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VARIATION IN PROBABILITY, ERGODIC THEORY
AND ANALYSIS

MUSTAFA A. AKCOGLU, ROGER L. JONES AND PETER O. SCHWARTZ

1. Introduction

In many areas of analysis, ergodic theory and probability, square functions have
proven to be one of the most useful tools to study convergence properties. (See the
paper by Stein [17] for a very informative historical discussion of the importance
of various square functions in several areas.) For example, the martingale square
function was used by Burkholder, Gundy and Silverstein [7] to give the first real
variable characterization of Hp. An ergodic square function was used by Bourgain
[3] in his proof that the ergodic averages along the sequence of squares converge a.e.
In this paper we consider operators that are closely related to the square functions,
but have very different properties.

Let (k) denote an increasing sequence of or-fields. Then the martingale square
function is defined by

Sf(x) IE,f (x) Et,-f (x)l2

k=l

where Ek denotes the conditional expectation operator with respect to the a-field .T’k.
This operator, which maps LP to LP for each p, < p < o, gives a measure of the
square variation of the martingale sequence (E, f). It is natural to ask about the Lp

boundedness properties of the q-variation operator

Vq f(X) lEaf(x)- E-f(x)lq

k=l

for < q < 2. In Section 2 we show that if q < 2 then the operator Vq is very
badly behaved. In particular, we show that it is possible to have Vq f(x) o a.e.
even for bounded functions, f. The arguments provide a revealing contrast to the
Hilbert space techniques that come into play when q > 2. The martingale result is
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known [6], but we are unable to find a reference. We therefore supply a proof, which,
moreover, is a prototype of our arguments in the more complex situations that follow.

More generally, we consider pointwise convergent averaging operators of several
types: differentiaton operators, ergodic averages, and integration against the Poisson
kernel. Our interest is in demonstrating that even for nice functions the convergence
in each context is slow as measured by variation operators. Each new operator raises
new difficulties, but at the core of all our arguments is the concept of independence
and the Strong Law of Large Numbers. The ideas are most easily understood in the
case of martingales and so that case is presented first.

On LP([0, 1)) one may consider differentiation operators, Def(x) -g f f(x +
t)dt. For a decreasing sequence (k) we define the associated q-variation operator,

Vq,of(X) (kC__l [Dekf(x) Dek_,f(x)lq) 1/4. It was shown in [12, 13] that V2,o
is a bounded operator on LP, < p < cx, but we will see in Section 3 that quite
different behavior can occur if q 6 [1,2). We also consider, in Section 2, the
q-variation operator Vq.c that compares the dyadic martingale and the associated
dyadic differentiation operator. This operator,

gq,cf(x) ID2- f(x) Ekf(x)lq

k=l

is shown in [13] to be bounded in Lp, < p < xz, ifq 2. We show that if
q 6 1,2), this operator can diverge a.e. even for bounded functions.

There are similar questions in ergodic theory. Let An f denote the usual averages;
n--IAnf(X) -k=0 f(rkx)" Given an increasing sequence (nk), we can form the

q-variation operator

Vq,E f (X) IAn f(x) An_, f (x)lq
k=l

As in the differentiation case, it is known (see [11], [12], [13]) that for q 2, Vq,e
is a bounded operator on all LP(X), < p < x, and that it is weak type (1,1). (See
[3], [9], [10] for other related square functions.) However, we will show in Section 4
that for q 6 1,2), the properties of the operator depend on the sequence. This gives
perspective to the well known fact that there is no rate at which ergodic averages
converge.

In harmonic analysis other operators have also played an important role in measur-
ing the variation of a sequence of functions [3], [12], [13], [16]. In 1955, W. Rudin
15] looked at functions F which are analytic in the interior of the unit circle, and
studied the operator V(F, O)= f IF’(rei)ldr. He showed that there exists an an-
alytic function on the disc with continuous boundary values such that V (F, 0) cx
for a.e. 0. Standard calculus techniques show that this is equivalent to the existence
of a sequence (r) such that Y= IF(rke2i) F(rk+e2i)l o for a.e.O. It is
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not hard to show (see Section 5) that for such functions, the 2-variation V2 (F, 0)
(Yk= e2zriO e2zriO) for O. It is natural to ask aboutl[F(r F(rk+l 12) < c a.e.

the properties of the operator Vq(F, 0) (-kl IF(re2ri) F(rk+e2ri)lq)+ for
q 6 1,2) which measures the q-variation of the analytic function F. This will be
the subject of Section 5, where we show that Vq (F, O) may be infinite for a.e. 0 even
if F is an analytic function with continuous boundary values. Taking q to be 1, this
gives a new proof of Rudin’s theorem. (See also [2] where it is shown that there is,
nonetheless, a dense set of 0 where Vq (F, O) is finite.)

The reader will note that each of the constructions share common features. Taking
advantage of this, we present the cases in increasing order of difficulty, with each case
presenting a new difficulty. The martingale case is the easiest to understand. It makes
straightforward use of Rademacher functions and stopping times. The differentiation
case also makes use of the Rademacher functions, but we need to select the sub-
sequence of Rademacher functions more carefully and the sets where bad behavior
occurs are harder to control. The ergodic case is similar to the differentiation case,
but makes use of a reverse martingale, and an analog of the Rademacher functions on
Z. The analytic function case requires replacing the Rademacher functions, which
are independent, by exponentials, (e2rinkO), with (n) rapidly increasing, hence ap-
proximating the independence. Many of the subtleties in the following theorems are
associated with the fact that we want to construct bounded functions for which the
q-variation is infinite. If we were willing to settle for an L2 function for which the
q-variation is infinite, the arguments would be much simpler.

2. The martingale case

Consider the unit interval X [0, 1) with Lebesgue measure/z. The sequence of
Rademacher functions, (r), are defined by rk(x) sgn sin(2rr2-lx) for k > 1. Let
.T’k denote the dyadic a-field with 2 atoms, and let E denote conditional expectation
with respect to .T’.

