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THE NEAR RADON-NIKODYM PROPERTY IN
LEBESGUE-BOCHNER FUNCTION SPACES

NARCISSE RANDRIANANTOANINA AND ELIAS SAAB

1. Introduction

Let X be a Banach space, (€2, X, 1) be a finite measure space and 1 < p < oc.
We denote by L”(A, X) the Banach space of all (classes of) A-measurable func-
tions from € to X which are p-Bochner integrable with its usual norm || f||, =
(f | f(@)||? dr(w))/P. If X is the scalar field then L? (A, X) will be denoted by
LP()).

The relationship between Radon-Nikodym type properties for Banach spaces and
operators with domain L'[0, 1] is classical in theory of vector-measures. Such con-
nections have been investigated by several authors. In [17], Kaufman, Petrakis,
Riddle and Uhl introduced and studied the notion of nearly representable operators
(see definition below). They isolated the class of Banach spaces X for which every
nearly representable operator with range X is representable. Such Banach spaces
are said to have the Near Radon-Nikodym Property (NRNP). It was shown in [17]
that every Banach lattice that does not contain any copy of ¢y has the NRNP; in
particular L!-spaces have the NRNP. A question that arises naturally from this fact
is whether the Lebesgue-Bochner space L!(A, X) has the NRNP whenever X does.
Let us recall that the answers to similar questions about related properties such as the
Radon-Nikodym property (RNP), the Analytic Radon-Nikodym property (ARNP)
and the complete continuity property (CCP) are known for Bochner spaces (see [24],
[9] and [20] respectively). We also remark that Hensgen [14] observed that (as in the
scalar case) L' (A, X) has the NRNP if X has the RNP.

In this paper, we show that the Near Radon-Nikodym property can indeed be lifted
from a Banach space X to the space L' (A, X). Our proof relies on a representation of
operators from L' into L' (A, X) due to Kalton [16] and properties of operator-valued
measurable functions along with some well known characterization of integral and
nuclear operators from L* into a given Banach space.

Our notation is standard Banach space terminology as may be found in the books
[6], [7] and [26].

Acknowledgements. The authors would like to thank Paula Saab for her constant
interest in this work. The first author also would like to thank Neal Carothers for

Received September 24, 1996.
1991 Mathematics Subject Classification. Primary 46E40, 46G10; Secondary 28B05, 28B20.

© 1998 by the Board of Trustees of the University of Illinois
Manufactured in the United States of America

40



THE NEAR RADON-NIKODYM PROPERTY 41

creating an enjoyable work atmosphere at the Bowling Green State University where
part of this work was done. We also would like the thank the referee for many valuable
suggestions.

2. Definitions and preliminary results
Throughout this note, 1, , = ["2+', %) is the sequence of dyadic intervals in [0, 1]
and X, is the o-algebra generated by the finite sequence (/,x)i<k<2». The word
operator will always mean linear bounded operator and L(E, F) will stand for the
space of all operators from E into F. For any given Banach space E, its closed unit
ball will be denoted by E|.

Definition 1. Let X be a Banach space. An operator T: L'[0, 1] — X is said
to be representable if there is a Bochner integrable function g € L*°([0, 1], X) such
that T(f)=/ fg dm for all f in L'[0, 1].

Definition 2. An operator D: L'[0, 1] — X is called a Dunford-Pettis operator
if D sends weakly compact sets into norm compact sets.

It is well known [7, Example 5-11I-2.11] that all representable operators from
L'[0, 1] are Dunford-Pettis; but the converse is not true in general.

Definition 3. An operator T: L'[0, 1] — X is said to be nearly representable if
for each Dunford-Pettis operator D: L'[0, 1] — L'[0, 1], the composition T o D is
representable.

The notion of nearly representable operators was introduced by Kaufman, Petrakis,
Riddle and Uhl in [17]. It should be noted that since the class of Dunford-Pettis
operators from L'[0, 1] into L'[0, 1] is a Banach lattice [3], if an operator T €
L(L'[0, 1], X) fails to be nearly representable then one can find a positive Dunford-
Pettis operator D € L(L'0, 1], L'[0, 1) such that T o D is not representable.

