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TRANSFERENCE OF MULTILINEAR OPERATORS

LOUKAS GRAFAKOS AND GUIDO WEISS

O. Introduction and statement of results

Fix an integer k > 2. Let G be an amenable group and (M, d/z) a measure space.
For 0 < j < k, let 0 < pj < o, and assume that P0 P is given by

re_t_...+
Po Pl Pk

Assume that for any0 < j < k and any u G, Ruj is a bounded map from
the Banach space LpJ (M) into itself. We denote by IIR Ilop the operator norm of

R" Lpj (M) Lp (M). We say that R is st.rongly continuous if for any sequence
Un -- u in the topology of G, we have IIRju. R Ilop 0. We call the family

k(R., R. R.).ea a transference (k + 1)-tuple if the following are true"

(0.)

(0.2)

(0.3)

For 0 < j < k, the maps u -- Ruj are strongly continuous.

sup{llRullop, u G} Cj < , for0 < j < k.

RRJuf RJouf, for all u, v G, < j < k, and all f 79,

where 79 is some dense subclass of all the spaces Lp (M) and we are implicitly
assuming that the domain ofany Ru includes the ranges ofeach ofthe Roj. [BPW] used
transference couples (k 1) to transfer boundedness properties of convolution and
maximal operators. In this paper, we will use (k / 1)-tuples to transfer boundedness
properties of multilinear operators from amenable groups into measure spaces. The
general maximal transference presented in [BPW] can be extended to the multilinear
setting, but this will not concern us in this paper.
We need to make the additional assumption that each Ru is multiplicative. More

precisely, this means that Ru(fg) (Ruf)(Rug) whenever f, g, and fg belong to
79. This property is clearly satisfied if the Ru’S are given by actions on the points of
M; i.e. for all u G there exist maps Uu: M -- M, such that

(0.4)
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In this paper we shall, in fact, assume that (0.4) holds. In many settings (0.4) is a
consequence of being multiplicative. Moreover, the restriction given by (0.4) is used
explicitly for all the families RJ in the proof of the weak-type transference announced
in Theorem 2. Let . be left Haar measure on G. It is well known that if G is amenable
with respect to left Haar measure ., it is also amenable with respect to right Haar
measure p. The spaces Lpj (G) are defined with respect to left Haar measure ..
Consider the multilinear operator T on the group G defined by

T(gl gk)(V) f K(ul(0.5) Uk gl (u- l)) gk (u- v) d.(U

G

for gj in some dense subspace of Lp (G), where K is a kernel on G which may not
be integrable. For k 1, T is a usual convolution operator but for k > 2 it isn’t. We
transfer the operator T to an operator 2F defined by

(0.6) (f f,)(x)

G

for in D. We have the following:

THEOREM 1. Let T be as in (0.5), where the RJu’s satisfy (0.1), (0.2), (0.3), and
(0.4). Assume that T is a bounded operatorfrom LP’(G) x x LPk(G) -- LP(G)
with bound N. Then T can be extended to a bounded operatorfrom Lp’ (M) x
Lp* (M) Lp (M) with bound no larger than NCoCI Ck.

We denote by LP’(M) the space weak LP(M) with quasinorm

Ilfll. supc [/z ({x M: If(x)l > })]7
or>0

Let us now consider the case where all the RJ’s are given bY actions on points.
That is, for all < j < k and for all u G, there exist maps U" M -- M such that
the representations Rj have the special form

(0.7) (RJuf)(x) f(UJu_,X).
In this case, we replace condition (0.3) by

(0.8) UJuvf UJu oUv f for all j k, all u, v 6 G, and all f 79.

We now have the following:

THEOREM 2. Assume that the RJu ’s satisfy (0.1), (0.2), (0.7), and (0.8). Assume
that T given by (0.5) extends to a bounded operatorfrorn L’’ (G) Lm(G)
LP’(G) with norm N. Then " can be extended to a bounded operator L’ (M)

Lm (M) LP’(M) with a bound no larger than NCoCI Ck.
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Finally, observe that an immediate consequence of (0.3) is

(0.9) RR_, RJ RJ,,
for allu, vGandl <j<k.

I. The proof of Theorem I

We first assume that L support(K) is compact in all variables and that K is
bounded in absolute value by some constant Cr on L. Once the required estimate is
proved for such kernels K, with bounds independent of their support and their size,
a density argument will give the conclusion for all kernels K.

