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GENERALIZED PUISEUX EXPANSIONS
AND THEIR GALOIS GROUPS

SANJU VAIDYA

Section 1. Introduction

Let k be an algebraically closed field of characteristic p and let X be an inde-
terminate. Let k((X)) be the quotient field of the ring of formal power series (no
convergence involved) in X over the field k. The field k((X)) is called the field
of meromorphic functions of X over k. It is well known that in case p 0, the
Puiseux field t.J=k((X)) of all Puiseux expansions is an algebraic closure of the
field k((X)). But if p 0, this is not the case. Chevalley [3] proved that polynomial
ZP Z X- does not have a root in the Puiseux field.

Abhyankar introduced the notion of generalized Puiseux expansion and proved
the factorization ofthe said polynomial Zp Z-X- into generalized Puiseux expan-
sions. Using this, Huang, a doctoral student of Abhyankar, constructed a generalized
Puiseux field and proved that it contains an algebraic closure of the meromorphic
series field. The generalized Puiseux field consists of functions from the set Q of
all rational numbers to the field k with some conditions on their support. In greater
detail, a function f from the set Q to the field k is in the generalized ,Puiseux field
iff its support S(f) is a well ordered subset of the set Q and there exists an integer
rn m(f) such that for every ct S(f) we have am for some integers n
and ia. Huang [4] proved many fascinating results for generalized Puiseux elements
whose supports are subsets of the set {-, - ---pi }. For instance, he proved
a criterion which says that such elements are algebraic over the field k((X)) iff they
are periodical in case the field k is equal to algebraic closure of its prime field.

In this paper, we will investigate some functions of the generalized Puiseux field
that are algebraic over the meromorphic series field; moreover, we will calculate
their Galois groups. It turns out that Galois group of certain functions over the
meromorphic series field is a semidirect product of a cyclic group and a direct sum of
p cyclic groups. We also exhibit functions whose Galois groups are dihedral group,
a certain type of Burnside group and a direct sum of p cyclic groups. Additionally,
we will extend the criterion of Huang to a certain type of functions of the generalized
Puiseux field in case the field k is not equal to algebraic closure of its prime field.
We will also extend Huang’s criterion to some generalized Puiseux elements whose

_ok/ N}, where (li)iN is a sequence of positivesupports are contained in the set -i:p
integers satisfying certain constraints.
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In Section 2 we will describe the notation and terminology to be used throughout
the paper. In Section 3 we will review some of the results and the criterion about
some special elements of the generalized Puiseux field. These results are proved in
Sections II and III of Huang [4]. In subsection (4.2) we will extend the criterion
to certain type of elements of the generalized Puiseux field, while subsection (4.1)
prepares the groundwork for it. Finally in Section 5, we will calculate Galois groups
of some generalized Puiseux elements over the meromorphic series field.

Section 2. Notation and terminology

We will use the notation and terminology introduced in Sections II and III ofHuang
[4].

Here is greater detail. Let k be an algebraically closed field of characteristic p,
where p is a prime number. Let X be transcendental over the field k. Let k((X))
denote the field of meromorphic functions in X over the field k Let U k((X))n=l
denote the Puiseux field. Let us define the set A (p) by putting

!
| f E aaX" aa k, S(f) is a well ordered subset of QA(p)
I otS(f)

and for each f there exists a natural number rn rn (f) such

that for every oe S(f), urn with l, n Z
pn

where the set Q is the set of all rational numbers which is a totally ordered group
under addition with the usual ordering < and a subset A of the set Q is well ordered
if every non-empty subset S of the set A has a minimal element. Let us define the
addition and multiplication for the elements in the set A(p) as follows:

If f Eots(f) aXa and g s<g) baX are any elements of the set A(p),
then

f + g E (a, + ba)X
otS(f)US(g)

and

(,3/)S(f)S(g) otS(f)-t-S(g) ot

Then the set A(p) is a field under the operations of addition and multiplication and it
may be called the generalized Puiseuxfield.
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Section 3. A criterion

In this section, we will review some of the results and the criterion about some
special type of elements of the generalized Puiseux field. These results are proved in
Section II and III of Huang [4].

Before we do that, let us recall the following fundamental result which is proved
in Chevalley [3].

THEOREM (3.1). The polynomial Zp Z X-1 does not have a root in the
Puiseuxfield U k((X )). Hence the Puiseuxfield is not algebraically closed.n=l

Abhyankar introduced the notion of the generalized Puiseux expansion and
proved the following factorization of the polynomial ZP Z X-1 into generalized
Puiseux expansions.