The following definition isolates the main topic of this paper.

Definition 4. A Banach space X has the Near Radon-Nikodym Property (NRNP)
if every nearly representable operator from L'[0, 1] into X is representable.

Examples of Banach spaces with the NRNP are spaces with the RNP, L'-spaces,
L'/H'. For more detailed discussion on the NRNP and nearly representable opera-
tors, we refer to [1], [11] and [17].

We now collect a few well known facts about operators from L'[0, 1] that we will
need in the sequel. Our references for these facts are [2], [3] and [7].
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FACT 1. For a Banach space X, there is a one to one correspondence between
the space of operators from L'[0, 1] into X and all uniformly bounded X-valued
martingales. This correspondence is given by:

* T(f) =1lim,_ f Ya(t) £ (@) dt if (Yn)y is a uniformly bounded martingale.
** Y1) =27 lec':l X1, @ T (x1,,) if T € L(L']0, 1], X).

FACT 2. A uniformly bounded X -valued martingale is Pettis-Cauchy if and only
if the corresponding operator T € L(L'[0, 11, X) is Dunford-Pettis.

As an immediate consequence of Fact 2, we get:

FACT 3. Anoperator T € L(L'[0, 11, X) is nearly representable if and only if it
maps uniformly bounded Pettis-Cauchy martingales to Bochner-Cauchy martingales.

Definition 5. LetE and F be Banach spaces and suppose T: E — F is abounded
linear operator. The operator T is said to be an absolutely summing operator if there
is a constant C such that for any finite sequence (x,,) 1<m<» in E, the following holds:

n n
Y T xll < C sup HZ @)l x* € E* 5 lx*] < 1%
m=1 m=1

The least constant C for the inequality above to hold will be denoted by 7, (T'). Itis
well known that the class of all absolutely summing operators from E to F is a Banach
space under the norm 7r; (7). This Banach space will be denoted by I, (E, F).

Definition 6. We say that an operator T: E — F is an integral operator if it
admits a factorization

E L pe

L e
L2 -5 L'
where i is the inclusion from F into F**, u is a probability measure on a compact
space K, J is the natural inclusion and « and 8 are bounded linear operators.

We define the integral norm i(T) = inf{||| - |||} where the infimum is taken
over all such factorization. We denote by I (E, F) the space of integral operators
from E into F.

If E = C(K) where K is a compact Hausdorff space or E = L*(u), then it is
well known that T is absolutely summing (equivalently T is integral) if and only if
its representing measure G (see [7], p. 152) is of bounded variation and in this case
m(T) = i(T) = |G|(K) where |G|(K) denotes the total variation of G.



THE NEAR RADON-NIKODYM PROPERTY 43

Definition 7. We say that an operator T: E — F is a nuclear operator if there
exist sequences (e}), in E* and (f,), in F such that Y - | |leX|| || || < oo and

o0
T(e)=)_eie)f
n=1
foralle € E.

We define the nuclear norm n(T) = inf{Zf,‘;l llexll Il fxll} where the infimum
is taken over all sequences (e}), and (f,). such that T(e) = Y oo, ek(e) f, for all

e € E. We denote by N(E, F) the space of all nuclear operators from E into F under
the norm n(.).

FACT 4. An operator T € L(L'[0, 1], X) is representable if and only if its re-
striction to L*°[0, 1], T|>[0,1; € L(L*°[0, 1], X) is nuclear.

Throughout this paper, we will identify the two function spaces L? (A, L? (u, X))
and LP(A ®@ u, X) for 1 < p < oo (see [10], p. 198).

The following representation theorem of Kalton [16] is essential for the proof of
the main result. We denote by B(K) the o-algebra of Borel subsets of K in the
statement of the theorem.

THEOREM 1 (KALTON [16]). Suppose that:

(1) K is a compact metric space and . is a Radon probability measure on K ;
(ii) K2 is a Polish space and ) is a Radon measure on S2;
(iii) X is a separable Banach space;
(iv) T: L'(u) — L'(A, X) is a bounded linear operator.

