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INFINITE DIMENSIONAL HOMOGENEOUS
REDUCTIVE SPACES AND FINITE INDEX

CONDITIONAL EXPECTATIONS

E. ANDRUCHOW, A. LAROTONDA, L. RECHT AND D. STOJANOFF

1. Introduction

In recent years several papers appeared dealing with the concept of infinite di-
mensional homogeneous reductive space modelled on C*-algebras ([CPR1 ], [CPR2],
[LR], [MR], [M], [Ma], JARS], [AS1], [AS2], [ACS]). A hornogeneous reductive
space (abbreviated: HRS) is a differentiable manifold Q and a smooth transitive ac-
tion of a Banach-Lie group G generally the group of invertibles or unitaries of a
C*-algebra) on Q, L: G Q -- Q with the following properties.

Homogeneous structure. For each p 6 Q the map

Zrp" G - Q 7rp(g) Le, p

is a principal bundle with structure group Ip {g G: Le,p /9} (called the
isotropy group of p).

Reductive structure. For each p Q there exists a linear subspace Hp of the Lie
algebra of G such that

H @Z (Zp Lie algebra of I)

is invariant under the natural action of Ip and such that the distribution p - Hp is
smooth.

In the cases we are interested in, G is the group of invertible (resp. unitary)
elements of a C*-algebra A, and therefore identifies with ,A (resp. the real Banach
space of antihermitic elements of A). Moreover the groups Ip turn out to be the
groups of invertible (resp. unitary) elements of certain Banach (resp. C*-algebra)
algebras/p C A, and the supplement H is realized as the kernel of some conditional
expectations Ep: ,A /p. The latter seems to be a slightly stronger condition than
the one required in the general case, although it is equivalent in some cases (see
[ACS]).

Perhaps the most important example of an HRS, and certainly the best under-
stood, is that of the Grassmanians of a C*-algebra, namely, the space of selfadjoint
projections of the algebra. It is a fact (see [PR1] and [CPR1]) that each connected
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component of this space is an HRS under the action (by inner automorphisms) of the
unitary group of the algebra. That is, if /is a C*-algebra, U its unitary group and
p is a selfadjoint projection of .M,

Lup upu*, u U.
In this example the isotropy group Ip is the unitary group of {p}’ NAd. The reductive
structure is given by the conditional expectation

A4 m - pmp + (1 p)m(1 p) {p}’ tq .A4.

In this paper we present a natural representation for general HRS Q, whose reduc-
tive structure is determined by a faithful conditional expectation, into the Grassmanian
of an extension of the given C*-algebra. Any such HRS, under the action of the group
of invertibles Gt of a C*-algebra 4, is mapped diffeomorphically onto the orbit

Q S4(p) {gpg-1. g Gt}

for a suitable selfadjoint projection p lying on an extension of .A (Prop. 3.5).
These orbits were considered in [AS] in the von Neumann algebra case. This paper

generalizes those results to the C*-algebra context. The basic tool is Stinespring’s
theorem ([Sti, Th. 1] or [Ar]) in order to obtain a Jones-like basic construction for
a given conditional expectation between C*-algebras. Let E" .A /3 be the ex-
pectation that determines the reductive structure of Q. By Stinespring’s theorem we
obtain a Hilbert space K, a representation zr of.A in L(K) and a selfadjoint projection
p L(K) with analogous properties as Jones’ projection (see 2.4). The extension
.A4 mentioned above is the C*-algebra generated by 4 and p in L(K).
We prove that the orbit SA(p) ( Q) is a submanifold of the full orbit$(p)

{mpm-" m G} of p in A/[ if and only if the index of E is finite (Th. 6.6).
Here we use the notion of index (called weak index in the von Neumann algebra

framework, see [BDH]) defined as follows" E has finite index if

0 < ,k sup{ 6 Iiz0: E (a)II >_ Ila II, for all a 6 .A+ }.

In that case define Ind(E) ,k-. Otherwise, Ind(E) . The finiteness of this
index is a condition weaker than Watatani’s finite type condition (see [Wa]).

Suppose that Q admits an involution (see [MR]). Let 79 be the submanifold of
"selfadjoint" elements of Q, which is itself an HRS under the action of Ut. The same
results hold for the space 72, replacing similarity by unitary orbit of the projection p.
We introduce a natural Finsler structure on 72 (Section 4). It turns out that the basic

representation becomes isometric when one considers the natural Finsler metric on
the Grassmanians of .A/[ and what we call the P-Finsler metric on 72. This metric is
a kind of a 2-norm in terms of the conditional expectation.

In the case ofHRS with finite index conditional expectations (denoted FHRS), we
construct an equivariant distribution of projections

’q" TLtM (p)q Tblt(p)q
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from the tangent spaces of Ha(p) onto the correspondent tangent spaces of the
submanifold H.4 (P). This enables one to define a "spatial" linear connection in 79,
projecting the reductive linear connection of the Grassmanians of1 (Section 7).
We prove that the spatial and reductive connections of 79 do not coincide but they

have the same geodesics. We obtain explicit formulas for the spatial and reductive
linear connections (on 79 and HA(p)) and we show that the spatial connection is
the average of the classifying connection (see [MR]) and the reductive connection
(Section 8).