THEOREM (3.2). The polynomial Zp Z- X-1 can befactored asfollows.

Zp Z- X- =H Z-i- X-7
i=0 j=l

Using this factorization, in Section II of [4], Huang constructed the generalized
Puiseux field A(p) and proved the following.

THEOREM (3.3). The generalized Puiseuxfield A(p) contains an algebraic clo-
sure ofthe field k((X)).

In Section III of [4], Huang investigated functions f of the generalized Puiseux
field a(p) with supports S(f) C {-[, - p and proved many elegant
results. Some of them are described in Lemma (3.6), Corollary (3.7), Criterion (3.8),
and Theorem (3.9). To understand them, we need the following definition.

-1

Definition (3.4). Let f icX=l aiX pi with ai k for every N. We say
that f is periodical if ai ai+n for >_ m and n >_ 1.

Remark (3.5). Ifanelementisperiodicalthenitisalgebraicoverthefieldk((X)).

-1

LEMMA (3.6). Let F be afinitefield contained in k. Let f -i=l aiX Pi with
ai F, for every N. Then the element f is algebraic over the field k((X)) iff it
is periodical.
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-1
COROLLARY (3.7). Let Fp be the primefield ofthefield k. Let f il aiX p’-7",

with ai E Fp,for every N. Then the element f is algebraic over thefield k((X)), is a rational number.iff the real number -i__l p,

-1

CRITERION (3.8). Let f ’i=l aiX p-’7", with ai k, for every N. Assume
that k is an algebraic closure of its primefield. Then the element f is algebraic over
the field k((X)) iff it is periodical.

In Theorem 9 of Section V of [4], Huang found the minimal polynomial of the
-1

element f i=l aiX p-’-r, with ai k, for every N, if it is algebraic over the
field k((X)). For that, he introduced the following notations.

Let Z be transcendental over the field k((X)). Given any positive integer n and
constants ot, or2 O/n in the field k, let

and, inductively,

Hi(Z) Zp ot-1z
H2(Z) H(Z) H(-I (ot2)HI(Z)

Hn(Z) HnP_I(Z)- HnP_-ll(Otn)Hn_l(Z).
Now we can state Theorem 9 and Remark 3 of Section V of Huang [4]. They are

respectively stated here in Theorem (3.9) and Remark (3.10).

-1

THEOREM (3.9). Let f .i=l aiX p--r, with ai k, for every N. Let
k((X))(f) be an abelian extension ofk((X)) ofdegree pn and all the conjugates off
be f+ma +m2ot2 +...+mnanformi 0, 1,2 p- foralli andoti kfor

1, 2 n. Then the minimal polynomial off over k((X)) is Hn(Z)- Hn(f);
or equivalently,

p--1 p--1

11" 11 <z- :- mlot, mnOtn) nn(Z) nn(f).
m "-0 m "-0

--1

Remark (3.10). Let f i aiX p"7", with ai k, for every N. Assume
Zp-that f satisfies a polynomial F(Z) Zp" -+- bn-1 +... d’- bl Zp "Jr" boZ + b(X),

where, bi k for 0 _< < n 1, b(X) k((X)), and n is minimal. Then the
polynomial F(Z) is minimal polynomial of the element f over the field k((X)).

Section 4. Extension of the criterion

Subsection (4.1). In this subsection, we will prepare the groundwork to extend
Criterion (3.8) for some special type of generalized Puiseux elements.
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-1
LEMMA (4.1.1). Let f -il aiX p--7" be algebraic overthefieldk((X)), where

ai E k for every N. Then there exists a positive integer n and constants
-1pJ

0, Cl, C2 Cn in thefield k such that Cn 0 and _,i__l (-]=0 cjaj+i)X7 O.

Proof. Since the element f is algebraic over the field k((X)), it is clear that the
infinite set l, f, fP, fp2 fpi is linearly dependent over the field k((X))
So there exists a positive integer n and elements b, bo, bl bn in the field k((X))
such that bn 0 and

(1) b bof + blfp -+-"" q- bnfp".

In equation (1) we may assume that the elements b0, bl b,, are in the ring k[[X]].
Writing equation (1) explicitly, we get

n j
PJ X-pj-i

n cx
pJ -.....1

b- -bj _a _bj ai Xpi-j

j=0 i= j=0 i=j+

For 0 < j < n, let cj be the constant term of bj. Then

pj -_...1
Cj a X Pi-J _.0.

j=0 i=j+l

Hence the result follows.