Then there is a map w — T, (2 — I1,(C(K), X)) such that for every f € C(K), the
map w — T,(f) is Borel measurable from 2 into X and:

(&) If i, is the representing measure of T,, then
[ 1ol(B) d@) < ITI(B) for every B € B
Q

(B) If f € L (1), then for A a.e. w, one has f € L' (Jiol);
() Tf(w) = T,(f) for » a.e. w and for every f € L'(w).

The following proposition gives a characterization of representable operators in con-
nection with Theorem 1.
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PROPOSITION 1 [21]. Under the assumptions of Theorem 1, the following two
statements are equivalent:

(i) The operator T is representable;
(ii) For A a.e. w, ., has a Bochner integrable density with respect to (.

For the next result, we need the following definition.

Definition 8. Let E and F be Banach spaces. Amap T: (2, £,1) - L(E, F)
is said to be strongly measurable if o — T (w)e is measurable for every e € E.

We observe thatif E and F are separable Banach spacesand T': (2, A) — L(E, F)
with sup,, || T (w)|| < 1, then T is strongly measurable if and only if 7~!(B) is A-
measurable for each Borel subset B of L(E, F); endowed with the strong operator
topology.

The following selection result will be needed for the proof of the main theorem.

PROPOSITION 2. Let X be a separable Banach space and T: (2,)) —
L(L'[0, 1], X) be a strongly measurable map with:

M) IT@)| < 1 foreveryw € Q;
(2) T (w) is not nearly representable for w € A, A(A) > 0.

Then one can choose a strongly measurable map D: (2, 1) — L(L'[0, 1], L'[0, 1])
with the following properties:

() ID(w)|| < 1 forevery w € Q;

(ii) T (w) o D(w) is not representable for every w € A;
(ili) D(w) is Dunford-Pettis for every w € Q;
(iv) D(w) is a positive operator for every w € .

We will need several steps for the proof.

LEMMA 1. The space L(L'[0, 1], X),, the closed unit ball of the space
L(L'[0, 11, X) endowed with the strong operator topology is a Polish space.

Proof. Let us consider the Polish space IT,{X?'}). We will show that
L(L'[0, 1], X), is homeomorphic to a closed subspace of IT,{X?'}.

Let C be the following subset of IT,{X?"}: (x.x)x<2":nen belongs to C if and only
if

(@) Xuk = 5(tn41, 21 + Xn41,2) forallk < 2" andn € N,
) lxpxll < 1forallk <2"andn e N.
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It is evident that C is closed in IT, {X?'}.

Consider the map I': L(L'[0,1],X), — T, {X*)} given by T —
"T (X1,4))k<2" neN-
The map I' is clearly continuous, one to one and its range is contained in C. We
claim that ['(L(L'[0, 1], X);) = C and I‘IEl is continuous: to see this claim,
let x = (x,4) € Cand T € L(L'[0, 1], X) defined by the martingale ¥, (t) =
Zi;lx,,,kx,”(t). The operator T is well defined (see Fact 1) and T (x;,,) =
(1/2")xyx so I'(T) = x. Using the fact that the span of {x,,,,k < 2",n € N}
is dense in L'[0, 1], the continuity of I‘lEl follows. The lemma is proved. 0O

Consider £(L'[0, 1], X), with the strong operator topology and L'([0, 1],
L'[0, 1]) with the norm-topology.

The fact that the natural injection from L([0, 1], L'[0, 1]) into L'([0, 1],
L'[0, 1]) is a semi-embedding and the unit ball of L>([0, 1], L'[0, 1]) (that we
will denote by Z) is a closed subset of the Polish space L' ([0, 1], L'[0, 1]) implies
that Z with the relative topology is a Polish space.

The space L£(L'[0, 1], X); x ZN with the product topology is a Polish space.

Let A be the subset of L(L'[0, 1], X); x ZN defined as follows.

{T, (¢p)n} € Aif and only if:

(i) E(@n+1/Zn) = ¢, foreveryn € N;

(i1) 1imy i SUPger gy <1 S 1 @m(t,8) = Ga(2,5))g(s) ds| dt = 0;
(iii) 1imj o0 8Up, 5 [ 1T (@n() — Gm ()]l dt > O;
(iv) ¢. > 0 as an element of the Banach lattice L> ([0, 1], L'[0, 1]).