2. The basic construction

Let H be a separable Hilbert space and denote by L(H) the algebra of bounded
operators on H. Let/3 C J[ C L(H)be C*-algebras, Gt the group of invertible
elements of A and E: A /3 a conditional expectation. In particular (see for
example [Str, 9.3]) E: A ---> L(H) is completely positive. So we can apply the
Stinespring Theorem"

2.1 PROPOSITION. Let/ C .A C L(H) be C*-algebras and E: 4 -- I a
conditional expectation. Then there exist a Hilbert space K, a ,-representation
zr: 4 --+ L(K) and a partial isometry V L(H, K) such that, for all a

E(a) V*zr(a)V.

Proof. Apply Stinespring’s theorem to the completely positive map E.

2.2 Remarks. (2.2.1) The operator V L(H, K) of 2.1 is an isometry with range
K1 V(H). So the projector PK, equals VV*.

(2.2.2) The mapa - VaV* is a faithful representation of A into L(K), since
V: H ---> K1 is unitary. We shall identify H with K, and then we can suppose that
HCK.

(2.2.3) Given a e jr, the projection p V V* gives a matrix representation of
zr(a) in the following form:

(2.2.4) If b 6/3, then

(E(a) a12’rr(a)
\ a21 a22,/

where r: /3 --+ L(K2) is a ,-representation (not necessarily faithful).

Proof. (2.2.1) Clear since E (1) and therefore V* V.
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(2.2.3) If a 6 kerE, by 2.1, 0 V*r(a)V. Then all prc(a)p 0. On the
other hand, E(a)= E(E(a))= V*re(E(a))V. Then using the identification 2.2.2,

re(E(a)) pre(E(a))p-- VE(a)V* E(a).

(2.2.4) Suppose that b ]3sa and let

(ab a*)re(b)
c

Then

re(b2)=rc(b)2=(b2+a*a :).
So b2 E(b2) b2 + a*a. Therefore a*a a 0 and re(b) is diagonal. The
general case follows using the real and imaginary parts of a general b 6/3. Finally if

then it is clear that r(b) c defines a .-representation of/3.
Summarizing, we have proved the following theorem.

2.3 THEOREM. Let C 4 C L(H)andE: 13 --+ tbeaconditionalexpectation.
Then there exist a Hilbert space H C K and a ,-representation re: L(K) such
that, if K H _1_ K2, then:

(1)

re(a)= (E(a) a2).
\ a21 a22/

(2) Ifb 13, then

o)re(b) r(b)

where r: 13 -- L(K2) is a ,-representation.

Ifthe conditional expectation E is faithful, it is easy to verify that the representation
re of the Theorem 2.3 is also faithful.

2.4 We shall now prove a list of nice properties of the representation re of 2.3 when
E is faithful. Using the same notations as in 2.2 (recall that p Pt-/6 L(K)):

(2.4.1) If a 4 then pre(a)p re(E(a))p.
(2.4.2) Denote by {p}’ the commutant of p in L(K). Then {p}’ (3 re(4) re(B).
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(2.4.3) For a ,4, rc(a)p 0 = a O.
(2.4.4) Let M be the C*-algebra generated in L(K) by re(.A) tO {p} (if/3 and 4

are W*-algebras, we shall consider A//= (re(A) tO {p})" ). Then

.Mo ao + ai pbi
i=1

ai, bi re(t)}
is a norm dense ,-subalgebra of .A4 (a-weak dense for W*-algebras).

(2.4.5) The map 13 b re(b)p pMp defines a ,-isomorphism from/3 onto
pMp C L(H) L(p(K)).

Proof (2.4.1) Clear using the matricial picture of Th. 2.3.
(2.4.2) Suppose that g 6 .A and re(g) diagonal (i.e., re(g) 6 {p}’). Then re(g)

(E(og) ).Leth=g-E(g),
o)d*d := E(h*h) O.

The assumption that E is faithful implies that h 0 and g /3.
(2.4.3) Let a 4 such that re(a)p 0. Then

(00 be) (00 0 )andE(a*a)=O=a=Ore(a) re(a’a) b*b + c*c

(2.4.4) Property 2.4.1 implies that A/[0 is a ,-subalgebra of .A4 and the density
follows easily.

(2.4.5): b re(b)p is a ,-isomorphism by 2.4.1 and 2.4.3. It remains to prove
the surjectivity. Let m0 re(a0) + re(ai)pre(bi) Jo. Then by 2.4.1,

pmop re(E(ao))p + Ere(E(ai)E(bi))p re (E(ao) + E E(ai)E(bi)) p
and therefore pmop re(13)p. Since b re(b)p is ,-morphism of C*-algebras,
then

re(/3)p D (p.A/[0p) pimp.

For the W*-algebra case see [AS2].