In the following Lemmas (4.1.2) and (4.1.3), we will prove some interesting in-
equalities satisfied by permutations on n objects, where n is any positive integer
greater than 1.

LEMMA (4.1.2). Letthere be givenany integern > 1. Thenforeverypermutation
cr 6 Sn \ {e}, where e is the identity element of the permutation group Sn, we have

in=l [i cr(i)]pi-1 > O.

Proof. We will prove the lemma by using mathematical induction on n. In case
n 2, the result is obvious. So let n > 2. We will assume that the result is true
for n 1. Let there be given any permutation cr S,, \ {e}. Then there exists
j {1,2 n} such that or(j) 1. Let r" {1,2 n 1} -- {1,2 n l}
be a function defined by putting

r(i)-- / or(i) 1,

/ cr(i d- 1)- 1,
if/ {1,2 j- 1}
if/ E{j,j+I n-l}.

Then it is easy to see that r S,-1. In case j 1, clearly r Sn-1 and r is not
equal to the identity element of the group Sn-l. Therefore by induction hypothesis
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n-1 nwe have Yi= [i r,(i)]pi- > 0. Hence itis easy to see that i=3[i -r(i)]pi- >
[a(2) 2]p. Consequently the result follows.

n-1 pi-IHenceforth assume that j > 1. Thenwehave -i= [i-z(i)] >_ 0. Therefore,
by expanding the sum, we get

(2)
j-1

[i- tr(i)]pi- >_ [cr(i)- (i d- 1)]pi.
i=j+l i--1

Using (2) we have Y’in=l[i o’(i)]pi-1 >_ ,iJ=l[i tT(i)]pi-1 -+-i[tT(i) (i +
1)]pi. By expanding the sums, we get ,i=l[i a(i)]pi-1 > il tT(i)Pi-1 +, a(i)pi. Therefore, using a(j) 1, we get

-[i-tT(i)]pi-1 > (p- 1) o.(i)pi-1 (pj-l_ 1).
i---1

Consequently,

(3) [i- cr(i)]pi-1 >_ (p- 1) [tr(i)- 1]pi-

i=1

From (3), and noting that tr(j) 1, we get the result.

LEMMA (4.1.3). Let there be given any integer n > 1. Let co Sn be defined
byputting co(i) n + 1 for every {1, 2 n}. Thenfor everypermutation
cr Sn \ {co} we have in=l[i + r(i) 1]p/-1 > Yin=l npi-l.

Proof. Let there be given any tr 6 S,, \ {co}. Let tr* 6 Sn be defined by putting
cr*(i) n+l-cr(i) foreveryi 6 {1, 2 n}. Then it is easy to see that tr * 6 Sn\{e},
where e is the identity element of the permutation group Sn. Consequently, using
Lemma (4.1.2) for permutation or*, we get the result.

Subsection (4.2). In Theorems (4.2.1) and (4.2.2), we will extend Criterion (3.8)
for some types of functions in case k :/: an algebraic closure of its prime field Fp.
Additionally, in Theorem (4.2.3) and Corollary (4.2.4), we will extend the criterion
for some functions with special support.

THEOREM (4.2.1). Assume that k is not an algebraic closure ofits primefield Fp
-l

and let Y k be transcendental over the field Fp. Let f Yi=l ai yix p’-r- be such
thatfor every N, the element ai is in k and is algebraic over the prime field Fp
of the field k. If the element f is algebraic over the field k((X)), then there exists a
positive integer n such that ai 0for every > n.
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Proof. ByLemma (4.1.1), there exists apositive integer n and constants co, cl cn
in the field k such that cn 0 and

1PJ p--7"(4) cja)+i y(j+i)pJ X O.
= j=0

Therefore, for every N, we have

pj (j+i)p(5) cja)+ Y O.
j=0

Let A be the infinite matrix whose order is n + by cxz and whose (i, j)th term is

a)+i_Ip’-’ Yj+i-)pi-’ Hence from (4) and (5), it follows that rank(A) < n + 1. We will
prove that ai+n 0 for every N. Suppose there exists a positive integer such
that al+n O. Since rank(A) < n + 1, we have

pi-I (ld_j.k_i_2)pi_l)det \al+j+i_2Y O.
<i <n+l, <j<n+l

Therefore, dividing by Y(l-l)pi-’ in the th row for every 1, 2 n + 1 }, we get

{. pi-I y(i+j_l)pi_ ) O.(6) det Ikal+ +i_2
<i <n+ l, j <n+

Let us put rn n + 1. Let co Sm be defined by putting co(i) rn + for every
1, 2 rn}. Then it is easy to see that