LEMMA 2. The set A is a Borel subset of L(L'[0, 1], X); x ZN.

Proof. (i) Let A, be the subset of ZN given by ¢ = (¢,), € A, if and only if
E(@n+1/Z0) =¢n VneN.

We claim that A, is a Borel subset of ZN: if we denote by P, the n projec-

tion of ZN and E, the conditional expectation with respect to X,, then the map

6,: L'([0, 1], L'[0, 1DN — L!([0, 11, L'[0, 1]) given by 6,(¢) = (B, o Puy) —

P,)(¢) is continuous and therefore A; = ),y 6y '(foph N zN is Borel measurable.
(ii) Let g € L*™ be fixed. For every m, n € N, the map

L'([0, 1], L'[0, 1IDY — R

6 — / | f Gnt, 5) — du(t, $))g(s) ds| dt

is continuous $0 ¢ — Ty (@) = SUPyer~ o<1 [ | [ n(t, 5) — @u(t, 5))g(s) ds| dt
is lower semi-continuous and therefore ¢ — T'(¢) = lim; o0 SUP, ;> ; Tnm (@) is
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Borel measurable and

Ay = {qb: lim  sup f |/(¢m(t, s) — ¢n(t,s))g(s) ds| dt = 0] VA

mm gel |g|<I

is a Borel measurable subset of ZN.
(iii) For each n and m in N, the map

Opm: L(L'[0,1], X); x L'([0, 11, L'[0, 1D — R
(T, ¢) — f T (¢n (1)) — T (dm (1))l dt

is continuous and then the set B = {(T, ¢); limsup, ,, 6nn (T, #) > 0} is a Borel
measurable subset of L(L'[0, 1], X); x L'([0, 1], L'[0, 1DN.
(iv) The set P of sequences of positive functions is a closed subspace of ZN.
Now A = BN{L(L'[0, 1], X)| x (A N A, NP)} so A is Borel measurable. The
lemma is proved. O

Proof of Proposition 2. Let U be the restriction on .A of the first projection. The
set U (A) is an analytic subset of £(L'[0, 1], X); and by Theorem 8.5.3 of [5], there
is a universally measurable map 6: U (A) — ZN such that the graph of 6 is contained
in A.

By assumption, T: (2, 1) — L(L!([0, 1], X), is measurable for the strong oper-
ator topology and 7 (w) € U(A) for every w € A. So the map

Q — L'(0, 1], L'[0, 1PN

o —> 0(T(w)) ifweA
0 otherwise

is well defined. The above map is the composition of the measurable map 7' (-) with
the universally measurable map 6(-) so itis A-measurable. Moreover forevery w € A,
{T (w), (T (w))} belongs to A.

For every n € N, let O, be the nth projection from ZN onto Z and set ¢, (w) =
0,(6(T (w)). By construction, the sequence (¢,(w)), is a uniformly bounded
L'[0, 1]-valued martingale so it defines an operator from L'[0, 1] into L![0, 1] by

D@)(f) = lim f u (@)D F () d.

Notice that forevery f € L'[0, 1], the map M;: Z — L!([0, 1], L'[0, 1]) defined by
Mg (h) = f.h is continuous and D(w)(f) = limngoofo(Q,,(G(T(a)))) dt. The
measurability of the map 6(7'(-)) and the continuity of My and Q, show that the
map @ — D(w)(f) (2 — L'[0, 1]) is measurable. Now condition (iii) implies that
T (w) o D(w) is not representable for w € A and condition (iv) insures that D(w) > 0
foreveryw € Q. O
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The following proposition is crucial for the proof of our main result and could be
of independent interest.

PROPOSITION 3. Let w — D(w) ( — L(L'[0, 1], L'[0, 11),) be a strongly
measurable map such that D(w) is positive and Dunford-Pettis for every w € Q. If
we denote by 0(w) the restriction of D(w) on L*[0, 1], then w — 6(w) is norm-
measurable as a map from Q into I1(L*[0, 1], L'[0, 1]).

We will begin by proving the following simple lemma.

