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JACOBI FIELDS, RICCATI EQUATION AND
RIEMANNIAN FOLIATIONS

PHILIPPE TONDEUR AND LIEVEN VANHECKE

1. Introduction

Many properties of the geometry of a Riemannian manifold (M, g) may be studied
using Jacobi vector fields [C-E], [DC]. Moreover, the consideration of Jacobi vector
fields along a geodesic, and normal to that geodesic leads at once to a Riccati equation
which is very useful in the study of the geometry in a normal neighborhood of a point
or a tubular neighborhood of a submanifold. This Riccati type differential equation
for the shape operator of small concentric geodesic spheres or parallel tubular hyper-
surfaces describes the evolution of that operator along geodesics normal to spheres
or hypersurfaces (see [G], [V] for a detailed treatment and further references). These
families of spheres or hypersurfaces form locally Riemannian foliations on (M, g)
with bundle-like metric g since, by the Gauss Lemma, the geodesics orthogonal to
one leaf of such a foliation are orthogonal to all leaves of the foliation.

These consideratons motivate the following generalization. Let (M, g) be a Rie-
mannian manifold, and .T" a Riemannian foliation on M with bundle-like metric g. As
pointed out already by Reinhart [R1 ], a characteristic property of geodesics transver-
sal to the leaves is that orthogonality to a leaf at one point implies orthogonality to the
leaves at all points of the geodesic. So, it is immediately clear that for Riemannian
foliations by hypersurfaces, one may use the above mentioned Riccati equation to
study the geometric properties of the foliation. In this paper we will show how this
technique may also be used for Riemannian foliations of higher codimension. For
this purpose we first adapt the general notion of Jacobi vector field to this situation.
This leads to the concept of ’-Jacobi vector fields. Secondly, we show that in this
more general situation also the evolution of the shape operator of the leaves along an
orthogonal geodesic satisfies a Riccati equation. In the case of the codimension one
foliations mentioned before, this reduces to the usual Riccati equation.

Our main purpose is to discuss this theory already introduced [Ki], [Ki-T], and to
review and extend some immediate applications, thereby illustrating the uses of this
Riccati equation. We point out that this equation, in one form or another, was already
present in several papers discussing geometrical aspects of foliations.

In the last section we consider transversal Jacobi operators, and introduce the
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notions of transversally :- and q3-foliations. These are used to derive a new charac-
terization of the transversally symmetric Riemannian foliations discussed in [T-V].

2..T’-Jacobi fields

We begin with the basic data given by a foliation .T" on (M, g). The tangent bundle
of .T is denoted by L C TM, with orthogonal projection yr L yr +/-" TM -+ L.
The orthogonal projection to the normal bundle L+/- Q TM/L is denoted by
7/" Q 7/’" TM -- Q. The Levi Civita connection VM on TM gives rise to a metric
connection VL on L defined by

2.) vv vv
for E FTM, V FL. For a unit speed geodesic ?, orthogonal to the leaves of
.T, we consider V FL, i.e., vector fields along , which are tangential to .T’, and
define a concept introduced in [Ki].

DEFINITION 2.2. V FL is an .-Jacobi vectorfield along ?, if

(2.3) r +/- {’ + RM (f/, V)f/} O.

Here 1;;" denotes as usual -- g VVV alongt,. The curvature RM(E1, E2)

Vie,,e1 [Ve,, V]e of VM gives rise to the operator/}" L -- L by

(2.4) / V r +/- R/(, V).

Let A be the integrability tensor defined by [B], [ON]

(2.5) AEtE2 VffE,&E2 + &VE,E2 for E, E2 TM.

In paicular, for X FLZ, we have Ax" L LZ, Ax" Lz L andA L: L L.
Then (2.3) can be equivalently expressed by

(. v +u +(u 0.

This follows immediately from Ap V VV and

AAV AVV=VVV= V (V V- V)

& M M L LV V V-VVV.
We prove now a relation between ordinary Jacobi vector fields and U-Jacobi

fields of a special type along V. For this puwose consider first the shape operator

S" Le Lv of U, defined by

(2.7) SU=rVff, for U6FLr.
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Here is extended to a normal vector field along an integral curve ct of U in a leaf
of f’. For the initial point ?’(0) rn we write S(0 Sm" Lm "- Lm.