Fix an increasing sequence of positive integers, (n), and define the q-variation
operator associated with this sequence by

Vq f(X) IE, f(x) E,k_, f (x)lq
k=l

We are interested in showing that the q-variation operator, for q < 2, can be made to
diverge. If we only wanted to show divergence for f L2(X), the problem is trivial.
We just consider fn(x) _,n= akrnk (x) where =l lal2 < o but ]=l la[q

will do. However, to find an L boundedcx for q < 2. For example a ffog
martingale with the same property requires a more complicated argument. To obtain
a bounded martingale we introduce a stopping time, r(x) inf{n IA(x)l >_
We find a martingale so that the above properties hold, but such that the stopped
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martingale and the original martinagle are not too different. The fact that we can do
this is the content of the following theorem.

THEOREM 2.1. Let (nk be an increasing sequence ofpositive integers. There is a

function f L(X), with Ilfllo _< 1, but such that the associated dyadic martingale
satisfies Vq f(X) oo a.e. for all q [1,2).

Proof. We will first prove the theorem in the case nk k for each k. The key to
proving the theorem is the following lemma.

LEMMA 2.2. Let No, L, 6 and q [1,2) be given. Then there is a function f
and an integer N such that

1. Ilflloo 1,
2. Ek(f) Ofor all k < No,
3. f is measurable with respect to the or-field f’No+N,
4. Vq f(x > L except possibly on a set ofmeasure less than

Proof. Fix a large integer M so that LqMq-2 < 6. Define N to be the smallest
integer such that N > (LM)q. We now define a martingale fn ’= -rk(x).
We can associate with this martingale a stopping time defined by r(x) inf{n
fn (x)l > 1}. Note that since the martingale takes steps on size 4-, we actually
have r (x) inf{n fn (x)l }. We now consider the stopped martingale f
fn/. Let (dk) denote the martingale difference sequence associated with the stopped
martingale. That is, dk f f-l. We have

Wq fv (x Idk (x q

k=l

.-:-:(r(x) A N)
M

Since fv(x) if r < N, we have

N (LM)q

/z{r < N} < II/11] _< lid, Ill _< g
M M

k=l

<6.

On the set where r > N, a set with measure at least 6, we have Vq fly (x)
+/- N > L, as required.M

In the above construction f is clearly measureable with respect to f’N. If we
had started the construction with rNo+, rN0+2 rather than rj, r2 then we
would have E, (f,) 0 for all k < No and f would be measurable with respect to

N,)+N. I:Zl

We now continue with the proof of Theorem 2.1. First assume that No 0. Let
L 100 x 2 and 6 r. Let f be the function obtained by Lemma 2.2, and define
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g 1/2 f. Denote by N the integer N obtained by Lemma 2.2. We then have

IEn+lgl (x) Engl (X)lq
\n--|

> -L 100
-2

for x in a set X C X of measure greater than 2"
We now take No in Lemma 2.2 to be N. We take L 1002 x 22 and e . Let

f be the function obtained by Lemma 2.2 and define g2 f. Since Enf 0 for
0 < n < No, and Engl gl for all n > No, if we define b2 g + g2, we see that
Vq (b2) > 1002 for x 6 X2 C X with measure at least r.
We repeat the construction, so that at the kth stage we have No N + N2 +
+ Nk_. We have bk_ measurable with respcet to .T’No, and Vqbk_l > 100- on

X_ C X with/z(Xk_) > _. We take L 100k2 and e -. We construct

the function f using Lemma 2.2, and define gk to be f. We let bk bk- +
Hence Vqbk > 100k on a set Xk C X of measure greater than -.

At each stage IIgllo _< so g converges. Let b ’k gk, then Ilbll _<
Since kand for all k Vqb(x) > Vq(b) > 100k on a set of measure at least r.

was arbitrary, we are done for fixed q.
By taking a sequence (qk) which converge to 2 from below, and by using qk at the

kth stage of the construction, we get a single function that works for all q < 2. If
(nk) is an arbitrary increasing sequence of positive integers, we just use rnk instead
of rk in the construction of the example. There is no other change in the proof.

For f defined on [0, 1) and extended periodically with period 1, let Dk denote the
differentiation operator defined by

f (x + t)dt,

and as before, let Ekf denote conditional expectation with respect to the dyadic
a-field. Define the q-variation operator Vq,c, which compares the differentiation
operator and the dyadic martingale, by

Vq,c IDkf(x) Ekflq

k=l

In the case q 2 it is shown in [13] that this is a bounded operator on all Lp,
< p < cxz and is even weak type (1,1). However for q < 2 we have the following

theorem.

THEOREM 2.3. There is a function f L[0, 1) with Ilfll such that
Vq,cf cx a.e. for all q < 2.



VARIATION INEQUALITIES 159

Proof The main tool in proving this theorem will be the following analog of
Lemma 2.2.

LEMMA 2.4. Let No, L0, e0 and q [1, 2) be given. There is a function f and
an integer N such that

2. the smallest index of the Rademacherfunctions used in the construction of f
is at least No,

3. f depends on only N Rademacherfunctions,
4. Vq,C f(x) > Lo except possibly on a set ofsize o.

Proof Assume 0 < . Let L > 16(L0 + 2) and < . Fix J so large that if

N > J and if B1, B2 BN are independent sets, each with measure at least then

N

X (x) >
N

k=l
16

except possibly on a set of measure at most . Such a J exists by the Strong Law of
Large Numbers. As in the proof ofLemma 2.2 let M be chosen so that LqMq-2 < .
Define N to be the smallest integer such that N >_ (LM)q. If N < J, increase L

N(and hence M) so that we can assume N >_ J. Fix a large integer d so that r < .
We will form a martingale using the Rademacher functions as we did in the proof
of Lemma 2.2. However, we will use only a subsequence (rka), of the Rademacher
functions. This does not change the arguments given there. We again form the

nmartingale fn k= rdk and define the stopping time r inf{n [fn[ > }.
We again consider the stopped martingale defined by f* fnA and work with the
function f f. By the same arguments as in the proof of Lemma 2.2 we have
m{r < N} < .