LEMMA 3. Let D: L'[0,1] — L'[0, 1] be a positive Dunford-Pettis operator
and 0 = D|p~. Then 8 is compact integral and is weak* to weakly continuous.
Moreover i(0) = ||6]|.

Proof. The fact that 6 is compact integral is trivial. For the weak* to weak
continuity, we observe that 8*(L>[0, 1]) C L'[0, 1]. For the identity of the norms,
we will use the fact that i () is equal to the total variation of the representing measure
of 6.

Let G be the representing measure of 6 and 7 be a finite measurable partition of

[0, 1]. We have
Y IG@iw = Y Il

Aem Aerm

< Y IIDIGxaA) |

Aem

D 1181 |

Aen

= 3 [ 1w as

Aerm

A

= /|9|(X[o,1])(t) de < || 18] |l

where | D| and |0| denote the modulus of D and 6 respectively (see [18]). So by taking
the supremum over all finite measurable partitions of [0,1], we geti(6) < || |0 || and
since 0 is a positive operator, |#| = 6. The lemma is proved. O

Proof of Proposition 3. Notice that 8(w) € K,»(L*[0, 1], L'[0, 1]) for every
w € Q where K,,«(L*°[0, 1], L'[0, 1]) denotes the space of compact operators from
L>[0, 1]into L'[0, 1] that are weak* to weakly continuous. So w — 6(w) is strongly
measurable and is separably valued (K+(L>°[0, 1], L'[0, 1]) = L'[0, 11®.L'[0, 1]
where Q. is the injective tensor product). By the Pettis measurability theorem (see
Theorem II-1.2 of [7]), the map w — 6(w) is measurable for the norm operator
topology.
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For each n € N, let E, be the conditional expectation operator with respect to
X,. The sequence (E,), satisfies the following properties: (E,), is a sequence
of finite rank operators in £(L'[0, 1], L'[0, 1]);, E, > O for every n € N and
(E,), converges to the identity operator I for the strong operator topology. Consider
S» =E, A I. Since S, < E, and E, is integral (it is of finite rank), one can deduce
from Grothendieck’s characterization of integral operators with values in L'[0, 1]
(for instance, see [7], p. 258) that S, is also integral.

SUBLEMMA. For eachn € N, there exists K, € conv Sy, Sp+1, . ..} such that the
sequence (K,), converges to I for the strong operator topology.

For this, we first observe that (S, (f)), converges weakly to f for every f €
L'[0, 1];in fact,if f > Oandn € Nthen S, (f) = inf(E,(g)+(f—g); 0 < g < f}.
Choose 0 < g, < f such that ||S,(f) — (E,(gx) + (f — &)1 < 1/n. Since [0, f]
is weakly compact, we can assume (by taking a subsequence if necessary) that (g,),
converges weakly to a function g. To conclude that S, (f) converges weakly, notice
that if ¢ € L*°[0, 1] then lim,_, o, E}(¢) = ¢ a.e. (E; = E,). Soforevery n € N,
[{Sn(f) = fr o)l = 1/n+ [(En(gn) — &n, ¢}| and

[(En(gn) — &n> @) = 1{&n, En (@) — )| < (f, [En(@) — 0l).

By the Lebesgue dominated convergence theorem, we have lim,—, oo (E,, (81) — 81, ) =
0. Now fix (fi)x, a countable dense subset of the closed unit ball of L'[0, 1].
For k = 1, by Mazur’s theorem .we can choose a sequence (S{"), with S{" €
conv{S,, S,+1, ...} for every n € N and such that lim,_, o, || S,(,”(fl) — fill =0. By
induction, one can use the same argument to construct S € conv{S®, S,(,lfz N
such that lim,_, o [[S¥*D(f;) — f;ll = O for every j < (k + 1). From Lemma 1
of [23], one can fix a sequence (K,), such that for every k € N, there exists
ni € N such that for n > ny, K, € conv{S®, S,(,'fﬁ,, ...}. From this, it is clear
that lim,_, o || K, (fx) — fill = O for every k € N and since (f;), is dense and
sup, |K.|l <1, (K,), verifies the requirements of the sublemma.