THEOREM 2.8. Let ’ be a unit speed geodesic orthogonal to .T’. Then thefollow-
ing holds.

(i) An ordinary Jacobi vectorfield V along , is tangential to 5 if and only if it

satisfies the initial conditions at rn ?’ (0):

(2.9) V(O) v Lm, ---V (0) Smv + Ap(0)v;

(ii) An .-Jacobi vectorfield V FLy is a tangential ordinary Jacobi vectorfield
ifand only if it satisfies the initial conditions at rn , (0)"

)(2.10) V (O) v Lm, "V (0)-" Sm v.

The main point of the arguments in the following proof is the fact that given ?’,
the choice of v Lm, rn ?, (0) determines a unique tangential Jacobi vector field
V along , satisfying (2.9).

Proof. (i) Let V 1-’L be an ordinary Jacobi vector field with V (0) v Lm.
Then

VM
--V zr-Lvyv + rrVyV :rr-Lvyv + Af, V.
dt

Further, since V is Jacobi along y and V2_, we have VyV Vv (see for example
[C-E, p. 14]). Hence by (2.7)

7M
V SV + AV,
dt

and (2.9) follows. Conversely, let I7’ 6 FTM be an ordinary Jacobi vector field
satisfying (2.9). The initial condition (0) v Lm defines a tangential Jacobi
vector field V along , by variations of y through orthogonal geodesics (if or(s) is
a curve in the leaf through rn with ct(0) m, &(0) v, the geodesic ?,. with

’s (0) or(s) has the initial velocity given by the unique horizontal lift of (0) 6 L
to L(s)). Since I7", V are both Jacobi fields, and satisfy the same initial conditions

(2.9), it follows that V V and V is necessarily tangential.
(ii) Let V 6 1-’Lv be an ordinary Jacobi vector field with V(O) v Lm. Then

(2.9) holds. The ordinary Jacobi equation implies the .T’-Jacobi equation. Moreover
(2.9) implies (2.10). Conversely, let V 6 1"L be the .T’-Jacobi vector field satisfying
(2.10). Then f’ coincides with the Jacobi vector field V 6 1" Le satisfying (2.9). El
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3. Riccati equation

For the following discussion let {ei}i=l p be an orthonormal basis of Lm at
rn , (0), where p is the dimension of the leaves of ’. By parallel translation along, with respect to the metric connection V/ we obtain an orthonormal frame field
{Ei} of L along ,. Further, let Yi (i p) be the ’-Jacobi vector fields along, satisfying the initial conditions

)(3.1) Yi(O) ei, --Yi (0) Smei.

This gives rise to a linear operator D" L Ly given by

(3.2) Yi DEi.

Clearly

and

Then from (2.6) we obtain

(3.3) D + (f, + A2f,)D O.

Thus D is the -Jacobi tensor (endomorphism)field along , satisfying the initial
conditions

(3.4) D(0) I, D (0) Sm.

THEOREM 3.5. Let , be a unit speedgeodesic orthogonal to .T’, and D: L -- Lthe endomorphismfield defined by (3.1), (3.2). Then

VL

(3.6) S D. D-.
Proof. By construction

Sf Yi 7r+/-VM

Then, since and Yi are Jacobi vector fields along ,, we have

s ri -dT ri,
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or

VL

S? DEi --DEi

vL
i.e., Sp D -97 D. As the Jacobi fields Yi are independent, D is invertible and
Theorem 3.5 follows. El

The next fact was established in [Ki-T] by a direct calculation.

THEOREM 3.7. Let ?’ be a unit speed geodesic orthogonal to . Then the shape
operator Si,: L ---> L of" along ?’ satisfies the Riccati equation

VL
2 2._.0.(3.8)

dt

Proof. By (3.6) we have

VL

(3.9) SpD d--- D.