If we let Af IDdkf Edkfl, then we first need to estimate Akrdk. We note
that the intervals associated with the averages Ddk are the same length as the lengths
of intervals where rdk is constant. We now observe that Akrdk > on an interval of
length at least on the right hand side ofeach dyadic interval where rd is constant.
Thus Akrdk > on a set of measure at least . If we use only these dyadic intervals

(We only use the intervals wherewhere rdk > 0, we have a set of measure at least .
rdk since later when we introduce the stopped version, and consider Ak(rdkXr>_k
this will be the same as Akrdk for x 6 {r > k} f3 {rdk 1}, but may change if
x {rkd --1 }.) For each k, denote the union of these intervals by Bk. Note that
the sets B are independent.
We now estimate Akrd for j < k. We have averages that are much shorter than

the lengths of intervals where rdj is constant. Hence only intervals of length -located at the right hand side of each dyadic interval of length can contribute
non-zero values. There are only 2dj such intervals, and hence the total measure of
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2dJsuch intervals is at most rr. Denote this set by E(k, j) and note that on this set we
have Akrdj < 2.
We will also need estimates for Akrdj where j > k. In this case the averages are

long compared to the lengths ofthe intervals were rdj is constant. Since all lengths are
dyadic, we see that both Ddrdj and Edkrdj will be exactly zero. Hence Ardj O.
However this may not be the case for the stopped version. Ifwe consider Ai(rdj Xr>_j),

2dkwe see that if x e {r >_ j} but x + # {r < j} then we can get as much as -.
We are now ready to estimate Vq,c f. We have

Vq,cf(x) IAk
j=l

rdjXraj ]q

>--([Ak(rdkXr>k)lq) ;- lag rdjXraj [q
M

([k Q.=klrdjXrJ) [q) 7

=A-B-C.

We first estimate A. Note that A(rdkXr>) A(rd) on the set B fq {r > k}.
Hence, if x {r > N}, we have Ak(rdX>_) > 1. Recalling that #{r < N} < e <

_
eo < we see that/z(B N {r >_ N}) >_/z(B) -/z({r < N}) >_ 4 8 " Hence
ifx {r > N}, we have

A > IX/
k=l

On the set where r > N the sets Bk are independent. Since we have rn (B, f3 {r >
N}) > 1/2, we see, by the Strong Law of Large Numbers and our assumption on N,

that we have A > N 7 except on a set of measure less than e where r _< N, and
a set of measure where the strong law has not caused the average to be at least -.
We must now show that the other two pieces are small. For B we have

IIBlll 2Xz(k,j)dx
k=l j=l

N k-I

<- EZ 2m(E(k, j))
k=l /=1

k=l j=l

N
< 2-g < 2e.
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For C we have

IICII, dx
k=l j=k+l

_2
N

< - < 2.

We now note that m(B > 1) < IIBII 2 and m(C > 1) < IICIl < 2. Hence
Vq,c f > 6L 2 except on a union of the sets {r < N }, B > }, {C > }, and on
the set where the strong law did not get us close enough to the average of the measures
of B. The union of these sets is less than 6e e0. Recalling the definition of L, and
that L0 > 2 we see that Vq,cf > L 2 > Lo. D

To complete the proof of Theorem 2.3 we use the above lemma in the same way
that we used Lemma 2.2 to obtain Theorem 2.1. The details are very similar, and we
only sketch them.
We first note that we can repeat the construction, starting the next block with No

so large that the new function constructed has as little interaction with the earlier
fucntions as we desire. Further, we can make the L norms so small that they add
up to 1. By taking a sequence of ’s which go to zero, we can get the exceptional
sets to be as small as we want. We make the construction with a sequence of qks that
converge to 2 from below. Hence we can apply the operator Vq,c to the sum of the
constructed functions, and get a value of infinity a.e. for each q < 2.

3. The differentiation case

Let (ek) denote a decreasing sequence of numbers from the interval [0, 1). For f
defined on [0, 1) and extended periodically with period 1, let De denote the differ-

entiation operator defined by De, f (x) f(x + t)dt. Define the q-variation
operator Vq,D by

Vq.o IDe, f (x) De,_, q

k=l

We then have the following theorem.

THEOREM 3.1. Assume that lim inf__+ e,
e-757_ )o < 1. Then there is afunction

f 6 L[0, 1) with Ilfll -< such that Vq,Df (X) a.e.for all q < 2.

Proof The main tool in proving this theorem will be the following analog of
Lemma 2.2.
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LEMMA 3.2. Let No, L0, 60 and q e 1,2) be given. Thenfor any ., ,k0 < . < 1,
there is afunction f and an integer N such that

1. Ilfllo 1,
2. the smallest index of the Rademacherfunctions used in the construction of f

is at least No,
3. f depends on only N Rademacherfunctions,
4. Vq,of(x) > Lo except possibly on a set ofsize 60.

Proof. Assume without loss of generality that 60 < L. Take 6 < Z- and
L > 164X (L0 + 2). Fix J so large that if N > J and if B, B2 BN are independent
sets, each with measure at least !5 then

U 1--.
X (x) >

N
k=l

64

except possibly on a set of measure at most 6. Such a Y exists by the Strong Law of
Large Numbers. As in the proof ofLemma 2.2, let M be chosen so that LqMq-2 < 6.

Define N to be the smallest integer such that N > (LM)q. If N < J, increase
L (and hence M) so that we can assume N _> J. Fix a large integer d so that
N
2-7 < 6. We will form a martingale using the Rademacher functions, as we did in the
previous section. However, we will need to select a subsequence of the Rademacher
functions to use in the construction. Once the sequence of Rademacher functions is
selected, the proof is almost the same as the proof of Lemma 2.4. We again form the

’ and define the stopping time r inf{n If, > 1}.martingale fn - Yk=l rmk
We again consider the stopped martingale defined by fn fn/,, and work with the
function f f. By the same arguments as in the proof of Lemma 2.2 we have
m{r < N} < 6.