To complete the proof of the proposition, let (K,), be as in the above sublemma
and consider C,: K+ (L*®[0, 1], L'[0, 1]) — I (L*°[0, 1], L'[0, 1)) (T — K, o T).
Since K, is integral, the map C, is well defined and is clearly continuous. Therefore
w — K, 00(w) is measurable for the integral norm. Since (K,) converges to I for the
strong operator topology and 6 (w) is compact, then lim,_, » || K, 00 (w) —0(w)|| = 0.
Observe that K, o 8 (w) < 6(w) for every w € 2 and for every n € N. We conclude
from Lemma 3 that i (8 (w) — K, 0 8(w)) = ||8(w) — K, o O(w)|| and hence for a.e.
weE Q,

nlilgoi(e(w) —K,00(w)) =0.

Since the K, o 6(-)’s are measurable so is 6(-), and the proposition is proved. O
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The following proposition is probably known but we do not know of any specific
reference.

PROPOSITION 4. Let X be a Banach space and S: (2, L) — L(L'0, 1], X) be
a strongly measurable map with sup,, || S(w)|| < 1. Then the following assertions are
equivalent:

(a) The operator H: L' (2 x [0, 1], A ® m) — X given by

H(f) = /Q S@)(f (@, ) dA()

is representable;

(b) The operator K: L'[0,1] - L', X) given by K(g) = S(-)g is repre-
sentable;

(c) S(w) is representable for a.e. w € 2.

Proof. (a) = (b) If H is representable, then we can find an essentially bounded
measurable map ¥: Q x [0,1] — X that represents H. The map ¢': [0, 1] —
L'(A, X) given by t — ¥ (-, t) belongs to L*®([0, 1], L' (A, X)); in fact |/ (t)|| =
fQ |¥ (w, £)|| dA(w) for every ¢t € [0, 1]. Hence [|¥'|loc < |¥|loo and we claim that
¥’ represents K. Foreach g € L'[0, 11, {/ ¥/ (1)g(t) di}(w) = [ ¥ (w, 1)g(¢) dt for
a.e. w. For every measurable subset A of €2,

/Kg(w) diMw) = H(xa ® g)
A

/f V(w, 1)g(t) xa(w) dt dA(w)

= /;{fll/(t)g(t) dt}(w) dr(w)

which shows that Kg = [ ¢/(t)g(¢) dt.

(b) & (c) Let u, € M([0, 1], X) be the representing measure for S(w) (i.e.,
S(@)(x4) = Ue(A)). Itis well known that S(w) is representable if and only if u,,
has a Bochner density with respect to d¢. Notice now that K (g)(w) = S(w)(g) =
f g(t) duy(). Hence, by the uniqueness of the representation of Theorem 1 (see
[16], p. 316), the family ()., represents K. Apply now Proposition 1 to conclude
the equivalence.

(b) = (@) If ¥": [0,1] = L'(r, X) represents K, then there is a map I': Q x
[0,1] > XsothatT' € L'(A ® m, X) and I'(-, t) = ¥'(¢) for ae. t € [0, 1] (see
[10], p. 198). We claim that I' € L*°(A ® m, X) and represents H. To prove this
claim, fix A a measurable subset of 2 and / a measurable subset of [0, 1]. We have
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the following:

H(xa® x1) = fQK(x:)xA dA(w)
- [A ( fl V() dm(1)) (@) dA()

- /f L, 1) d(L ® m)(®, 1).
AxlI

This implies that H(xy) = // I'(w,t)d(A ®m)(w, t) for every Borel subset V of
v
© x [0, 1]. Apply now Lemma 4-1II of [7] to conclude that H is representable. O

3. Main result

THEOREM 2. Let X be a Banach space and (2, X, A) a finite measure space.
Then L' (A, X) has the NRNP if and only if X does.

For the proof, let us assume without loss of generality that X is separable, 2 is a
compact metric space and A is a Radon measure in the Borel o-algebra X of 2. For
what follows, Jx denotes the natural inclusion from L®(A, X) into L' (A, X).

We will begin with the proof of the following special case.

PROPOSITION 5. Let X be a Banach space with the NRNP and let T: L o, 1] »
L°° (X, X) be a bounded linear operator. Then Jx o T is representable if and only if
it is nearly representable.

