"3 is supported on S A, s, (B)I.

Rather than give a precise proof, we comment that by a careful inspection
of the proof of (3.1) in Section 3, and under the assumption of the GHC for
S, one can arrive at the decomposition

N" (1 A),(w)hmF + F2 + r
in H2(+t)(S .,), where N (deg: S) (d deg Pr1" , S), (see
proof of (3.1)).

Let us now assume the decomposition N. (1 A),(w)= F + F2 + F3.

We need to show that Level(Nc+lW_2c_tH2e+t(X)) < for 1 in the case
Ak(X) 0, and for > 2 in the case A(X) is finite dimensional. In this
setting, it suffices to compute the level of the image of j*o Fi,,: H(S)--,
H2+(X).

(i) F_I,,. Choo.se F CHc+I(S x X)Q such that (1 A),(F1)_ F and
supp(F1) c D X. Then the Kiinneth component of {F1} in Hz(S)(R)
H2e+I(X) maps (via (1 A),) to the Kiinneth component of {F1} in Ht(S) (R)

H21+I(X). Therefore, for , Hi(S) F1, ,(’y) A, F1 ,(T). Now let
D--, D be a desingularization and let u" D S be the composite, with
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corresponding f=(v 1): /S. Also choose a cycle
CHk+I(D X)Q such that f,(F1) F1. We now compute

rl, .(7)=h. r,, .(3,) ,.o Pr, .({Pr(7)"
A, gr. ((gr(/) f, (l))s)
A, gr.. f, {(f*o

In particular, F, ." HI(S) H2k+l() factors through , ." HI_2(/)
H2k+l(X). We conclude that Level(j*o F, .(Ht(S)) <_ 2 < 1.

(ii) F2, There is a factorization of F2,. in the diagram below (where the
column is part of the exact sequence of Borel-Moore homology):

H2k+I(Y)

F2,
(s ---,

H2+I(X)

It easily follows that j*o F2 ,. HI(S) --) H2k+I(X) is zero.
(iii) F3, Let Z [h, :, (B)[, and recall dim Z k + 1. Our assump-

tion that Ak(X) is finite dimensional implies that Z is the projective closure
of a closed algebraic subset Z c X (cf. (1.7)). Using mixed Hodge structures,
there is a commutative diagram below:

HI(S) W_lHl(S) W_2k_IH2k+l(l)

W-2k-lH2k+l(X)

W__H/(X).

Let o-" : Z be a desingularization, and recall that , H2k+I(..Z)
W_z&_lH2&+l() is surjective. By Poincar6 duality, Hzk+l() H2-/(), we
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deduce that Level(H2k+t(Z))< 2- I. It then follows from the above dia-
gram that Level(j* F3, ,(Hi(S)) < 2 in W_2k_lH2k+l(X), afortiori <
if > 2. In the case 1, our assumption is that Ak(X) 0, hence Z 0
and F3 =0.

(2) The argument in (1) above generalizes as follows. We introduce
(compare with [23, Def. 1.1], [20, Def. (0-6)]

Level(Ak(X)) min{rl=! a closed algebraic Z c X,

dim Z k + r, such that A (X) --> CH(X Z) is zero}

(Note the range, 0 < Level(A(X)) < dim X- k.)Then

Level(N+lW_2k_tH2+l(X)) Level(Ak(X)) > 1.

(3) Using (1) above and Chow’s lemma for complete varieties, one can
show that X in (3.1) can be replaced by a separated, integral algebraic
scheme over C. To be specific, X can be embedded as an open subset of a
complete variety X; moreover by C.how’s lemma, X can be b.irationally
dominated by a projective variety X. The cycle w CH(S x X) is con-
structed in the same way as before, using the hypothesis B(,).

(4) Example application of (3.1). We will refer to the notation in the proof
of (3.1). Let X be any quasi-projective variety. Instead of.assuming the
hypothesis B(,), we will more specifically assume that B(X) holds (e.g.,
X a complete intersection or an abelian variety). Also choose and k such
that k + n. According to the proof of (3.1), we deduce that if
Level(W_n_kHn+k(X)) n k, then

[

Ag(X) is non-zero
infinite dimensional

ifn-k=l
if n-k>2"

(5) Let X be quasi-projective, with projective closure X, and let Y X-
X. Define

CH,(-) @ CHk(-)andW_,H,+m(- ) @ W_iHi+m(- )
k>O i>O

There is the following schema below (with exact rows):

--)W_. H. +re(X) W_. H. + l(X) W_. H, (Y) W_. H. (X) W_. H.(X) 0

CH. +re(X, m) CH. + l(X, 1) CH. (Y, O) CH. (X, O) CH. (X, O) 0
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where CHdimZ+m_i(Z,m)de--cHi(Z,m)f
are the higher Chow groups intro-

duced by Bloch ([2]), and where CH, (-, O)= CH, (-). A niiive question
would be to ask whether one can expect a relationship between
W_, H, /m(X) and CH, (X, m) involving an "influence" of graded pieces, as
a generalization of the case m 0.
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