By hypothesis, we know there are infinitely many k such that e-Z7_, < ,k. Let G
denote the set of k with that property. Let n denote the first k e G and let m
denote the largest integer such that > e,t_. If mi < No, select a larger integer
k e G for n, so that m > No. If we let Akf IDea,-If De,, f then we
first need to estimate Arm,. We see that the intervals associated with both averages
De,,, and Dt,,_, are no longer than the intervals where rm is constant. Using the
fact that the ratio between e,, and e-i is at most k, a simple computation shows

in each dyadicthat Alrm > ) on an interval of length at least (tn-l en
interval where rm is constant. Thus A lrmt > k on a set of measure at least

)>2m’ ()(gn,-I n, (1 k). If we use only the dyadic intervals where rm > O,
we have a set of measure at least g(l k). Denote this set by B1. We can replace

Bl by a possibly smaller set of measure at least 6(1 .) so that B1 will consist of a
union of 2m-I dyadic intervals, and is periodic with period 2,,,i-

Assume that nl, n2 nk_, and ml, m2 m_, have been selected, and sets
B, B2 Bk_t, have been determined.
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We now select nk from G so large that the associated integer mk, defined to be the
largest integer such that > g-nk-1, satisfies m m-l > d. Further, we want mk
to be so large that XBj and rmk are independent for each j < k. By selecting nk large
enough, we will be able to obtain this independence.

As before, we will have Akrm > . on a set of measure at least 2m (1/2)(nk_l
,) > (1 L). As before, if we use only the dyadic intervals where rmk > 0, we
have a set of measure at least (1 ). Denote this set by Bk. We can replace Bk by
a possilby smaller set of measure at least 6 (1 ,k) so that Bk will consist of a union
of 2m-I dyadic intervals, and is periodic with period 2m
We now need to estimate Armj for j < k. We now have averages that are much

shorter than the lengths of intervals where rmj is constant. Hence only intervals of
length end-1 located at the right hand side of each dyadic interval of length can
contribute non-zero values. There are only 2mJ such intervals, and hence the total

2mjmeasure of such intervals is at most 2mJ g,_ < 2,-;" Denote this set by E(k, ) and
note that on this set we have Ark < 2.
We continue the construction until we reach n. We will also need estimates for

Akrmj where > k. In this case the averages are long compared to the lengths of
the intervals were rm is constant. Hence both operators will be close to zero. In

nparticular, we see that Dm-I rm <_ for all x, and the same estimate holds for
g,, 2"Dmk. Hence Arm.j _< 2-- < 2 for all x.

We are now ready to estimate Vq,o f. We have estimates very similar to those in
the proof of Lemma 2.4:

We first estimate A. Note that Ak(rm, Xr>k) Ak(rm, on the set Bk q {r > k}.
Hence, if x 6 {r > N}, we have Ak(rm Xr>k) >-- ,k. Recalling that/z{r < N} <
< 0 < we see that/z(Bk fq {r > N}) > /z(Bk)-/z({r < N}) > l-x -x

16 32
Hence if x e {r _> N}, we have

A> --(l-X) IZtkl qM k=l
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On the set where r > N the sets Bk are independent. Since we have m(Bk N r >
N}) > 2 Z), we see that by the Strong Law ofLarge Numbers, and our assumption

on N, we have A > N q’- except on a set of measure less than E where r < N,
and a set of measure E where the strong law has not caused the average to be at least
1-
64"
We must now show that the other two pieces are small, but these estimates are

exactly the same as those for the corresponding pieces in the proof of Lemma 2.4.
We now note that m(B > 1) < B Ill < 2e and m(C > 1) < C II < 2. Hence

Vq,of > -AL 2 except on aunion ofthe sets {r < N}, {B > 1}, {C > 1} andon
the set where the strong law did not get us close enough to the average of the measures
of Bk. The union of these sets is less than 6e < e0. Recalling the definition of L, we
see that Vq, Of > -4

To complete the proof of Theorem 3.1 we use the above lemma in the same way
that we used Lemma 2.2 to obtain Theorem 2.1. The details are the same and we
omit them.

While it is clear that the restriction on the sequnce (k) in Theorem 3.1 can be
weakened, some condition that implies rapid growth is essential. To see this we note
the following theorem.

THEOREM 3.3. Assume that Ex=2(1 )q < (X). Then the q-variation opera-
tor Vq,of(x) isfinite a.e.for all bounded f Infact Vq.o is a bounded operatorfrom
Lq[O, 1) to itself

Proof First we write

IDe, f (x) De_, f(x)l=
f -’

f(x +t)dt

Using the triangle inequality we see that

In the following, Mf denotes the standard (one-sided) Hardy-Littlewood maximal
function defined by Mf(x) SUpy>0 I-} f f(x W t)dtl. We know this operator is
bounded on all LP, < p <
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We first show that Af IIq Cq f IIq. To see this we just write

IIAfllqq _< fo’-k=l
=1

q

f(x -I- t)dt dx

fo
ek
f(x -t- t)dt

c( ,k)qfol< E (Mf(x))qdx

< E gk q

IIMfllqq

<- E gk q

Cqllfllqq

q

For B we have a similar argument. We write

k=l

( )Ofo
k=l

f(x + t)dt dx

f(x + t)dt dx

f (x + t)dt dx

q

f(x + t)dt dx

4. The ergodic case

We can also establish an ergodic theory analog to the above results. Let (X, E, m, r)
denote a dynamical system, with (X, E, rn) a probability space, and r an ergodic mea-
surable, measure preserving point transformation from X to itself. Let A,, f (x) denote
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n-Ithe ergodic average of length n. That is, Anf(X) -’4=0 f(rkx) For an increas-
ing sequence of positive integers (k), q > 1, and each positive integer L, we can
define the q-variation operator:

q,E f (X) IAek f (x) Aek_, f (x)lq
k=l

and Vq,Ef(x) limL--,oo VLq,Ef(X). For q 2 it is shown in [12] and [13] that this
operator is bounded on LP, < p < oo, and is even weak(l, 1). However for q < 2
we have the following theorem.