pi-Iord al+o(i)+i_2 Y(i+(i)-l)pi-I mpi-1

i=1 i=1

We also note that given any cr Sm \ {co}, if al+r(i)+i-2 0 for every
1, 2 rn }, then

pi-i y(i +cr (i)_ pi_lord al+r(i)+i_2 -(i + tr(i)- 1)pi-1.
i=l i=l

Consequently, using Lemma (4.1.3), we get

(7) det kal+j+i_2Y(i+j-1)P- l<i<n+l,l<j<n+l
O.

Since statements (6) and (7) contradict each other, ai+n 0 for every 6 N.

THEOREM (4.2.2). Assume that k is not an algebraic closure ofits primefield Fp
and let Y k be transcendental over the field Fp. Let L be a finite field contained

-1

in k. Let f ic__l fi(Y)X pi where fi(Y) L[Y]for each N. Assume that
there exists a positive integer M such that deg f (Y) <_ Mfor every N. Then the
element f is algebraic over the field k((X)) iff it is periodical.
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Proof. If the element f is periodical, then by Remark (3.5), it is algebraic over
the field k((X)). To prove the converse, let the element f be algebraic over the
field k((X)). By Lemma (4.1.1) there exists a positive integer n and constants

-1

co, cl, c2 Cn in the field k such that Cn :/: 0 and Yil (Y-’=0 cj fjPi)X-Y" O.
nTherefore, for every e N, we have j=0 cj fjPi O. So dividing by the constant

Cn we get

C1 fp Cn-1 pn-I ]fni co
j + i+l + + fi+n-1 for everyiN.

Cn Cn Cn

Thus for every 6 N, the polynomial fn+i is completely determined by the n-tuple
(f/, +l +n-1). LetF(i) (, j+l f/+,-l). We note that if F(i) F(j)

for some :/: j then f,+i f,+j. This in turn implies that F(i+) F(j+) and
so f,+i+l fn++. Hence it follows that fn+i+r fn+j+r for every r N. So
the element f will be periodical. Now for each 6 N, the polynomial f/(Y) is in
L[Y], where L is a finite field and deg3(Y) < M. So card{F(/): 6 N} < o.
Consequently, it follows that if the element f is algebraic over the field k((X)) then
it is periodical.

:.k/
THEOREM (4.2.3). Let f -,i aiX pi be algebraic over the field k((X)),

where,for every N, ai k, and (li)ieN is a sequence ofpositive integers satisfying
thefollowing conditions.

(i) gcd (li, p) for every N.
(ii) li < li+l for every N.
(iii) pli > li+l for every N.
(iv) Given any positive integers n and s, we have ln+t Im+t 5 (S r)p for

any integers m, r, and such that 0 < rn < n and 0 < r < s < t.

Then there exists a positive integer e such that ai Ofor every > e.

Proof. Since pli > li+ for every N, the sequence :-/: N} is increasing.
P

So it follows that f A(p). Since the element f is algebraic over the field k((X)),
it is clear that the infinite set 1, f, fP, fP2,..., fpi is linearly dependent over
the field k((X)). So there exists a positive integer n and elements b, bo, b bn in
the field k((X)) such that bn 0 and

(8) b bof + blfp +""-1- bnfpn.

In equation (8) we may assume that the elements b0, bl bn are in the ring k[[X]].
Let bm cr=0 bmrX for 0 < rn < n. Let ord bn s. Since bn - 0, we have s > 0,
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bns 7 0 and bnr 0 for every r < s. Hence it follows that

(9)
m

pm x_li pm-i pmb- bmEa Ebm E ai Xff-m
m--0 i=1 m=0 i=m+l

E bmr E ai Xpi-m+r
r=0 m=0 i=m+l

:xl --pm --lm+] t"--E bmr am+jX pj +r

r=0 rn=0 j=l

--ln+t
We will prove that bnsaPn+tX +s

0 for all > s. So henceforth let > s. Since
the sequence (li)ieN satisfies the conditions (i) and (ii), we get

--ln+t --lm+j
+s:/: +r
pt pj

for any positive integer j t, any nonnegetive integer r and 0 < rn < n and

--ln+t --Im+t+spt pt

for any positive integer r > s and 0 < rn < n. Additionally, if s > 0, due to condition
(iv), we get

--ln+t --lm+t+s
pt pt

for any rn and r such that 0 < r < s and 0 < rn < n. We also note that on the left
hand side of equation (9) all the exponents ofX are integers. Consequently, it follows

--ln+t
that pn +s

bnsan+ X 0. Since b,,s :/: O, we get an+t 0. Hence the result follows.