The amenability of G is equivalent to Leptin’s condition: given e > 0 and B a
compact subset of G, there exists an open subset V of G, such that B is compact and

X(B-V) < (1 + e).(V).

For a given > 0 and L support (K), fix such a V. Also fix f fk 6 7). The
multiplicative property of Ro and (0.9) imply

(1.2) (fl fk)(x)

=fK(u, H(R_lujfJ (x)d(ul)...d(uk)

G j=l

for all v in G. By the continuity of R, we can "move" R outside the k-fold integral
in (1.2). Since (f,..., f) is in L?(M), (with bounds that depend on K) and R is
bounded on LP (M) unifoly in v G, the following estimate holds for all v in G:

(1. Ir(fl A(xll .(x

l/Cff f K(u u) R (x)dZ(u)...d(u) d(x).
M
d

G
j=l

Next, we average inequality (1.3) over V and we interchange the order of integration
to the fight hand side of the averaged inequality. We obtain

(1.4) Ir(f A(xl (xl

x(v) j=M V

dX(v)d(x).
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We denote by XA the characteristic function of the set A. Observe that we can replace

(R_,uf])(x) by hj(ufll),x) in (1.4), where hj(w,x) (RJw_,fj)(x)X.L-,v(W-1).
Clearly hj(., x) Lp (G) for all x M. By the boundedness of T from Lp (G)

x Lp (G) -- Lp (G), we deduce the estimate

CNP f]7(fl f)(x)] p dlz(x) <
(v) N I]hj(., x)l[ pLei(G)d#(x).

M M j=l

At this point, we apply H61der’s inequality with exponents

-t-...+
PI/P P/P

to the right hand side of (1.5). We first assume that all pj < cx for all j. We have

(1.6) I(fl f) (x)I p dlz(x)
M

II(Ry f)(X)XL-,VIILP’j() dlz(x)
j=l M

Interchanging the order of integration in (1.6), we obtain

< N, 1-I=0 Cff Ifjgl p’ dlzduX(V) = ,
k .. k

N, I-I .o c; I-I v)., I-I II ,. llf:,;(V) = =
k k

_< (I + e)Np Hq [[[[’;s’
j=0 j=l

by Leptin’s condition (1.1). Since ( > 0 was arbitrary, the required conclusion
follows. If some of the pj’s, but not all of them, are equal to o, factor out all the L
norms from the second integral in (1.5) and since 1/p is the sum of the remaining
1/pj’s, we can apply Htlder’s inequality to these pj’s. The rest of the proof is the
same. Finally if p] (x) for all j, then the argument above can be easily adapted to
this case. The proof of Theorem is now complete.
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2. The proof of Theorem 2

We now suitably modify the proof of Theorem to obtain Theorem 2. This
modification is precisely the one used in Theorem (2.6) in [CW]. In this reference
there is a discussion that motivates the arguments given which is certainly applicable
here.

Let e, L and V be as before. We first assume that all of the pj’s are finite. Fix
c > 0. Let Ao {x c:. M" IT(f fk)(x)l > c} and for v V, let Bo(v)
{x e M" I(f, f)(Uox)l > ct} It is easy to check that B Rv_,[A]. By
the boundedness of R on Lp(M) we obtain

(2.1) (/z(Ac)); _< Co(lz(Ba(v))) ;

for all v e V. Averaging the pth power of (2.1) over V, we obtain

f(2.2) #(A) <
,k(V)

#(Bo(v))dZ(v)
v

ffX(V)
XB<v) (x) d#(x) dX(v)

v M

ffX(V)
XDx)(V) dX(v) d#(x)

M V
f X(Da(x)) d#(x),

x(v)
M

where Do(x) {v a_. V" x a__ B,(v)}. By property (0.6) we have Do(x)
{v

_
V" fk K(Ul u,)fi(U,-(,,,x).., f(U,,-;,,,x)dX(u)...d.(u,) > }. We

can now replace fj(Uu-,,x) by hi(u-j-Iv, x), where hj(w,x) f’(Uwx)X.L-,V(W).
Clearly hi(., x) Lp (G) for all x e M. The assumed weak type estimate for T
gives

Np k

X(Do(x)) < H Ilhj(’,
j=l

Using (2.2) and (2.3), we obtain

(2.4) /z (Ao) < CNP f *
Z(V)p 1-I llh/(., x)ll.) dlz(x)