THEOREM 4.1. Let (f.k) denote an increasing sequence ofpositive integers such
that lim infk--,oo < ,1.0 < 1. Then there is an f L(X) such that Ilflloo _< 1,
but Vq,e f oo a.e.

Proof To prove this we first prove a result on Z. We will then transfer this to the
dynamical system in the standard way. See [8]. For a function on Z we introduce

Rthe operator D defined by D() lim8__.o r=-8 q(r) if the limit exists. We
note that the limit will exist if is a periodic function. See [1 for a discussion of
related issues.

For each n, let qn Z ---> 1, denote the "Rademacher function on Z" defined
by qn(k) if 0 < k < 2, (k) -1 if 2" < k < 2+l, and n is periodic
with period 2"+. We see that these functions are independent, and in particular,
D(qbqbm) 0 for m : n. On Z we define the q-variation operator VqL,z by

q,Zdp(r) IAekdp(r)- Ae_,dp(r)lq
k=l

n-Iwhere Ack(r) g k=0 q(r +k). With this notation, we can now state the following
lemma.

LEMMA 4.2. If lim infk 0 < then given Lo, eo, and.suchthat
)o < ) < 1, there is an No and ck such that 114,11e _< and such that if B
{r[ q,zO(r) > L0l then D(XB) > 0.

Proof. This proof is similar to the proof ofLemma 3.2 in the differentiation case.
50Take e < -6- and L > (L0 2) Select J as in the proof of Lemma 3.2. As in

the proof of Lemma 3.2, select N and M. We also select an integer d so that < e.

By the hypothesis of the lemma, there is an infinte set of k’s such that < X.
Let G denote this set. Select n G. Let m be such that 2m-I < n < 2m. In
the following we will inductively select n < n2 < n3 < < nN from G and
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corresponding mk where 2m*-I < nk 2m*" Arguing as in the differentiation case,
we define Akb(r) IAe,,, (r) Ae,,,_,(r)l, and show that Alm > (1 .) on

a set B, where D(B) > (1 .) and B consists of a union of dyadic "intervals"
in Z, and is periodic with period 2m We then select n2 6 G so large that we have
independence ofB and m2. We can also assume that m2-m > d. We then continue
the process as in the differentiation case, and show very similar estimates. As in the
differentiation case we need to construct a function with small enough eo norm. In
the differentiation case we used a stoppping time. Here we need to reverse time; that
is, after we construct our sequence (n,),, we consider the "reverse stopping time",

nr, defined by r(r) inf{nll Yj=0 )nu-j (r)l > }. (This reversal is necessary since
we have the large intervals where 4n is constant when n is large.) Using this reversed
time, we construct qv as in the martingale and differentiation case. Since the details
are now nearly the same, we omit them. i--I

We now establish the ergodic theory version of the above lemma.

LEMMA 4.3. Given a large number L and a small number > 0, there is an N
and afunction f such that f < and such that VNq,Ef (X) > Lforx Xo C X,
with m(Xo) > e.

Proof. We use Lemma 4.2. Let 4 be the function given by Lemma 4.2 so that
RD(B) > 5" Find R0 so that if R > R0 then

Note that the operator VN only looks a finite distance into the future. Denoteq,Z
J Make a Rohlin tower ofthis distance by J. Select R > R0 so that T <

height 2R + J such that the tower has measure at least 5" Note that we have
RY,=-R xB(k) > 2R(I g. Forx in the base ofthe tower, define f(rnx) qb(n) for

n -R, -(R 1) R -+- J, then we see that for x in the bottom 2R steps of the
tower, with the exception of a bad collection of 2R steps, we have Vq,e f(x) > L.

Hence we have m{x" Vqf(X) > L} > 2R(I-)
2R+J >

We can now complete the proof of Theorem 4.1. Note that {x: Vq,ef(x) cxz}
is invariant, so if for every q < 2 we can show m{x Vq,ef(x) cx} > 0 then we
are done.

Fix a sequence (q,) so that q, -- 2, and qk < 2 for each k. We will use the lemma
inductively to construct the desired function. Let VqN,ef(x) (Y-,N__l IAe, f(x)
Ae,+,f(x)lq). First let q ql and Ll 100 x 2 I. Use the lemma to find a

7 of the space. Wefunction fl with IIfll < and Vq,ef(x) > L1 on at least g
can find an integer N so that in fact Vq,N’ef(x) > L on at least of the space. Let

Nb g 7 f. Then Ilgl I1 _< and Vq,egl > 100 on a set of size at least .
If for all q < 2, Vq,eg oe on a set of positive measure, we are done, so we can

assume for some q < 2, that Vq,eg (x) < oe a.e. Thus we can find a number B and
q’ < 2 such that m{xlVq,,egl < B} > .
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Next let q max(q’, q2) and take L2 100 x 22 x B x NI. We find fz with

Ilf2 I1 < and with Vq E f2 > L2 on a set of measure at least 7
8

7Definegz -? f2. Then Vqg2(x) > 100B on a set of size at least and ]]g211

Defineb b+g Wehave Vq e(g2) Vq,e(b2-b) < Vq e(b2)+Vq,e(b)
Hence Vq,e(b2) > Vq(g) Vq(b) > 100B B 99B > 992 on at least 7

of the space. Fuher, we can find N2 so large that V: b2 > 992 on a set of measureq,E

at least .
In the same way we constct a sequence bl, b2 bk, and an increasing sequence

NN < N2 < < Nk with Vq,eb > 99 on a set of measure atleast for
j 1, 2 k. We now constct bk+. Find q qk and Bk so large that m{x

7 (As before, such a q and B exists, since otherwise for all q < 2,Vq,ebk < Bk} > .
Vq,ebk on a set of positive measure and we are done.) Let Lk+ 100Bk x

A+. Then Ilgk+ll < 2+,2k+l x Nk. Find f+ by the lemma. Let gk+ 2+
7 Define bk+ bg + gk+and Vq,egk+l > 100Bk on a set of measure at least .

