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GROWTH OF THE BERGMAN KERNEL
ON PLANAR REGIONS

JOHN E. MCCARTHY AND LIMING YANG

Statement of results

Let Q be a bounded open set in the complex plane. The Bergman space L2 ()
is the Hilbert space of holomorphic functions on 2 that are square-integrable with
respect to area measure A. Evaluation at each point A of 2 is continuous, so there is
a corresponding kernel function k; in Lf (£2) such that

/Q f@kr)dAR) = f(A)

for every function f in L2 (2). In this paper, we are interested in estimating the
growth of ||k,|| as A tends to the boundary of 2.

If Q is smoothly bounded, ||k || will grow like the reciprocal of the distance to
the boundary; but if the boundary point is somehow “buried” deep inside €2, the
growth of ||k.|| can be slower (to aid the reader’s intuition: the phenomenon is not
caused by cusps, which cause the complement to be too thick, but by little holes
accumulating at some point). In [M°CY] the authors found geometric conditions for
|lkx]l to remain bounded as a boundary point is approached (so that evaluation at this
boundary point is abounded point evaluation) for certainspecial domains (L -regions).
Also, using results of Fernstrom and Polking [FP], necessary and sufficientconditions
were found, in terms of Bessel capacity, for a boundary point of an arbitrary domain
to be a bounded point evaluation. We extend this last result to estimating the growth
of ||k» ]| when it does not remain bounded.

Let Ae,r be the sector in the left half-plane bounded by y = xtan®, y =
—x tan ©, and x? 4+ y? = I'2. We shall always assume that O is in the boundary of Q
and is the point of interest, and that for some ® in (0, 1'2-) and some I" > 0,

Ao C Q.

We shall look at the growth rate of ||k, || as A tends to 0 along the negative real axis.
Let G (x, y) be the Bessel kernel, which is most easily defined as the inverse Fourier
transform of (1 4+ x> + y*)~%. For each set E in C, the Bessel capacity is defined as

c®) = inf f \f (e, )P dxdy
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142 JOHN E. M®CARTHY AND LIMING YANG
where f € L2R?), f >0, and [ G(t— x,5 — y) f(t,s) dtds > 1for (x,y) € E.
Let Ay = {z=x+iy : 2% < |z <27} and A} ={z : 27%2 < |g| <27%H1},

Our results are the following:

THEOREM 1. Suppose
o0
Z kC(A\R) < oo.
k=1

Then there are constants F, and F, so that, as . — 07, k;, satisfies the growth
condition

o0
F 222 min(k1ogz 51) C( A\ Q2):
k=1

llkall®

IA

)
F, Z 22 min(k,log, ﬁ)C(Ak\Q) .
k=1

llex 1

v

COROLLARY 2. Let0 < o < 1. A necessary and sufficient condition for ||k || to
be O(|A|™%) as . — 0~ is that

lim sup 2%~ C (A, \ Q) < 0.

k—00

Our techniques also work for the Bergman space L2 () for2 < p < oo. Letting
q= ;{—l be the conjugate index of p, define the g-capacity by

C,(E) =inf [ 1 Gyl dxdy

where f € LY(R?), f >0, and [ G(t —x,s — y)f(t,s) dtds > 1for (x,y) € E
(so our previous definition of capacity is C,, though we shall continue to write it as
C with no subscript).

THEOREM 3. Suppose 2 < p < 00, and

Z 24D (A \ Q) < c0.

k— 00

Then as . — 0, the norm of the functional of evaluation at ) in the Bergman space
LP () is comparable to

00 . ! '
Z 2 min( log, |';:|)Cq A\ | .
k=1
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We note that a disk A of radius § has
1\7!
C(A) ~ [log (5)]

Cq(A) ~ 8279,

so it is easy to construct examples of regions of the form (0, 1) \ Uy2 DQ27", )
that have kernels growing at a desired rate.

and, for g < 2,

Proofs

We shall let F' denote a generic constant, that may change from one line to the
next. We shall let K, = {z : dist(z, K) < ¢}.

LEMMA 4. (a) For each Borel set E,
C(E) = inf C(U)
ECU
where U ranges over the open sets.
(b) For any Borel sets E1 and E,
C(E|U Ey)) <C(E)) +C(Ey).

Proof. See [Me]. 0O

LEMMA 5. Let K be a compact subset of C. Suppose that
limsup kC(A;\K) = 0.

Then there exists a constant M > 0 such that, for each e > 0and eachk > 0, there
is a function Y, € C™ satisfying

() Y (2) = 1for z in aneighborhood of A}\K,,
(i) flz|52"‘+' Pyl2dA < M - C(A\K),
(i) fyzpen Wil2dA < M- 27%C(A}\K).