3. Representation of homogeneous reductive spaces

3.1. Let ,4 C L(H) be a C*-algebra with invertible group Gut and unitary group
Uut. Let Q be a homogeneous reductive space (HRS) with involution under the action
of Gut, named Lg for g 6 Gut. Fix p 6 Q selfadjoint such that the map

Gut-- Q given by rep(g)=Lgp, g6Gut
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is surjective (i.e., the action is transitive). Let 79 C Q by the unitary orbit of p; that
is 72 {rp(u): u Ut}. So 72 is also a homogeneous reductive space. Actually 72
consists of the selfadjoint points of Q (see [MR]). Suppose that the isotropy group
of p is the group G of invertibles of a C*-subalgebra B of and that the reductive
structure is given by a conditional expectation E: A B. This means that the
horizontal space at the identity of G

Using Theorems 2.3 and 2.4 we obtain a Hilbea space K 3 H, a .-representaion
of on K, the projector p Pn and the C*-algebra C*((A), p). We want

to represent the space Q into the well studied HRS Q of idempotents in . Let
K2 K H K HX. Consider the 2 x 2 matrix representation of L(K) given
by p Pn and I p Pr:. The assignment

can be extended to Q in the following way: given g

Lgp (Lgp) n(g)pn(g)-i
(3.2)

S(p)

where S(p) {hph-: h G} denotes the -similarity orbit of p (which
coincides with the connected component of p in Q; see [CPR2]). That it is well-
defined follows from the fact that g G Lgp p, and then, by 2.3, (g) is
a diagonal matrix which commutes with p. Note that since p 6 P (the space of
oahogonal projectors of ), then ()

3.3 Definition. Given an HRS Q as in 3.1, we denote by the basic representation
of Q the map 89 of 3.2. The following diagram is commutative:

Gt GM
(3.4) zrt, $ ,[, Zrp

3.5 PROPOSITION. The basic representation (o of Q is a C map. It is also one
to one if the conditional expectation Ep is faithful.

Proof. Recall from 2.4.2. that if g 6 .A and r (g) is diagonal, then g 6/3. If

rc(gl)pzr(g) -1 7r(g2)prr(g2)-then r(g-lg2) commutes with p and therefore g-(g2 13. So 89 is one to one. Since

r has C local cross sections Q is an HRS), it is clear from the diagram (3.4) that
89 is a C map.
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3.6 Remark. The image of Q by the basic representation is the orbit of p by the
action of Gt. Let

SA(p) r(g)p:r(g)-l" g E GA} 9(Q).

Analogously, (T’)=/,/A(P) rr(u)Pzr(u)-" u UA}.

4. The P-Finsler structure on T’

From now on we suppose that Ep is faithful. Denote by TQp the tangent space
of Q at/9 and let K" T QR H kerE be the natural isomorphism Kp
((Tzrp) np)- I. If/9 P, denote also by KR the analogous linear isomorphism for
the unitary case,

Kp: TT’)p /’p {h ker Ep" h* -h }, Kp (T(zrp)ltp)-.
4.1 Given p 79 and X T’Pp we define the P-norm of X as

IIXlIP -IlEp(Kp(X)*Kp(X))l[ /2.

In matrix form,

7r(Kp(X)) (a210 -al.a22]
So Ep(Kp(X)*Kp(X)) aa2, and

i1( 0
(4.2) IlXlle

a2 Ilaa2111 /2 Ila:z 11.

4.3 Remark. With the P-Finsler structure defined above, the group Ut acts iso-
metrically on T. That is, if X T79p and ff Lup for a fixed u UA, then

IIT(Zu)p(X)lie --IlXll.
Indeed, note that K(T(Lu)p(X)) Ad(u)o Kp(X) and E Ad(u)o Ep Ad(u*)
(see [MR]). Therefore

IIT(L)p(X)Ile IIE(K(T(L)p(X))*K(T(L,)p(X)))II
IluEp(g(x)*gp(X))u*ll

Let (T)p" TQp TQ(K)e be the derivative of the C map " Q Q(K)
at p. Recall that T Q(K)p consists of the "antidiagonal" matrices ( ). It is easy to

verify that for X TQp such that (Kp(X)) (a, a,:
a22

(4.4) (T)p(X) (Kp(X))p p(Kp(X)) and then

II(T)p(X)II ( 0
a21
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If moreover X TTvp, then, as in 4.2, zr(Kp(X)) (a02, -ala22,)" Therefore using 4.4,

In other words (T)p is an isometry in the selfadjoint case. So we have the following:

4.6 PROPOSITION. Let 79 be a selfadjoint HRS under the action of the unitary
group UA ofa C*-algebra with reductive structure defined at p 79 by afaithful
conditional expectation Ep. Then the basic representation : 79 -, 79(K) of 3.3 is
an isometry from the P-Finsler metric on 79 to the natural Finsler metric of 79(K)
(see CPR ]).

There is another natural Finsler metric on 79. It is given by

(4.7) IlXll IIKp(X)II, X rTp.

4.8 PROPOSITION. The norms liP and of4.7 are equivalent on T79 ifand
only if there exists 0 < Z such that ilEp(a)ll >_ Zllallfor all positive a j[+.

Proof. Since Ep is a contraction it is clear that for all X T79p, IIXIle <
IlKp(X)llt. Put x Kp(X). Recall that in this case x* -x.

If there exists 0 < . such that IIEp(a)ll >_ .llall for all 0 < a A, then

IIXIIp IlEp(x*x)ll /2 > /211x*xll /2

and the two norms are equivalent.
Conversely, suppose that for all n N, there exists 0 < an 4 such that ][an 1]

and llEp(a)t] < 1/n. Let bn Ep(an). Therefore,.since Ep(a2) > Ep(an)2, also
IIEp(a)ll IIbll _< (1/n) 1/2. Let hn (I Ep)(an) an bn Hp ker Ep.