Differentiating covariantly along ?’, we get

Do

Using (3.3) and (3.9), this implies

---Si, D + Si,(Si, D + (i, + Ai,)D O.

Since D is invertible, the desired result follows.

Remark. This Riccati equation can also be obtained from one of O’Neill’s for-
mulas. It suffices to evaluate (9.28c) on p. 241 of [B] for X Y p. Observing
that Tu) Sf, U, the Riccati equation readily follows. Here T is the tensor (see [B],
[ON]) defined by

2_ MTE, E2 YrvrME, Yr2-E2 4- 7r V+/-e, zrE2 for El, E2 FTM.

Returning to an -Jacobi vector field V along y as described in Theorem 2.7, we
observe that
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It follows that

Since

V (p 4- Ap)V + (Sp + Ap)1’

[(/ 4-/) 4- (Sp 4- Ap)2]V.

r" + v o,
and all this holds for a frame field of L, it follows that on L

(3.10) zr+/-(p 4- Ap) 4- 7r+/-(Sp 4- Ap)2 4-/p 0.

We have established the following fact.

PROPOSITION 3.11.
holds on L.

Let y be a unit speed geodesic orthogonal to z. Then (3.10)

We wish to show that (3.10) conversely implies (3.8). For this it suffices to show
that on L

zr+/-ii, + :r+/-(Si, Ai, + Ai, Si,) O.

Let U, V 6 L. It suffices to show

g((VA,)U 4- (Si, A 4- Af, Sp)U, V) O,

or equivalently

g((VA)i,U, V) 4- g(Af, U, Sf, V) g(Si, U, Af, V) O.

The first term vanishes by formula (9.32) on p. 242 of [B]. The second term vanishes
since A#U L+/-, while S# V L. The third term vanishes similarly. This completes
the proof of the equivalence of Theorem 3.7 and Proposition 3.11.

4. The Wronskian

We now introduce a notion naturally associated to the defining equation for
Jacobi vector fields, and which has proved to be very useful for the codimension one
case (for example, see IV]).

DEFINITION 4.1. If D, E are fields of endomorphisms of L along y, the Wron-
skian is the field of endomorphisms along 9/given by

(4.2)
VL VL

W(D, E) -- DoE- D o ---E.
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If D, E I" EndL are both solutions of the differential equation along ,
(4.3) F +/F + A
then we have the following fact.

PROPOSITION 4.4. Let ?’ be a unit speed geodesic orthogonal to .T" and D, E
endomorphism fields of L along , satisfying (4.3). Then W(D, E) is (covariantly)
constant along ,.

Proof. We have to show that

V/
d--7 w(o, e O.

2. L---> LisWe note that while A has skew-symmetric aspects, the operator A
symmetric, and so is R. It follows that

dt
W D, E -- DoE+ -d-- D o --E(L) L (L)

2

o-z-e-o -g-
2

0

since t(/} + A) + A.
4.5 Remarks. (1) Let D be an endomohism field of L along g, satisfying (4.3)

and with the initial conditions at m g (0)"

(0=, (0=S.

Then W(D, D) 0. is is equivalent to the symmet of the shape operator.
(2) For applications of an analog of Proposition 4.4 to submanifold theo see [V].

5. Applications

(a) Riemannianfoliations .T" with bundle-like g and involutive normal bundle L+/-.
The last property is expressed by A 0, and thus in particular, A> 0. Equations

(3.3), (3.8) yield

(5.1) -d-7 o + ,o 0
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for the endomorphism field D of L along ?, defined by (3.2), and- s + s + , 0

for the field of shape operators S along ?’.
If (M, g) is of constant curvature c, then R c. I" L Ly. Equations (5.1),

(5.2) then read

(5.3) - D+cD=O,

(5.4)
TL ) 2-- Sf, + Sf, +cl =0.

Note that .T" can only be totally geodesic if c 0. Even if A is not assumed to vanish,
the Riccati equation shows that .T" can only be totally geodesic provided c >= 0

2(taking traces yields then c 71A[ where p is the dimension of the leaves of )r).
Returning to the case of foliations with involutive normal bundle, we observe that for
c > 0 the explicit solution of equation (5.3) along the geodesic ?’ (r) is given by

D(r) cos Cr. I +
sin r

s(0).