We have Vq,e(gk+) Vq,e(bk + gk+ b) Vq,e(b+) + Vq,e(bk). Hence
Vq,e(b+) Vq,e(gk+l) Vq,e(bk) 100B B 99Bk 99k+l on a set of

zN+ (bk+l on at leastmeasure at least . Then there is an Nk+l such that "q,e > 99k+1
! of the space.4
We continue the construction, and define a function b lim b. The limit

exists since we have uniform convergence. We will be done if we can show that for
all q < 2 we have Vqb on a set of positive measure.

Nhk VUWe note that for each k we have for all q qk, that Vq,e q,e((bk
b)+b) < Vq,N(b bk)+ Vq,N(b). Hence N VN (bk)- VNVq,eb q,e q,e(b-bk) 99k--
g lib- bk I1. We note that lib- bk II IIg+ +g+2 +... I1 j=+ Ilgj I1

< Vq,eb 99k- Nk 99k-j=k+ 2N_, " Hence for each q < qk wehave N

on a set of size at least .
From this we see that for each q < 2, Vq,e(b) on a set of positive measure,

and we are done.

Theorem 4.1 has the following corollary.

COROLLARY 4.4. Given any increasing sequence (nk), ofpositive integers, there
is an f L(X) such that Ilfl[ < 1, but V,ef o a.e.

Proof. Let (ek) denote a subsequence of the (nk) such that (ek) satisfies the
hypothesis of Theorem 4.1. Let Ik {nj lek- < nj < k }. We know that we can find
a function so that f _< 1, but such that the 1-variation associated with the sequence
(k) is infinite. Nowjust note that by the triangle inequality, Aek f(x)- Aek_, f (x)l <
YjIk [Ani f(x) An.i_ f(x)[.



VARIATION INEQUALITIES 169

We also have the following analog to Theorem 3.3. Since the proof is almost the
same as the proof of Theorem 3.3, we omit the proof.

THEOREM 4.5. Let (X, E, m, r) denote a dynamical system. Assume that
g4- )qY’=2 (1 < x. Then the q-variation operator Vq,E f(x) is finite a.e. for

all bounded f Infact Vq,E is always a bounded operatorfrom Lq (X) to itself

As we saw in Corollary 4.4, the case q yields a divergent operator for all
subsequences. The triangle inequality shows that the l-variation along a subsequence
is less than the l-variation along the full sequence, nk k. The following theorem
shows that the 1-variation operator for the full sequence is only finite on constant
functions.

THEOREM 4.6. Let r is any measure preserving ergodic transformation on a non-
atomic probability space. Consider the -variation operator with nk k. Iff is any
non-constantfunction in L I(X) then V,ef(x) +oofor a.e. x.

Proof Let B() {xllf(x) fx f(t)dtl > }. Since f is not a constant, there
is some 0 > 0 such that m(B(o) > 0. Let B B(0). Write

IAk f (x) Ak+l f (x)l Ak f(rkx)
k+l k+l

[Akf(x)- f(rkx)[ k +
For a.e. x there is an integer n (x) such that for k > n (x) we have

Akf(x) fx f(t)dt
0

For such x, if k > n (x) we have

IAk f(x) Ak+ f(x)l Af(x) f f(t)dt + f f(t)dt f(rx)

o
f(t)dt- f(rkx)

k + 2(k + 1------"

k+l

Hence if in addition, rkx 6 B then we have

o
Iak f (x) Ak+l f (x)l > o

k + 2(k + 1)
50

2(k + 1)
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Hence

However we see

k=n0 2(k + 1)

Vv,. f (x) >_ E
,=n,, 2(k + 1)
x(rx).

G0
)(" B "g kx " k=noE )(" B 75

kx
j + j+2

G0 j,.= (j + 1)(j + 2)= )B(rX)"

For some No large enough, we have

m(B)
j +

)(rx) >

xzHence Vq e f (x) > "’-’ m(B_.__) Ej=No2 2 j+2

for all j > No.

5. The analytic case

Our aim is to construct a function F which is analytic in the open unit disc D
z Izl < }, continuous in the closed unit disc, and a sequence of numbers rk },

0 < rk < r+ < 1, such that

E IF(rk+le2rit) F(rke2ri’)lq
k=l

for each q 6 [1, 2) and for a.e. in the unit circle "1" [0, 1), considered as a
measure space with Lebesgue measure #. The construction is similar to the one
in the martingale case. Recall that in the martingale case we considered a function

2 < but Yk qF(x) Y= a,r,(x) such that -.k ak a oo for each q, < q < 2.
To keep the functions bounded we modified the function on a small set and actually
considered k akrk(x))>_k(x). To obtain our analytic function we will do much the
same kind of construction. We will consider

F(reZri’) E akrnk e2rrinkt

where nks are selected so that e2rrint behave much like a sequence of independent
identically distributed random variables. Then y ake2zrinkt will behave much like

qthe martingale example. We will have Y. ak oo. We will also select a sequence
n for k < rn and rmn 0 for k > m. If we can achieve this, thenrm SO that rm

IF(rk+le:zrit) F(rke2ri’)l
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and hence

e2rit e2rit)lq Iq
k k

As in the martingale case we will need to introduce a stopping time to keep the
function bounded. Since we will want our final function to be analytic, we will need
to approximate )>_n by the boundary values of an analytic function. The introduction
of this "analytic stopping time" will result in a change on only a very small set.

The series

F(re2rit) Y snrn e2rint
n=O

will be defined in blocks. We will now explain the basic construction used to obtain
these polynomials. In the course of the main proof, however, there will be additional
requirements on this basic construction. By an analytic polynomial on T we mean
the boundary function corresponding to a polynomial in z.

The basic construction. Let/3 > 0 and > 0 be two numbers, L > 2 an integer,
andt /L. Let k(t) e27ribkt, where the bk’ s are positive integers to be specified
later. We will define a sequence of continuous functions gk" T and a sequence
analytic polynomials hk. Let go h0 0. If go gk are already defined, k > 0,
let

nk--{tltT, I(g0+"’+gk)(t)l<}.