2Then h* hn. For some no we have n > no = Ilhnll > 1/2. Since an
b2n -[- h2n -[- hnbn -[- bnhn,

IIEp(h)ll ItEp(a2n) b211 0.
n---o

Since Kp(TTgp)= {h kerEp" h* =-h}, there exist Xn TTVp such that
Kp(X) ih. Then

tlXn P ItE(hn2) I1 /2 0 but [lihn It > 1/2
n-- cx

for n > no. So the two norms are not equivalent. This completes the proof.
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4.9 Remark. Let b Kp(TPp) {h 6 ker Ep" h* -h}. Using 2.3 we have

(4.10) rr(b)=(a0 -a*)c
where c -c* 6 L(K2) and a L(H, K2). It is easy to see that another condition
equivalent to those of4.8 is the following" with the notation of4.10, the linear operator
a - c is bounded; i.e., there exists 0 < ) 6 ] such that Ilcll _< .llall for all possible
a L(H, K2). Recall that if E, is faithful, this map is well defined as was shown in
the proof of 3.5.

5. Conditional expectations with finite Jones index

There are several definitions of the index of a conditional expectation E: A
B C A for/3 C A, an inclusion of general C*-algebras. See, for example, [J], [PP],
[K], [L], [BDH], [Wa] and, in particular, [AS2] where the concept is applied in this
context.

5.1 Definition. Let/3 C Jt be an inclusion of C*-algebras and E: 4 -- /3 C Jt
a conditional expectation. Then E hasfinite index if

0 < ) sup{ e >_0" IlE(a)l[ llall, for all a 6 .A+}.

In that case define Ind(E) .-. Otherwise, Ind(E)

This definition agrees with the general definition when A and/3 are factors (see
[L]). For general von Neumann algebras Ind(E) is known as the "weak index" of E
(see [BDH]). For general C*-algebras our definition of finite index is weaker than
Watatani’s condition (see [Wa]) of conditional expectations of"finite type". Actually
Watatani’s index is not necessarily a scalar but an element of the center of 4. Let

M {r(a)prc(b)" a, b 4} C Mo

where 7r, p, A/land Ado are related to E as in 2.4. Then E is offinite type (see [Wa])
iff

(i) Ind E < c (5.1) and
(ii) .A// is dense in .M, that is, lies in the norm closure of

However, for applications concerning HRS, the weaker Definition 5.1 is appropriate.
In what follows we shall use just this condition.

5.2. We are interested in HRS’s whose reductive structure is given by finite index
conditional expectations. Let us call these spacesfinite homogeneous reductive spaces
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(denoted FHRS). In view of 4.8, selfadjoint HRS’s are finite iff the P and the usual
Finsler metrics are equivalent. In [AS2], an FHRS associated to every finite index
conditional expectation between von Neumann algebras is constructed. A similar
construction will be done for general finite index expectations between C*-algebras.
Also, the following statement proves that a large class of HRS’s are finite.

5.3 PROPOSITION. Let G be a compact Hausdorff group, t a C*-algebra and
/3: G -- Ut a norm continuous unitary representation ofG on 4. Consider fit C
t the subalgebra ofelements oft invariantfor the action of G, and E" t -- tthe conditional expectation defined by

E(a) f (u)a(u)* dm(u),

where dm(u) means integraton with the invariant Haar measure m of G.
Then Ind(Ea) <

Proof Let a 6 .A+. Take e, 8 > 0 and an open set V C G such that V and

(1) m(V) 8, and
(2) if u 6 V then II1 -/(u*)ll < .

A convenient ,-representation of 4 on a Hilbert space H (via GNS) allows one to
choose x H such that IIx and Ila (ax, x). Then

IIE(a)ll ((f6(u)a(u)*dm(u))x,x)
.]i (a6(u)*x, 6(u)*x) dm(u)

>_fvllalldm(u)-3"fvllalldm(u)
(1 3e)llall

Since (1 3e)8 is independent of a, this proves that Ind(E6) < ((1 3e)8)-1

and the prooof is complete.

5.4 PROPOSITION. With the notations of 2.4, Ind(E) < x zr(4)p is norm
closed in J[. In that case the map K" rr(4)p -- rr(t) given by K(7r(a)p) 7r(a)
is bounded with norm (Ind(E)) 1/2.

Proof

(5.5)

Let a 6 4, a’= rr(a) and 0 < ) (Ind(E)) -1. Then

Ila’pll= Ilpa’*a’Pll IIE(a*a)ll >_ )lla*all .lla’ll 2.



64 E. ANDRUCHOW, A. LAROTONDA, L. RECHT, D. STOJANOFF

Therefore the map a’ a’p is bounded from below and rr(j[)p is norm closed. If
Ind(E) o, let an 4+ such that [[an[[ and [IE(an)]! _< 1/n. As in 5.5, tc is
unbounded. On the other hand if zr (.A)p were norm closed x should be bounded by
the open mapping theorem. Using 5.5 it is easy to see that [[xt[ -/2.

In what follows, as in 2.4 we consider an inclusion of C*-algebras B C .A, a
conditional expectation E: A -- /3 and the corresponding K, zr" 4 L(K),
P Pn T’(K), .h4 and .M0 (see 2.4). The following results are generalizations to
C*-algebras of identical results appearing in [AS2, Section 2.].