_q,
COROLLARY (4.2.4). Let q be any given prime number. Let f Eic__l aiX pi

where, for every E N, ai k. If p > q, then the element f is algebraic over the
field k((X)) iff there exists a positive integer n such that ai Ofor every > n.

Proof Follows from Theorem (4.2.3).

Section 5. Galois groups

In this section we will calculate Galois groups of some special types of elements.
It may be noted that Theorem (5.1) and Corollaries (5.2) to (5.4) deal with Galois
groups of certain periodical generalized Puiseux elements while Theorem (5.5) and
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Corollary (5.6) give Galois groups of some generalized Puiseux elements which are
not periodical. Throughout this section, let L denote the field k((X)) and Z be
transendental over an algebraic closure of the field L.

THEOREM (5.1). Letm be anypositive integerwhich is relativelyprime to p. Let
-1

n be any given positive integer. Let f ic__l X mpni. Let G be the group of all L-
automorphisms ofthefield L(f). Ifthe integer m divides the integer pn 1, then we
have thefollowing.

(5.1.1) ThefieM L(f) is a Galois nite, normal, separable) extension ofthefield
L ofdegree mpn with the group G as the Galois group.

(5.1.2) There exists subgroups H and K of the Galois group G such that the
subgroup H is isomorphic to a direct sum of n copies of cyclic group of
order p and the subgroup K is isomorphic to the cyclic group of order
m. Moreover, if m > 1, then the Galois group G is isomorphic to the
semidirect product ofH and K.

-1

Proof. Let F(Z) Zp" Z X-’. Clearly F(f) 0 and all the roots of
the polynomial F(Z) are distinct. Therefore, the element f is separable algebraic

over the field k((X g)). Since Xg is algebraic over the field L and the integer m is
relatively prime to the integer p, it follows that the field L(f) is a finite, algebraic,
separable extension of the field L.

Let S {Zpr "JI- "91- bi Zp’ "+- -+- b: r N, bi k for all such that 0 _< _<

r and b 6 k((X))}. Let G(Z) be any polynomial in the set S of degree pr such
that G(f) 0. Then by Theorem (3.9) and Remark (3.10), it is enough to prove that
n < r. Suppose n > r. Let G(Z) Zpr + + bi Zpi "Jl-’’" -Jl" b, where bi

_
k for

0 < < r and b k((X’)). Since G(f) 0, we get

-1

which gives a contradiction. (For example, the coefficient of the term X mpn-r is equal
to on one side and 0 on the other side of the equation.) Hence it follows that the

polynomial F(Z) is the minimal polynomial of the element f over the field k((X )).

Therefore, [L(f) k((Xg))] pn. Also obviously we have [k((Xg)) L] m.
Hence we get [L(f) L] mpn.

Let H(Z) (Zp" Z)m X-1. Then clearly H(f) 0. Since [L(f) L]
mpn, the polynomial H(Z) is the minimal polynomial of the element f over the field

L. Let u be the mth primitive root of unity and w the (pn 1)th primitive root of
unity. Then it is easy to see that the set {ui f < < m} t.l {ui f nt- Wj" < <_
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rn and < j < pn 1 is the set of all roots of the polynomial H(Z). Consequently
we get (5.1.1).

Let H be the Galois group of the field L(f) over the field k((X)). As noted
-1

above, the polynomial F(Z) Zp" Z X- is the minimal polynomial of the

element f over the field k((X )). Additionally, if f’ is any root of the polynomial
F(Z) such thatf’ f, then there exists ot 6 {wi" 1 < < pn_ 1} such that

f’ f + t. Hence it follows that the group H is isomorphic to a direct sum of n
copies of cyclic group of order p. Let er 6 H be such that er (f) f + w. Let r 6 G
be such that r(f) uf. Let K be the subgroup of the group G generated by the
element r. Obviously ord(K) m. It is also clear that if rn > 1, then err rer
and H fq K {e}, where e is the identity element of the group G. Further we note

that since the field k((X)) is a normal extension of the field L, the subgroup H is
normal in the group G. Consequently, it follows that if rn > 1, then the group G is
isomorphic to the semidirect product of H and K. Thus we get (5.1.2).