Then S =/D- turns out to be diagonal, and of the form

S(r)

(tel r. tan q/-r
tanV1+ v7 "K1

0

o

where c Cp are the principal curvatures of S(0).
Harmonic foliations are characterized by TrS 0, i.e. the leaves are minimal.

Taking the trace in (3.8) yields

(5.5)
p

ISI = + g(RM(f/, Ei)f/, Ei) O.
i=1

This implies the following fact [K-T; 2.27], which also holds if TrS constant.
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PROPOSITION 5.6. Let .T" be a Riemannian foliation with bundle-like metric on
(M, g). Assume L+/- to be involutive. If the sectional curvature Kt >= O, then the
harmonicity of.T" implies that .T" is totally geodesic.

Proof (5.5) implies ISI 2 0, hence S 0. i-!

Remark. Riemannian foliations with involutive normal bundle and totally geodesic
leaves are locally Riemannian products. The proof is an application of DeRham’s
holonomy theorem, together with the fact that in this case the decomposition TM -L L+/- is preserved under parallel transport.

The condition A 0 holds in particular for the case of foliations of codimension
q 1. An example is the following conclusion.

PROPOSITION 5.7. IfU is ofcodimension one and harmonic on (M, g) with non-
negative Ricci curvature, then is totally geodesic.

Global arguments for this conclusion on a closed M were given in [Os] and [K-T]
(see also [T, Theorem 7.50]). While the argument to follow is local in nature, and
thus applies equally well off the singular set of a Riemannian foliation, the global
arguments in [Os] and [K-T] imply the result as well as the Riemannian property of
.T’, while in the present context .T" is assumed to be Riemannian to begin with.

Proof. For q equation (5.5) implies

(5.8) ISI2 + Ric(, ) 0.

Thus for non-negative Ricci curvature 1512 0, hence S 0.

As (5.8) moreover shows, the positivity of the Ricci operator at even a single point
of M is incompatible with the existence of a foliation satisfying our assumptions.

(b) Riemannianfoliations . with bundle-like metric on (M, g) with strictly neg-
ative sectional curvaturesfor all 2-planes at a single point of (M, g).

PROPOSITION 5.9. With these assumptions . cannot be totally geodesic.

2 0. ButProof. Assume S 0. It follows from (3.8) that B =/ + A
g(BEi, Ei) g(i, Ei, Ei) -IAi, Eil2.

Let now , (t) be the point at which KM < 0 on all 2-planes. Then at this point

g(i, Ei, Ei) g(RM (/, Ei)/, Ei) Kt (/, Ei) < O.

This contradicts

KM(/, Ei) Ai, Eil 2 O.
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As in [Ki-T], it is convenient to consider the partial Ricci curvature form RicL

defined by
p

RicL (x, y) g(RM (x, ei)y, ei)
i=1

for x, y 6 Lm, and an orthonormal basis {ei}i=l p of Lm. The quadratic form
associated to the bilinear symmetric form Ric on L+/- is then given by

p

Ric (x, x) KM (x, ei).
i=1

Taking Tr B over L in the preceding argument, the conclusion is as follows.

PROPOSITION 5.10. If f" is a Riemannian foliation with bundle-like metric on
(M, g), and Rict < 0 at least at one point ofM, then cannot be totally geodesic.

The same formulas show also that when Tr Ric < 0 and " is totally geodesic,
then A 0, as is well-known.

In the case of codimension q we have RicL RicM, and the condition above
concerns the ordinary Ricci operator at a point of M.

(c) Mean curvature conditions.
Consider Tr S. Note that S depends on the choice of a normal vector. Thus along

a geodesic , orthogonal to .T’, the mean curvature function h TrS is well defined.
Let

to-- l--h,
P

and consider the operator Sp w I" L -- L. Then

p

ISf, w" ll2 g((Sf, w. l)Ei, (Sf, w. l)Ei)
i=1

ISl2 2wh + pw2 ISl2 pw2,

or

Sp 12 pw2 -t- ISf/- w. 112.
Taking traces over L in the Riccati equation (3.8) implies

(5.11) p(b 4- 1/32) 4- IS to. 112 4- Ric(, ) -IAI2 0.