From now on let us write x’ zr(x) for any x A.

5.6 PROPOSITION. zr(t)p is closed in norm iff.A4p rr(jt)p.

Proof. Clearly if A//p zr (Jr) p, then zr (.A)p is norm closed. Conversely sup-
pose that zr(A)p is closed. Then, as in the preceeding result, [[a’[[ _< )-l/2[[a’p[[ for
all a .,4. By 2.4.4,

.3.4o ao -[- a j p a2 j n 1I a ,,At
<j<n

a’is norm dense in.M. Letm .M with [[ml[ < andxk a0,k+-_<j_<,, al,j,: p 2,j,k
be a sequence in .h40 converging to m. Clearly, xkp converges to mp and

Xkp aOP + z..., a,j, E(a2,j,)’p cp
_

rr(jt)p.
l<j<n

is a Cauchy sequence,Therefore the sequence ao + Yl<_j<_n al,j,k g(a2,j,k)’ ck
since llc c+ill <_ .-/2[lXk xk+ill. Let a’ zr(A) be the limit of the sequence
c. Then mp a’p and the proof is complete.

6. The basic representation for FHRS

Let Q be an HRS with involution under the transitive action of Gut and let 79 be its
selfadjoint part. It is a fact (see [MR]) that 79 is an HRS under the action of Uut. Fix
p 79 and suppose that the reductive structure of Q is determined by the conditional
expectation Ep: A /3. Consider the basic representation : Q -- Q as in
(3.3). Recall from (3.6) that

,Sut(P) zc(g)p:r(g) -l" g - Gut} a(Q),

and

(79) Hut(p) :r(u)pzr(u)-" u Uut}.

In this section we will study the topological and differentiable structures of these
orbits. Using a result by Herrero ([AFHV], Th. 16.3), since/3 is complemented in A
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(using ker Ep as a supplement), the quotient map Gut -- Gut/Gt - Sut(p) admits
continuous local cross sections. The following statements show that when the index is
finite the quotient topology agrees with the norm topology induced on Sut(p) by .h//.

6.1 PROPOSITION. If the index Ind(Et,) < o then the map 7gp" Gut - Sut(p)
has continuous local cross sections.

Proof. Letg Gut and g’pg’-I Sut(p) suchthat IIg’pg’-l-pll < Ind(E)-1/2.
Then IIg’pg’-lp pl[ IIg’E(g-l)’p P[I < Ind(E)-/2 and since the norm of the
mapa’p a’,a tislnd(E)/E, wehave llgE(g-1)- lll < andgE(g-1) Gut.

Define q (g’pg’- 1) gE(g- 1). Clearly 4 is well defined and continuous at p
(and therefore continuous at every point of its domain by a standard argument of
homogeneous spaces). It is a cross section for zrp:

dp(g’pg’-)pdp(g’pg’-l)-1 g’pg’-.

6.2 Remark. With the same techniques it can be shown that Ind(E) < cx implies
/gut (p) has unitary local cross sections. Indeed

qbv(u’pu’*)--qb(u’pu’*) [(u’pu’*)[ -1 Uut

is a unitary local cross section for 7t’p: Uut /Jut(p).
The existence of continuous local cross sections guarantees that Sut(p) and Hut(p)

are analytic (resp. C) homogeneous spaces in the general case (Ind(E) not neces-
sarily finite). However these spaces may not be submanifolds of.A4. We have shown
that the finite index condition implies that in these orbits the quotient and the norm
topology coincide. The next results show that this condition also implies that Sut(p)
and/gut (p) are submanifolds of A//. Moreover, Ind(E) < cx is necessary for these
orbits to be submanifolds of .M:

6.3 PROPOSITION.
submanifold of.hd

Ifthe index ofE" A - 13 isfinite, then Sut(p) is an analytic

Proof. If the index is finite, then zr (A)p is closed in norm. By 5.6, this implies
that zr (Jr)p Ad p. Recall that the cross section defined in 6.1 is given by

Sut(p) g’pg’-I w- g,pg,-lp g,Eo(g-l),p
_

gE(g-l).

Since rr (A)p .Mp, this map can be extended to a neighborhood of p in .M:

m - mp .A/lp rt (.4)p followed by the linear isomorphism zr (A)p -- A.

Clearly, this extension is an analytic map. Therefore the proposition follows (see
IRa] and [AS ]).
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6.4 Remark. With the same hypothesis,/Jt(p) is a C submanifold of .M. In
fact, the unitary cross section defined in 6.2, can be extended in an analogous way.

6.5 PROPOSITION. If the unitary orbit blur(p) is a C submanifold of .M and a
C homogeneous space under the action of Ut, then the index of Ep isfinite.

Proof. Note that b/t(p) is also a C homogeneous space under the action of
U.(t zr(Ut). Therefore there exists a C map 0,

O" Wc.MM,

from an open neighborhood W of p in .M, such that 0 restricted to W N/acA (p) is a
cross section of Zrp. Let us consider the action of U.(t on p by left multiplication. We
claim that when such a map 0 exists, then the orbit U,r(tp {u’p .M: u’ Ur(.a
is also a homogeneous space under this new action of Ur(.a. In particular, this implies
that its tangent space at p, {a’p: a .A, a* -a}, is closed and complemented in
.M. This implies that zr(c4s)p is closed in Ad (As= selfadjoint elements of .A), and
therefore, as in 5.4, the index is finite.