Findaset Ek C Hk ofmeasure#(Ek) < 2-k+3) and a continuous function 0k :T --[0, 1] such that 0k (t 0 if and only if 6 Gk T-Hk andok(t) ift 6 Hk-Ek.
Also, find an integer vk > and a Fejer polynomial Ok(t) Yljl<vk CJ e2rijt’ such
that Iqgk(t)--Ok(t)l < 2-k+3) for all "[’. Then define gk+l cqgkk+l and hk+
Ot0kPk+l. The positive integer bk+l appearing in Pk+l will be chosen sufficiently
large such that hk+ is an analytic polynomial and such that all the inner products
(gj, gk+l), 0 _< j < k, have moduli less than 2-2k+)c2/(k + 1). Later, in the main
proof, there will be another condition to be satisfied that will require that bk+ must
also be larger than another lower bound.

LEMMA 5.1. Let < p < 2. Let > 0 and > 0 be two numbers. Then there
are integers L > 2 and K > such that if the functions gk and hk, < k < K, are
constructed as in (2), corresponding to the numbers , , and to this integer L, then
they satisfy thefollowing conditions.

1. Ig +"" + gkl < 2 and Ih +... + hkl < 3for < k < K.
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2. There is a set B C T such that lz(B) < and, for all T B,

Igl(t)lq +... + IgK(t)l q > 2,

Ihl(t)lq + + lhK(t)lq > 1,

and Ihk(t)l >_ (7/8)lgk(t)l (7/8)for < k < K.

Proof An easy induction shows that Ig + + gl < 2/5 for all < k < K.
Since

Igk -hkl < 2-k+3)lgkl- 2-k+3)ot 2-k+3)/5/L,
we also have ]hi +...+hkl < 3/ for < k < K. To prove (2) define B

(Gk O Ek) Since Gks form an increasing sequence of sets, B is also equal to
the union of Gr with t_JklEk. Note that if 6 "1" B then Igk(t)l c for each k,
<k<K. Hence

Ig(t)lq +... + Igr(t)lq Kotp

for 6 T- B. Now,
K K

/z(B) </z(Gr) + y./z(Ek) </z(Gg) + 2-k+3) </z(G) + /2.
k=l k=l

Hence the proof will be completed by showing that there is a choice for K and
L /3/c such that Kotp Kflq/Lq > 2 and/z(Gr) < /2. Since I(go +"" +
gr)(t)l >_/ on Gr,

2flZ#(GK) <-- Ilgo +’" + gKll2
K K k-I

k=l k=l j=l

K k-1

_< Koe2 + 2 2-2(+’)oeZ/(k + 1)
k=2 j=l

_< Kot2 -+-of2 (K + l)ot2 (K + 1)fl2/L2

Since < q < 2, it is clear that there are integers L and K such that (K+ 1)/L2 < /2
and Kflq/Lq > 2. 1-’1

THEOREM 5.2. There is a function F which is analytic in the open unit disc
D {z Izl < and continuous on the closed unit disc, and a sequence of
numbers rk }, 0 < rk < rk+ < 1, such that

y. IF(rk+le2rrit) F(rke2rit)[q o
k=l

for each q [1, 2) andfor a.e. in the unit circle T.
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Proof Choose fl(m) > 0, :(m) > 0, and < q(m) < 2 such that/3 Zm=l (m) <
1, : Em%I (m) < l, and such that q(m) is an increasing sequence converging to
2. Use Lemma 5.1 to find the integers L(m) >_ and K(m) >_ for each m, such that

(m (tn la (m (mif the functions g gr,,, and , hr,,, are constructed as in part 2 of
Lemma 5.1, using the parameters/m), Lm), otm) m)/Lm) and m), then they
satisfy the following conditions.

/a (tn) (m) (m)(5 l) lh(m)+...+,,k <3fl forl <k< K

(5.2) There is a set B (’n) C T such that #(B(m)) < (m) and, for 6 T B(m),

ihtlm) (t)lq’"" (m) (t)lq’""+’’" / IhK,,,) >

It will be more convenient to arrange these functions as single sequences gn and
h., consisting of succesive blocks of lenght K(m). We denote the parameters used in
the construction of g. and h. by the corresponding subindex. Hence [gn(t)l On for
all 6 H En, and Ih.(t)l > (7/8)lg.(t)l (7/8)ot,, again for all 6 H E..
From (5.1) and (5.2) we see easily that the following are true.

(5.3) The series -,, h(t) is uniformly convergent on 6 "1".

(5.4) For all q < 2 and for all that belongs to infinitely many of the sets
T B(m), we have -. [hn(t)lq . Since -’mZ=l #(n(m)) < x:, we see that

[q for a.el 6 T.-,n=! [hn(t)

Recall that each h is an analytic polynomial, which will be written as

Yn
.(n) 2niwth,_t_( qw

lI)

’Y" Iq’)l. Wewhere x and y,, are positive integers, x. < y,, We will let Q .._.o=x,,
will also write

Yn

hn(t r)= , "(")rWe2niwt
x

where r > 0. Hence, h,,(t) h,(t, I) with this notation Fuffher approximations
> 0 Zy=, <

j ej < (I/8)+ for all k I.