Proof. The proof follows from the proof of Lemma 10 in [FP]. Their hypotheses
are much stronger—namely that 3_ 2% C (Ax\K) < co—but their proof works in our
special case provided just kC (Ax\K) tends to zero. To use their proof, we only have
to show that there exists ko such thatif k > ko then

G(x —t,y—s5)g(t,s) dt ds <-;- @

/;/,2.,_3.2 S0 —k+2
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for x2 4+ y? < 272k3 where g; is defined as in their proof. We have
1

2
G(x—t,y —s5)gl(t,s) dids < U G(,s)* dtds} gl
V1252

52>2 %

v/; /12 452>2-k+2

1 2
< £ (log55) cappl @

where the second inequality follows from Lemma 4 in [FP] and the fact that || g; || <
2[C(A\K)] 3. As the expression in (2) tends to 0, we get (1) as desired. O

For a positive Borel measure i, let

U*(2) =/ lz—w|™ du(w)

and

c(E,V) =sup u(E)
"

where the supremum is taken over all positive Borel measures with sptu € E such
that

f [U*(2)|* dA < 1.
\4

(Throughout the paper, V will be a fixed bounded open set containing 2 or K. Itis
only necessary tointroduce itas U #|? is notintegrable in a neighborhood of infinity.)

LEMMA 6. Let E be a Borel set. Then
C(E)? <c(E, V) < FC(E)?.

(For a discussion of why this is true, and for other equivalent notions of analytic
2-capacities, see [He].)
The next lemma is the key to proving the upper bound estimate.

LEMMA 7. Let K be a compact subset of C,0 € 0K, and Ag r S K for some

0 <® < 7 andT > 0. Suppose that

limsupkC (A \K) =0.

k—00

Then there is a constant M such that for each rational function r with poles off K ,
andeach L inRN Aer,

b oo :
Ir(A)IsM-( f i dA) (Zf““"""%”'ﬂ’C(Ak\K)) .
K

k=1
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Proof. Without loss of generality, we can assume K is contained in the disk
D, %), andso I' < ;. It follows from Lemma 4 that

lim sup kC(A;\K) < oo.

k— 00

Construct a smooth function ¢ € C :"(]Rl) such that

0 ifzefz:lzl =2orlz| <)
=11 ifze{z:1<lz <1}N(Ae,1)
0 ifZGA%yl

For each integer k set

e(2kz)/ Z e 009 (2/2) if (27 7) # 0 for some j
w(2) =
0 else.

Fix a rational function r with poles off K. Let g be a smooth function which is 1 in
a neighborhood of K, zeroin a neighborhood of the poles of r and zero off ID(0, 1).
Let A be between —I" and 0. From Green’s theorem,

= — —3 dA
r) [D(O’ by 70 ) 440,

Let & be small enough for K , tobe contained in the set where g is 1. Then 3 (gr) =
on K,. Let ¥ be as in Lemma 5; then }_ ¥, ¢, =1 near D\K,, because if z is in
Ay, ¢j(2) is non-zero only for j = k —1, k, k + 1, and ;(z) = 1 for these values of
Jj. Therefore

) 1 1 0 _
o) = — f T D e (o) d

1 1 -
== 5 .gr dA.
- Z[MAQJ —50 Wiww) - gr

Hence,

€)

|r(x)|<FZf\

Let 2=V < A <—-2"N-landz € A\\Agr. Ifk > N, then

1 1
<F.—:;
z—Al = 2N
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if k < N, then

1 1
<F.—.
lz—A] © 2k

Therefore (3) gives

1

N-1 _ i i
FY 2 ( 13 (Vo) |® dA) ( lerI? dA)
k=1 A Ay
00 1 i
+F Y 2N (/ 0¥ ? dA) (/ lgr? dA)
k=N Ax A

Fligrl o (Z 2% / 13(Yrpr)? d A+ Z 22N f 13(Yrpr)l? dA)

Using Lemma 5 and the fact that |d¢x| < F - 2%, we have

Ir (2]

IA

IA

|d(Wkpr)|* dA < F - C(AL\K).
Ak

Hence,
1

N—-1 00
Ir(W1 < Fligrl:m, (222"C<A;<\K)+ 222NC<AL\K>)

k=1 k=N
Since g is arbitrary, subject to being 1 on K, we conclude that

L

o0 2
rA)| < M (222"‘"“’“logz 7 C( A \K)) 7Nz, a)-

k=1
Proof of Theorem 1. (Upper Bound) Suppose that
limsup kC(Ax\R2) =0

k— 00

so by Lemma 4 (b),
limsup kC (Ax\Q) =

k—00

Using Lemma 4 (a), we can find open subsets U, such that
Ak\ﬂ C U

and
C(Uy) <2C(A\Q).
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Let Ky = Ay \ Ug, and K = U2 K; U{0}. Then K is a compact subset,

limsup kC(A\K) =0,

k=00
and
KNA, CQNA,
)
K\{0} c Q.