So it remains to prove that the orbit U.(tp is a homogeneous space. Let A be
the isomorphism from padp to zr (B), and let tr: V c .M -- .M,

tr(x) O(xx*)A(pO(xx*)*xp).

Clearly, cr is a C map defined on the open subset V consisting of all x in .M such
that xx* lies in the domain of 0. Observe that if x u’p then xx* u’pu’*, so
that cr(u’p) O(u’pu’*)A(pO(u’pu’*)*u’p). On the other hand, since 0 restricted to
the unitary orbit/dt(p) of p is a cross section for Zrp, u’pu’* 0 (u’pu’*)pO (u’pu’*)*,
which implies that O(u’pu’*)*u’ re(B). Therefore A(pO(u’pu’*)*u’p)
O(u’pu’*)*u’, and cr(u’p) u’. In other words, we have found a C map de-
fined around p, whose restriction to U(A)p is a cross section for the action of Ur(A).
Then U,r(.a)p is a homogeneous space and the proof is complete.
We can summarize the information in the following theorem.

6.6 THEOREM. (6.6.1) Let Q be anHRSwith involution under the transitive action

of GA and let 79 be its selfadjoint part. Fix p 79 and suppose that the reductive
structure of Q is determined by the conditional expectation Ep: t 13. Consider
the basic representation : Q QM as in (3.3). Then thefollowing conditions are

equivalent:

(a) Q is a finite homogeneous space (that is Ind(E;) < o).
(b) SA(p) Q) is an analytic Banach homogeneous space under the action

ofGA and an analytic submanifold of.All.
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(c) Hut (p) a (79) is a C Banach homogeneous space under the action of Uut
and a C submanifold ofJ4.

(d) The norms P of4.1 and of4.7 are equivalent on the tangent space T790.

(6.6.2) Let 13 C .A be C*-algebras and let E: t --+ 13 be a faithful conditional
expectation. Consider K, re, p and .All as in 2.4. Then, thefollowing statements are
equivalent:

(a) The index of E: t -+ 13 is finite.
(b) rc(.A)p is norm closed in
(c) re G4)p A4p
(d) Sut(p) is an analytic Banach homogeneous space under the action ofGut and

an analytic submanifold of
(e) /gut (p) is a C Banach homogeneous space under the action ofHut and a C

submanifold of

7. Projecting TSM(p) onto TSut(p)

Let Q be an HRS with involution under the transitive action of Gut and let 79
be its selfadjoint part. Fix p 6 79 and suppose that the reductive structure of Q is
determined by the conditional expectation E Eo: A -- /3. Consider the basic
representation : Q --+ QM as in (3.3).

In what follows, we shall identify 4 with zr(4) C .Ad and also suppose that
Ind(E) < cxz. Using 6.6 and the basic facts about HRS (see [MR] or [AS2]), it is
easy to obtain the following result.

7.1 Remark. With the hypothesis considered above there is a natural HRS struc-
ture with involution on Sut(p), determined by the expectation E. Then turns out
to be a HRS diffeomorphism

so: S.a(p)

which preserves the involution. Therefore it is also a diffeomorphism between the
selfadjoint parts 79 and/gut(p).

In this case it is possible to define the bounded linear map R: A/[ .A given by

(7.2) A49m- R(m)=a where a64

is the unique element such that mp ap.

In other words, using .A//p Ap one can define R(m) x(mp) .,4. It is
straightforward to verify that R has the following properties:
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7.3 Remark. (7.3.1) IIRII Ind(E) 1/2.
(7.3.2) R restricted to Sut(p) near p is the local cross section 4 of Zrp" Gt

S.a (p) constructed in 6.1.
(7.3.3) If X 6 TSt(P)p then R(X) Hp. Therefore Rlrsp)p Kp in the sense

of 4.
(7.3.4) Let Rv (m) R(m)lR (m)l- be the C map defined in the open neigh-

bourhood )2 {m 6 A4" R(m) G} of p in .M. Then Rvlvnup) 4, the
local cross section of the action of Uut on b/ut(p) constructed in 6.2.
The natural consequence of these facts is the following:

7.4 PROPOSITION. The map P L(.M) defined by

P(m) R(m)p pR(m) [R(m), p], m

defines aprojectionfrom TS(p)p onto TSA(p)p withnorm P I1<) 2 Ind(E) 1/2.
Also, the map Pu" Tldvl (p)p -+ TLtut (p)p given by

P(m) + P(m)* [ R(m)- R(m)* ]Pu(m)
2 2

p

is a projection with IIP IITUMp)p < Ind(E) /2.