The functions gn and h,, will be obtained following the basic construction within each
block of length Km), with an additional requirement. The sequence of numbers r
will be constructed simultaneously. We start with g , where l (t) e2i’t,
with any positive integer b, for example with b I. At this step we take h g.
Hence x yl b and Q . We then choose r such that 0 < r < and such
that (I r")Q < e. Assume that the functions g g, h hk, and the
numbers 0 < r < < rk < are already chosen.
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If both of the integers k and k + are within the same mth block, then gk+ and
hk+ are constructed as in the basic construction, with an additional condition on the
choice of the integer b+. First note that Q+l is determined before the choice of
b+l. Now choose b+l sufficiently large so that xk+ satisfies

.xk+k Qk+l < /?k+l

The purpose of this choice is to have

Ihk+(t, r)l < e+

for all T. Finally we choose r+, r < r+ < such that

k+l

(1 --riV; ej <
j=l

This implies that, for all T,

k+l

Ihj(t, r+) hj(t, 1)l < e+.
j=l

The situation is simpler if g is the last function in the mth block. In this case g+
will be the first function in the (m + l)st block. It will be of the form g+l

otk++. After choosing the positive integer b+l appearing in gt+, we are going
to let g+ hk+, with x+ y+ b+ and Qk+ otm+. This integer bk+

Xk+lis chosen sufficiently large to satisfy r Qk+ < e+. Finally we choose r+,
r <r+ < such that

and

Again, we see that

k+l

(l r2’++ Z QJ < ek+,
j=l

Ihk+(t, rk)l <

k+l

Z Ihj(t, rk+l) hj(t, 1)l <
j=l

for all 6 T.
Finally note that, if n > k then rk < r,_. This implies that Ih,(t,

whenever n > k.

We now let F(re2ir) ZnOC__l h,(t, r), where, as defined earlier,

Yn

h,(t r)= Z .(n)..w..2riwt
1,10 .

03--Xn
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Then F is analytic in the open unit disc and continuous in the closed unit disc, as
follows from (5.3). We see that

[F(rke2rit) --hn(t, rk)l < [hn(t, r)l < Ern.
n=l n=k+l n=k+l

Also, since

we see that

k

Ihn(t, r) h(t, 1)1 < e,
n=l

k k x

n=l n=l n=k

Hence

e27rit) (rk e2rit][F(r,+ F )] hk+l(t)l < 2 ’n < (1/4)Otk+l
n=k

If 6 Hk+- Ek+ then

otk+ Ig+ (t)l < (8/7)lhk+l (t)l.

Hence, for Hk+ E+,

IF(rk+le2rit) F(re2rrit)l > Ihk+ (t)l 2 en
n=k

> Ihk+l (t)l (1/4)ot+ > (5/7)lhk+ (t)l.

Hence (5.4) shows that

e27rit it iqy [F(r+ F(rke2r cxz
k=l

for all q < 2 and for all a.e. 6 T. This completes the proof of the theorem. !--1

If q 2 then the prior construction cannot be made. In fact we have the following
positive result in the case q 2.

THEOREM 5.3. Let (rk) C [0, 1) be an increasing sequence. Let f L2[0, 1)
where f (0) n=_ ane2rin. Let F(r, O) ’n=- anrne2rin. Define the

squarefunction Sf(O) ()-k--I IF(rk+l, 0) F(rk, 0)12)1/2. Then we have IISfll2 <_
IIfll2.
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Proof Using Parseval’s equality we write

f01 IlSfll2 IF(rk+l, 0) F(rk, 0)12 dO
k=l

12E e2inO E ne2rinO dOanrk+ an rk
n=-x n=-cx

x 2

n n)e2rinO dOZ an(r+l--r

E E lanl2(r+ --r)2
k=l n=-x

< lan 12 n
rk+ rk

n=-c k=l

n-----(X)

-Ilfll 2 r-12

REFERENCES

1. M. Akcoglu, A. Bellow, R. Jones, V. Losert, K. Reinhold, and M. Wierdl, The strong sweeping out

propertyfor Riemann sums, convolution powers, and related matters, To appear in Ergodic Theory and
Dynamical Systems.

2. J. Bourgain, On the radial variation ofbounded analyticfunctions on the disc, Duke Math. J. 69 (1983),
671-682.

3. Pointwise ergodic theoremsfor arithmetic sets, Publ. Math. Institut Hautes Etudes Scien-
tifique 69 (1989), 5-45.

4. D.L. Burkholder, Distributionfunction inequalitiesfor martingales, Ann. of Prob. 1 (1973), 19-42.
5. Martingale transforms, Ann. Math. Statist. 37 (1966), 1494-1504.
6. Personal communication.
7. D.L. Burkholder, R. Gundy and M. Silverstein, A maximalfunction characterization ofthe class HP,

Tran. Amer. Math. Soc. 157 (1971), 137-153.
8. A. E Calder6n, Ergodic theory and translation invariant operators, Proc. Nat. Acad. Sci. U.S.A. 59

(1968), 349-353.
9. V. E Gaposhkin, A theorem on the convergence almost everywhere of a sequence of measurable

functions, and its applications to sequences of stochastic integrals, Math. USSR Sbornik 33 (1977),
1-17.

O. Individual ergodic theoremfornormal operators on L2, Functional Anal. Appl. 15 1981 ),
14-18.

11. R. L. Jones, Inequalitiesfor the ergodic maximalfunction, Studia Math. 41) (1977), 111-129.
12. R. L. Jones, I. Ostrovskii and J. Rosenblatt, Square functions in ergodic theory, to appear in Ergodic

Theory and Dynamical Systems, preprint 52 pages.
13. R. L. Jones, R. Kaufman, J. Rosenblatt and M. Wierdl, Oscillation in ergodic theory, preprint.
14. J. Rosenblatt and M. Wierdl, Pointwise ergodic theorems via harmonic analysis, Proc. Conference on

Ergodic Theory, Alexandra Egypt, 1993.



VARIATION INEQUALITIES 177

15. W. Rudin, The radial variation ofanalyticfunctions, Duke Math. J. 22 (1955), 235-242.
16. E.M. Stein, Singular integrals and differentiablity properties offunctions, Princeton University Press,

Princeton, N.J., 1970.
17. The development ofsquarefunctions in the work ofA. Zygmund, Bull. Amer. Math. Soc.

7 (1982), 359-376.

Mustafa A. Akcoglu, Department of Mathematics, University of Toronto, Toronto,
Ontario M5S 1A 1, Canada
akcoglu@math.toronto.edu

Roger L. Jones, Department of Mathematics, DePaul University, 2219 N. Kenmore,
Chicago IL 60614 USA
rjones@condor.depaul.edu

Peter O. Schwartz, Department of Mathematics, University of Toronto, Toronto,
Ontario M5S 1A 1, Canada
schwartz@math.toronto.edu