Here we have used

p p p

Tr(A) -g(A2f, Ei, Ei) g(af, Ei, AfEi) IAf, Eil 2

i=1 i=1 i=1
-IAI2,
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while
p p p

Tr(S}) ,g(S}Ei, El)= ,g(Si, Ei, Si, Ei)= [Si, Eil2= [SI 2.
i=l i=l i=1

To illustrate the method used in [Ki-T], we prove the following fact as an application
of (5.11) under the additional completeness condition for the manifold (M, g). We
refer to [Ki-T] for further applications.

PROPOSITION 5.12. Let f" be afoliation with bundle-like metric g on a complete
Riemannian manifold (M, g). Iffor each geodesic , orthogonal to we have
Ric" (), 9)) _-> A 2, then .T" is totally geodesic.

Proof. (5.11) implies

-+- 1/3
2 -+-C +r =0,

(RicL(p )) iApl2). Since c > 0, r > 0 it is clearwith c 71S w II2, r 7
that the solution decreases not less rapidly than the solution of 6a + w2 0 with the
same initial condition. But that solution goes to -00 in finite time, contrary to the
completeness assumption. This implies w 0. Thus c + r 0. Since c __> 0 and
r >__ 0, this implies c 0. This means that Sp w. I, or, since w 0, S 0.

For q 1 the hypothesis reads RicM > 0. Thus under the completeness assump-
tion one obtains a better result than in Proposition 5.7. But note that these arguments
assume .T" to be Riemannian to begin with.

As pointed out in [Ki-T], the inequality in the preceding proposition is in fact sharp.
This was proved using an example in [HI. The hypotheses of Proposition 5.12 are in
particular realized for a foliation of codimension q on (M, g) with Ricaa > 0.

Note that the case where the normal bundle is involutive is also mentioned in [W].
Finally we turn to the case of a foliation of codimension one on a space of constant

curvature. Consider the case where all the leaves have the same constant mean
curvature h. Taking traces in (3.8) yields

IS 12 + Tr/p 0.

But if Mn is of constant curvature c, Tr/ (n 1)c. Thus we have the following
cases to distinguish:

(i) c > 0, in which case no such " exists;
(ii) c 0, in which case .T" is necessarily totally geodesic, and is induced by a

hyperplane foliation on the universal covering in the complete case;
(iii) c < 0, in which case ISI 2 -c(n 1).

An example is a foliation of hyperbolic space by horospheres. As shown in [B-G-
S], for 3-dimensional hyperbolic space, these are the only such examples with h > 1.
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6. Transversal Jacobi fields

Jacobi vector fields along a geodesic ?, on a Riemannian manifold are defined with
the help of the Jacobi operator R R(, -)p. The study of the eigenvalues and the
eigenspaces of these operators led in [B-V] to the consideration of the -spaces and
q3-spaces which are natural generalizations of locally symmetric spaces. In this last
section we will introduce an analog treatment with respect to the transversal geometry
of a Riemannian foliation.

Let L+/- be the normal bundle of a Riemannian foliation on (M, g) with bundle-like
metric g. Let V denote the Levi Civita connection in L+/- and RV its curvatur tensor.
For a unit speed geodesic F orthogonal to the leaves we consider the normal vector

+/- along Ffields FL
V.xDEFINITION 6.1. The transversalJacobi operator along ?, is the operatorR

RV(, X) on I"L. A vector field Y 6 1"L+/-y is a transversal Jacobi vector field
along ,, if

(6.2) Y + Rv(, Y) 0.

v determines a field of symmetric endomor-The transversal Jacobi operator field R
+/- In what follows we concentrate on the eigenvalues and eigenspacesphisms of FL.

of these endomorphisms. In analogy with the theory developed in [B-V] we first
introduce the following two new concepts.