M j=l

X(V)otp
j._

Ilhj(., x)ll pL,,G) dlz(x)

where we applied Htilder’s inequality as before. By Fubini’s Theorem and the bound-
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edness of the maps R on Lpj (M), we obtain the following bound for (2.4)

k .& k

,(V)olP LPJ(M)
j= =

Np k k

j=l j=0

where we used Leptin’s condition (1.1) in the last inequality above. Since E > 0 was
arbitrary, (2.4) and (2.5) imply the required weak type inequality. The removal of the
restriction on the support and the size of K is standard. Finally, the case where some
or all of the pj’s are infinite is treated as in the previous section.

3. Remarks and applications

We begin by observing that the kernels K(u Uk) of the previous sections can
depend on variables only, say u ui, while the remaining k variables can be
linear functions of the first variables. Let us consider the case where Ul+l Uk
are related to the variable/gl by the relation U_b, ut+b,+, u-Lb, where bl,.. bk
are nonzero real numbers. More precisely, let

(3.1) K K0(Ul Ul)=ut+’ _,
bl+ bk

where < < k, i is the Dirac distribution, and K0 is a function of variables.
For this kernel K, the k-fold integral (0.5) defining T reduces to an/-fold integral.
Assuming first that K0 is compactly supported and bounded, the proofs ofTheorems
and 2 apply as before with minor modifications. Then a density argument will give
the conclusion for general K0.
We are now going to give some applications of our theorems. Let G Z with

counting measure, M IR with Lebesgue measure, and K(n nk) be a complex-
valued function on Z’, or a distribution of the type (3.1). For < j < k, let aj be

multipliers for L& (R) and define the operators Ruj acting on Lp () as follows:

(Ruf)(x)- f(x -u)-- (f()e2’u), (RJuf)(x) (f(j)aj(es)e2Zriu) ",

where we are using the definition f() fs f(x)e-2’rixdx. It is easy to see that the
family (R Rku)ue, satisfies (0.1)-(0.4), and thus it is a transference (k + 1)-tuple
as the ones we considered. Assume that the operator

(3.2) T(g gk)(n) E K(m mk)g(n--m)...g(n--m)
(m m)eZ
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maps Lp’ (7) ... X LPt (7/) into Lp (7/). Then Theorem implies that the transferred
operator

#fl fk)(x) K(m, mk)(Rlml f )(X) (/m A)(x),
(m mk)EZ

maps Lp’ (II) x x Lm (II) into Lp (). In particular, if the multipliers my () have
the special form e2ztidj for some dj real constants, and T maps LP’ (Z) x... x Lm (Z)
into LP’ (Z), then by Theorem 2, maps LPl () x x Lpk (I) into LP’(). An
interesting situation arises when the kernel K is the distribution

(3.3) K(n nk) l,.a. ’,_z
v

where bj are nonzero and pairwise distinct numbers, and the notation in (3.3) means
that all the variables n nk have collapsed to being multiples ofthe single variable
n 1. For p >_ 1, it is a difficult open question whether the operator T in (3.2) maps
LP’ (Z) x... LP(Z)into LP(Z). Replacing by 7)] orby n,’(loglnl),+, in (3.3)for
some e > 0, we obtain examples of multilinear operators for which we know that the
operator T in (3.2) is bounded.

Next, we turn to an application regarding fractional integrals. Let G I and
M lln, both with usual Lebesgue measure. For g gk functions on , and
0 < a < let

I(gl gk)(X) gl (X Olt) gk(X Okt) It[a-I dt,

where 01 Ok are fixed nonzero and pairwise distinct numbers. Let p pk >
l, and assume that their harmonic sum p satisfies 1- -< P < " By Theorem in

Fix a unit vector[G], la maps LPI(]) ... LPk(]I) into Lq (]), where

to Sn-l. Using the maps g Identity, (RJu f)(x) f(x uOjto) for all u
and 0 _< j _< k, we have that the transferred operator

la,oo(fl fk)(x) gl (x Oltto)... gk(x Oktto) Itl-l dt,

maps LP’ (") x x Lpk (]n) into Lq (]n) when + ot 7" Here we are using the

fact that the kernel of I has the special form K(u uk) 01 -" 02 Ok
Compare this result with Theorem in [G] in dimension n.
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