Proof. The first statement can be easily derived using the fact that P restricted to
the tangent space TS(p)p coincides with T(rp) o R and using IIRI! Ind(E) /2.
On the other hand

0
A/l: a 6 (1 p).A4p

Letm (a0 ao*) Tlgvl(p)p. If

R(m)=(a0 a) E.A,

then

eu(m) (aO-b ")
Note that the tangent vectors of Tblut (p)p are of the form Z [z, p] with -z* z 6

Hp ker E, or in matrix form

(ao -:*)(7.5) z with d* -d.
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It follows that R(Z) z because they have the same first column. So Pu(Z) Z
for Z Tlgut(p)p and Pu(TLt(p)p)= Tblut(p)p since Rm)-Rmr

2 Hp and is
skew-symmetric for all m TLIA4(p)p. To prove the norm inequality, note that if

m Tlgv(p)p then Rm)_Rm), _(0a -a*)2 d
and therefore

Finally

IIP(m)ll
R(m)- R(m)* R(m)- R(m)*

p--p
2 2

R(m)- R(m)*
_< IIg(m)ll.

The statement follows using IIRII Ind(E) 1/2.

7.6. We can transfer the projections P and Pu through the similarity (resp. unitary)
orbits Sut(p) (resp. Hut(p)) in the usual way. Put

(7.6.1) lip P and ligpg-, Ad(g) o lip o Ad(g-), g Gut,

and

(7.6.2) ,p Pu and U,wpw, Ad(w) o F,p o Ad(w*),

In order that these distributions are well defined we need the following lemma.

7.7 LEMMA. Ifh Gt3 (resp. v Ut) then Ad(h) o lip o Ad(h-) Flp (resp.
Ad(v) o Ep o Ad(v*) Ep).

Proof. Recall that if b 6/3, then its matrix is of the form b (’ b)" Therefore
hmh-p hmph- hR(m)ph- hR(m)h-p and the first equality holds
since h commutes with p. For the unitary case, the same argument shows that
vmv*p vR(m) v* p. Therefore

2Ep(vmv*) [R(vmv*) R(vmv*)*, p]

v[R(m) R(m)*, ply*

and Ad(v) o Ep o Ad(v*) Ep.
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7.8 PROPOSITION. The distributions SA(p) r w- I’I and LIA(p) q w+ q
with range in L(JI) have thefollowing properties.

(a) They are well defined C maps.
(b) For each r E $t(P), I’Ir projects T(S.Aa(P))r onto T(,SA(p))r
(b2) For each q HA(p), q projects T(H./v(p))q onto T(HA(p))q
(c) For each q HA(p), q Iltv) < Ind(E) /2.

Proof. Part (a) follows from the preceeding lemma. Smoothness of the distri-
butions can be proved using the existence of C local cross sections in both the
similarity and unitary orbits.

If q gpg- then T(S4(p))q gT(S(p))pg-1 (see [MR]) and (bl) follows.
(b2) follows from analogous considerations. Property (c) is completely apparent using
7.4.

8. Linear connections in THA(p)

In this section we shall introduce three covariant derivatives on the tangent bundle
THat(p): the reductive connection D (8.3), the clasifying connection Dc (8.12) and
the spatial connection D (8.2). It is a remarkable fact that the three share the same
geodesic curves (8.8). The first two come from the general theory of HRS’s and we
refer the reader again to [MR].

In order to define the third one we recall the definition of the covariant derivative
of the Grassmannians. In [CPR1], Corach, Porta and Recht introduced the natural
connection in the tangent bundle of the space of projections of a C*-algebra. Let ,
be a smooth curve in L/ (p) with F (0) p and X Xt a smooth vector field along
?,. Put V Vt (t). The covariant derivative of X along (in H(p)) is

nx : + IX, IV, ,]].(8.1)
dt

Using this connection and the family of projections E we can define a "spatial"
connection in the subamnifold L/t (p) C H(p).

8.2 Definition. Let ?’ be a smooth curve in/a’t(p) and X a smooth vector field
along ?’. Put V . Define the spatial covariant derivative of X along ,"

(: + IX, IV, ] ]).

8.3 Remark. Using the fact that HA(p) is an HRS, it has a linear connection
induced by the reductive structure. Recall (Section 4) the map K" THat(p) --
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He {h Hr" h* -h} which is the inverse of Trrl,0. We have proved that

Kp(m) R(m)-R(m)* From the general theory of HRS we know that the covariant2
Dderivative -37- is given by

D X) (KX) -- [gyx, gy V]K dt

Dwhere y, X and V are as in 8.2. In order to explicitly compute -37 we need the
following lemma:

8.4 LEMMA. Let q upu* Ltt(p). Then Kq(X) uR(u*Xu)u*.

Proof That it is well defined was proven in 7.6. Since Kupu. Ad(u) o Kp o

Ad(u*) it suffices to verify that Kp R. Note that this was proved in (7.3.3) for the
space SA(p). To see that the same holds for/,/t(p), it is enough to verify that for
X TLtt(P)p, R(X) Hp. This is easily deduced from 7.5.

In what follows we shall use capital letters to denote elements of the tangent
spaces and lower case letters to denote the corresponding elements in 4. Typically,
X gq (X) for X TLtt(p)q.

8.5 PROPOSITION. D X + [X, K V] + [X, v].dt

Proof Let X be a smooth vector field in t(p) along the smooth curve ?, with
velocity V. Using the previous lemma, it is easy to see that

[x, y]=X

and in particular

Taking derivatives, we have

[v, y]=V.

[, ] + Ix, v] : [, ] :- Ix, v].

Then

dt

[k, y]+[[x,v], y]

Ix, V] [y, x], v] Iv, ,], x] by the Jacobi identity

: Ix, v] [v, x] + IX, v]

2+[X,v].
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(a08.6. Let v be a typical element of p {v ker E: v* -v}.