DEFINITION 6.3. A Riemannian foliation 9r on (M, g) is a transversally -folia-
vtion, if the eigenvalues of R are constant along ?, for each geodesic , orthogonal to

the leaves of the, foliation..T" is a transversally -foliation, if the eigenspaces of the
transversal Jacobi operators can be spanned by parallel fields of eigenvectors along
?, for each geodesic , orthogonal to the leaves of .T’.

These conditions mean that 9v is locally modeled on a -space or q3-space, re-
spectively. We use these concepts to give a new characterization of transversally
symmetricfoliations. This class of Riemannian foliations, locally modeled on a Rie-
mannian symmetric space, can according to [T-V, Theorem be analytically defined
using the following result.

PROPOSITION 6.4. is transversally symmetric ifand only if

(6.5) (VxRV)(x, Y, X, Y) O for all X, Y 6 FL+/-.

We refer to [T-V], [G-G-V], [GD] for a collection of results and examples. Note
that trivially any codimension one Riemannian foliation is transversally symmetric
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[T-V]. It follows also from [B-V] that any Riemannian foliation of codimension two
is a transversally q3-foliation.

To give examples oftransversally (- and q3-foliations it suffices to consider bundles
over if- or q3-spaces, as e.g. warped products B xf F over a if- or q3-space B.
We prove now the following result.

THEOREM 6.6. . is transversally symmetric ifand only if it is a transversally -as well as a transversally -foliation.

Proof First let .T" be transversally symmetric. Let m be a point of (M, g), and ?,
a unit speed geodesic orthogonal to .T" satisfying ?, (0) m and } (0) u, lul 1.
Next let e 6 Lm be an eigenvector of Ruv corresponding to the eigenvalue .; i.e.,

(6.7) Rv (u, e)u ,ke.

Further let E 6 I-’L be the vector field along ?, obtained by parallel translation
of e along y with respect to V. Then .E is parallel. Moreover, (6.5) implies that
Rv (9>, E) is parallel. Finally, since both vector fields have the same initial value at
m, they concide; i.e.,

(6.8) Rv (}>, E)}> E.

This implies that .T" is a transversally - and a transversally q3-foliation.
Conversely, let " be a transversally (- and transversally q3-foliation. Then there

exists a V-parallel frame field {Ei }i=1 q, formed by eigenvector fields Ei r’L.
Hence we have for the corresponding eigenvalues .i

(6.9) Rv (), Ei) f/ i Ei, q.

By assumption the ,i are constant along ?,. This implies at once (6.5), and hence .T"
is transversally symmetric, r-!

This theorem shows that for q 2 the transversally symmetric foliations coincide
with the transversally ff-foliations. This is based on the fact that a connected 2-
dimensional (-space is a space of constant curvature [B-V].

For q 3 we refer to the classification of -spaces and q3-spaces given in [B-V].
Instead of considering the operators Ruv for transversal unit vectors u one may also

consider the operators VuRVu (Vu RV)(u, -)u. These operators are symmetric and
the consideration of their eigenvalues leads to the following new characterization of
transversally symmetric foliations.

PROPOSITION 6.10. A Riemannian foliation . on (M, g) is transversally sym-
metric ifand only if at each point m M the eigenvalues of Vu RVu are independent
ofthe choice ofthe transversal unit vector u Lm
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Proof First, let .T" be transversally symmetric. Then (6.5) implies VuRVu 0
for all u 6 L, and the result holds trivially.

Conversely, the independence of the eigenvalues of VuRVu from u implies the
independence of Tr(Vu RVu)k, k q 1, from the choice of the unit vector
u 6 Lm. Following a recent result of [S] (see also [Gi]), this implies Vu Ruv 0, and
then the result follows from Proposition 6.4.

Remarks. 1. It would be worthwhile to study the geometry of these two new
classes of Riemannian foliations, and to describe some interesting examples. We
hope to return to this question on another occasion.

2. It is clear that (6.2) leads to a Riccati type differential equation. This equation
decribes the evolution along an orthogonal geodesic of the shape operator of the
geodesic spheres on the local model space for the transversal geometry of ’.
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