-1

COROLLARY (5.2). Let n be any given positive integer Let f -iC=l X pni.

Then the field L(f) is a Galois extension of the field L. Moreover, the Galois group
of the field L(f) over the field L is isomorphic to a direct sum ofn copies of cyclic
group oforder p.

Proof. Follows from (5.1) by taking rn 1.

-1

COROLLARY (5.3). Let f -iC=l X 2pi Assume that p > 2. Then the field
L(f) is a Galois extension of the field L. Moreover, the Galois group of the field
L(f) over the field L is the dihedral group oforder 2p.

Proof. Follows from (5.1) by taking rn 2 and n 1.

-1

COROLLARY (5.4). Let f -iC=l X 3pi Assume that 3 divides the integer p- 1.
Then the field L(f) is a Galois extension of thefield L. Moreover, the Galois group
of the field L(f) over the field L is a nonabelian group oforder 3p. Additionally, if
p 2.3 q- for some integer > 2, then the Galois group is a Burnside group.

Proof.
[6].

Follows from (5.1) by taking rn 3 and n and the Theorem of Nagai

THEOREM (5.5). Let m and n be positive integers. Let (ri)ieN be a sequence of
positive integers such that each integer ri is prime to the integer pfor < <_ n 1,
rn 1, and ri+n ri d- mff for every N.
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Let f -i=l a X pi wherefor every >_ 1, the element ai is a nonzero element
ofthe field k. Let s pn 1, d gcd(m, s), and s* s*. Assume that > 1. Let

G be the group ofall L-automorphisms ofthefield k((XT;))(f). Then we have the
following.

(5.5.1) The field L(f) is a finite, algebraic, separable extension of the field L of
degree pn.

(5.5.2) Thefieldk X 7; )) f is the least normal extension ofthefield L containing
the element f Moreover, it is a Galois extension of the field L ofdegree
s*pn with the group G as the Galois group.

(5.5.3) There exist subgroups H and K of the Galois group G such that the
subgroup H is isomorphic to a direct sum of n copies of cyclic group of
orderp and the subgroup K is isomorphic to the cyclic group oforder s*.
Moreover, the Galois group G is isomorphic to the semidirect product of
H and K.

pn-i pn-iProof. Let F(Z) Zf xmz (an xrn + -_ a Xrj ). Then it is easy
to see that F(f) 0..Moreover, the polynomial F(Z) is irreducible and separable
over the field L. Hence (5.5.1) follows.

Let w be the (p" 1) th primitive root of unity. Let m* m Then it is easy
m*

to see that the set{f+wiXs--r" < < s} U {f} is the set of all roots of the
polynomial F(Z). Let E be a root field of the polynomial Zf-1 Xm over the field
L(f). Then by Lemma A5 of Abhyankar [2] we have [E L(f)] s*. Therefore,
[E L] s* pn. Let E* be a root field of the polynomial zPn Xm over the field L
in the field E. Then by Lemma A5 of Abhyankar [2] we have [E E*] pn. Hence

E* k((XT;)). Therefore it follows that E E*(f). Since [E E*] pn, the

polynomial F(Z) is the minimal polynomial of the element f over the field k((X 7; )).
Consequently we get (5.5.2).

Let H be the Galois group of the field k((X 7;))(f) over the field k((X 7: )). Let
m*

t7 (f) f + w X" for 1 < < pn 1. Then it is easy to see that the group H is
isomorphic to a direct sum of n copies of cyclic group of order p. Additionally, since

the field k((X 7; )) is a normal extension of the field L, the subgroup H is normal in

the group G. Let r G be such that r(f) f and r(XT;) uXT;, where u is
an (s*)th primitive root of unity. Let K be the subgroup of the group G generated
by the element r. Clearly ord(K) s*. It is also easy to see that trl r # rtr and
H N K {e}, where e is the identity element of the group G. Consequently it follows
that the group G is isomorphic to the semidirect product of H and K. Thus we get
(5.5.3).
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COROLLARY (5.6). Let m and n be positive integers. Let (ri)iN be a sequence
ofpositive integers such that each integer ri is prime to pfor < < n 1, rn 1,

ptand ri+n ri + mp’ for every N. Let f YiC=l a X pi wherefor every > 1,
the element ai is a nonzero element of the field k. If the integer pn divides the
integer m then thefield L(f) is a Galois extension ofthefield L ofdegree pn and the
Galois group is isomorphic to a direct sum ofn copies of cyclic group oforder p.

Proof The proof is subsumed in the proof of Theorem (5.5).
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