Then the unique geodesic , (relative to Dr) such that ’ (0) p and (0) [v, p]
V0 is the curve (see [MR]):

(8.7) y: --+ HA(p) given by y(t) eto p e-t

We shall prove that ?’ is also a geodesic for Ds, the spatial covariant derivative of 8.2.
Note that:

(1) Vt ’(t) etV[v, p]e-tv . Tlg.a(p)p.
(2) f"t et[v, [v, p] ]e-t.
(3) [Vt, [Vt, r’(t)] et’[ Iv, p], Iv, p], p] ]e-’ et[Vo, [Vo, p]]e-t’.

Since the distribution , E is equivariant, in order to prove that ar,(t () 0
for all 6 I, it suffices to verify that

ButVo=[v,p]=(Oa

Similarly,

In other words, we have

Ep (Iv, Vo] + [Vo, [Vo, p] ]) 0.

Iv, Vo] vVo- roy

(0a --da*) (0a a)_ (0a a)(0a
(-a*a aOa,)_ (a;a a*d

\ da -aa*,]
(-2a*a -a*d
\ da 2aa* }

[Vo,[Vo p]]=(2ao*a 0 )-2aa*

DV
dt t=o

CLAIM.
0

R
da 0 (I- E)(v2).

Indeed,

(a0 ,)2 (-a*a1)2= -da \ da
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and

(l-E)(v2)= (a -a.d).
Then (I E)(v2) and ovW[t--o have the same first column and the claim is proved.

Note that v2 and (I E)(v2) are self-adjoint. Therefore, since C,p [(R
R*), p], Ep ([v, Vo] + [Vo, [Vo, p] ]) 0. So ?, is the unique geodesic relative to
D such that ?, (0) p and )(0) [v, p]. We have proven the following theorem:

8.8 THEOREM. Let 13 C ,A be C*-algebras and let E: 4 -- 13 be a conditional
expectation offinite index. Consider the induced HRS structure on blot (p) as in 6.6.
Then the spatial covariant derivative D and Dr, the one induced by the reductive
structure, have the same geodesics. Moreover, D is the unique covariant derivative
on the tangent space TLtt(p) without torsion with this property.

Now let us compute an explicit formula for the "spatial" covariant derivative D
of 8.2.

8.9 LEMMA. Let , be a smooth curve in bl,(p) with ’ (0) p and X a smooth

vectorfield along ,. Put V f/. If Kp(Vo) v (a*), then

Drx
dt t=0

DX

t=0

Proof

Therefore

Recall from 8.1 and 8.5 that

D X 2 -F [X, [V, p]] and
D X

dt dt

DrX DX
=IX, v-IV, p]].

dt dt

But V [v, p], and then V (a a0* ). Then

(a0 -a*)(a0v-[V,p]
d

_(o
and the proof is complete.

x+[x,v].

8.10 PROPOSITION. Let , be a smooth curve in HA(P) and X a smooth vector

field along ?’. Put V f/, x K (X), and v K (V). Then

1Dsx =j(+ {[X,v]+[V,x]}.
dt -
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Proof. Let v (a--*) and x =,bc )" Using the previous lemma and the fact
that U, (o._) it follows that

D X D X
(8.11)

dt dt

On the other hand,

and

v*Recall from7.3 that E(m) 5[R(m)- Re(m)*, ?’]. Sincex -x* and v
it follows that

E X, [ (I E)([x, v]), y] [ [x, v], r].

Therefore, by 8.11,

Dsx
dt

Drx
Ix, v], ]

dt 2

Yc + IX, v] + -[ Iv, x], 1, + IX, v] + { Iv, ], x] Ix, ],

, + { IX, v] + IV, x] }.

8.12 Remark. Another natural connection on the tangent bundle of a general
homogeneous reductive space Q is considered in [MR]. It is called the "classifying
connection" and can be briefly described as follows: Let X be a smooth vector field
along a smooth curve ?, on Q. Then the classifying covariant derivative of X
along }, is given by the relation

Kv dt
(I- E) -K(X)

where E denotes the projection onto the horizontal space of ,. It was shown in [MR]
that this connection has the same geodesics as the reductive connection. Moreover,
the average of these two connections gives rise to a new connection which has the
same geodesics as the previous ones, with vanishing torsion tensor.

In our context, Q b/t(p) D can be explicitly computed:
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8.13 PROPOSITION. Let X be a smooth vector field along a smooth curve , on
lgt(p). Let V f/. Then the classifying covariant derivative of X along , is
given by theformula

Dcx
dt

4-[V, K(X)] . + IV, x].

Moreover, the spatial connection D constructed via the basic representation realizes
the average ofD and Dc mentioned above.

Proof. Recall that for every tangent vector Y at q one has [Kq(Y), q] Y. Then

dt K dt ?’

[(I E)(A), ?’1
[,]

since E (A) commutes with ?,. Differentiating the relation X [x, ,] one obtains
.1 [, ,] + [x, V]. Therefore

Dcx
dt - Ix, v] : + IV, x].

Finally, combining the description of D given in 8.5 and D given in 8.10 with this
last formula one obtains

Dsx { DrX Dcx }dt =- dt
+ dt’
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