Let f € Lf, (£2) be analytic in a neighborhood of zero. By Runge’s theorem, there
exists a sequence of rational functions r, converging to f uniformly on K; so by
Lemma 7 we have

. 1 % 1
|f()»)| <M (ZI(:O=1 22mm(k,logz m)C(Ak \ K)) (fK |f|2 dA)2

1 b |
M (T2 2 a0 @) (oI da) . @

IA

Since such functions f are dense in L‘z, (R2) (see [Al]), (4) holds for all f in Lﬁ (Q).
Therefore, for A € RN Ae,r,

1
00

2
el = sup |f(x)|sM(Zzzm‘"“JW'HC(Ak\sz)) .

iz =1 =1

(Lower Bound) By Lemma 6, we can choose positive measures u; carried by
Ap \ © with

f Ut2)> dA <1,
Q

and ||u|| comparable to C(Ax \ 2)7. Moreover, we can assume that each of the
measures px has support entirely within one of the three sectors {z : —m + % <
ag () <—%} z:-F<ag @ <3} (z: F<ag@ <7 -3}

Let

Ve = 2min(k log ﬁ)C(Ak \ Q).

For some conjugacy class modulo 3, the sum of sz for k in this conjugacy class is
comparable to Y po ykz. We shall choose only those . for k in this conjugacy class,
and set the other u«’s to zero (the point of this is to ensure the supports are well
separated).

Let

fid) = f i)

—w
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be the Cauchy transform of p,. Let us fix some A between —T" and 0, and let N be
the closest integer to log, ﬁ By the way we have chosen the measures, | f;(1)| is

comparable to 2¥ ||, || for k < N andto 2/ ||, || for k > N; For k = N, we can only
say that it dominates 2V || us||. Thus, for all k, we have

I feM) = F ¥ 6)

We also have fsz | fx|*d A < 1, and the estimate

[fa @] < llptn || [ distz, An)]™"

gives, for |n — k| > 2,

|f.l2dA < FC(A, \ Q)22minth—2k ©
Ay

2

Let f = ) o fu, Where we shall choose the o’s later. We have
Z anfn + ok fi

00
IfPda = f

];z ; ANQ | |n—k|>2
00 00

2 Z[ Iakfklsz+Z/
k=1 ANQ k=1 A

Now, by the inequalities of Minkowski and Cauchy-Schwartz,

2 192
2 2
[ . dA ankljzzlaﬂ( [ a4) ]

o |2 |fn|2dA>. 10
(m—Xkl:zz ) ) (ln;|z2'/;km

Using this and inequality (6), we get

/ |f|2 dA<F (Zlanlz) (1 + Z C(An\ Q) 22min(n )2y
Q

n,k:jn—k|>2

dA

2

IA

dA

Z Olnfn

kN2 ||n—k|>2

anfn

In—k|=2

IA

IA

But this last factor is dominated by

inC(An\Q)
n=1
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which is finite by hypothesis. So we finally get

[1rPansF(Claf). ®

Now choose o, so that |o;| = ¥, and so that o f; () > 0. By inequalities (5) and
(8), we have

FOE (C laln)? .
F =F .
TlfPda =" T lwl L%

So (352, A} is a lower bound for k;, as desired. I

Proof of Corollary 2.  (Sufficiency) If
lim sup2?*=9C (4 \ Q) < 00
k—o00

then the hypotheses of Theorem 1 are satisfied. Using the estimate on ||k, | from
Theorem 1, together with the hypothesis that C(A; \ Q) < F2-%U-%)_one gets that
[A|*]|k, || stays bounded.
(Necessity) Let f; be as in the proof of Theorem 1. Then
[ fx ()
Il fell
k

Letting A = —27", we get

> F minklog, T{'I)C(Ak \ Q)%

M llkall = F2X0-C(Ax \ )2,
and the right-hand side must remain bounded, as desired. 0O

Proof of Theorem 3. This proceeds like the proof of Theorem 1, with appropriate
modifications to Lemmata 5, 6 and 7 (in the proof of Lemma 5 the hypothesis that

lim 2¢*9C (A, \ Q) =0
k— 00

is used, and this is a sufficient condition for the upper bound to hold).

For the lower bound, thereis one extra difficulty in getting the appropriate analogue
of (7)—if one follows routinely, one gets Y_ ||? instead of Y |«|?. To get around
this, note that (6) becomes

P . p min(n,k)— 2% ,
A |fulPdA < F Cj(A,\ Q)2 . (6)
K

Then (7) becomes

-/,;kﬂﬂ Z anf"

In—k|=2

2

p N
dA < |an|? [ |,,|PdA]p> )
(In;m * ) (p,_zkm /A,,rm f
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Using (6'), we get

00 P 0
3 D ICRARTED N I
k=1 YA |1n"k|>2 k=1 \|n—k|>2
£
. %, \’
x [ 3 cy(a, -k
In—k|=2
S Al ) D01 DD Cha,@emnem ik
n=1 k=1 \|ln—k|>2

Now interchanging the order of summation and using the hypothesis of the theorem,
(and the estimate | arq o fnlP dA < |a,|P ) we finally get

Lisraas<r(Tir).

. L
Choosing |ax| = y¢~', where y = 2™™*°% i) Cf (A4 \ ), yields the desired lower
bound. 0O
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