Proof. Let T: L'[0,1] — L*(A, X) be a bounded operator with ||T| < 1.
By Lemma 1 of [20], there exists a strongly measurable map v — T(w) (2 —
L(L'[0, 1], X)) such that Tf(-) = T(-) f forevery f € L'[0, 1].

Assume that Jxy o T is nearly representable but not representable. Proposition 4
asserts that there exists a measurable subset A of Q with A(A) > 0 and such that T (w)
is not representable for each w € A. Since X has the NRNP, the operator T (w) is not
nearly representable for each w € A. Using our selection result (Proposition 2), one
can choose a strongly measurable map w — D(w) (@ — L(L'[0, 1], L'[0, 1]);)
such that D(w) is positive, Dunford-Pettis for every w € 2 and T (w) o D(w) is not
representable for every w € A. It should be noted that if D € L(L'[0, 1], L'[0, 1])
is a Dunford-Pettis operator, and since Jx o T is nearly representable, T(w) o D is
representable for a.e. w € Q2 (see Proposition 4). However the exceptional set may
depend on the operator D.

As before, let 0(w) = D(w)|.~. We deduce from Proposition 3 that the map
o — 0(w) (2 — I(L*[0, 1], L'[0, 1])) is norm-measurable.
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Let (IT,).en be a sequence of finite measurable partition of €2 such that I, is
finer than I, for every n € N and X is generated by | J,n{B ; B € I1,}.
For each B € X, we denote by Dy the operator defined by

Dp(f) = / D(w)(f) dr(w) forevery f € L'[0, 1]
B
and let

Dp
D,(w) = — xs().
2. 5®)
The operator Dy is a Dunford-Pettis operator for each B € X (see [25] Theorem 1.3)
and therefore D, (w) is Dunford-Pettis for eachn € Nand w € Q.

Claim. The operator T (w) o D,(w) is representable for a.e. w € Q.

To see this claim, notice that T'(w) o Dp is representable for a.e. w € Q. Fix
a set Ng with A(Np) = 0 and such that T (w) o Dp is representable for v ¢ Np.
Let N = U,enUgen, N Clearly A(N) = 0 and for w ¢ N, T(w) o Dy(w) =
> Ber, T(;’()B‘?)D” xB(w) is representable.

Now if we denote by 6, (resp. 8p) the restriction on L*°[0, 1] of D, (resp. Dg),
we have

Op
Op(w) = xB(w)
B; (B ?

for each w € R, and since 6 (-) is measurable for the integral norm (see Proposition 3),
we have

6, (@) = Z Bochner — [, 6(s) dA(s) (@),

geri, MB)

It is well known (for instance, see [7], Corollary V-2) that 6,(-) converges (for the
integral norm) to 6(-) a.e. Now since T (w) o D,(w) is representable for a.e. w, the
operator T (w) o 6, (w) is nuclear for a.e. w and since 6, (w) converges a.e. to 6 (w) for
the integral norm, we have

”lirgoi (T(w) 0 6y(w) — T(w) 0oO(w)) =0 forae. we Q.

As a result, the representing measure of the operator T (w) o 6(w) is the limit for
the total variation norm of a sequence of measures with Bochner integrable densities
hence T (@) o O(w) is nuclear for a.e. w € Q2 and this is equivalent to T (w) o D(w)
being representable for a.e. w € Q2. Contradiction. O

For the general case, let T: L'[0, 1] — L!(A, X) be anearly representable operator
and fix a strongly Borel measurable map o — T, (2 — II1,(CI[0, 1], X)) as in
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Theorem 1. Let us denote by u,, the representing measure of 7,,. Our goal is to show
that for A a.e. w, u, has a Bochner integrable density with respect to the Lebesgue
measure m in [0, 1]. This will imply that T is representable by Proposition 1. To do
that, we need to establish several steps:

LEMMA 4. For A a.e. w in 2, we have |[L,| < m.

Proof. Note that for each x* € X*, the map w —> x*u, (2 — M[0,1]) is
weak* measurable so it defines an operator T*": L![0, 1] — L'(A). The operator
T*" is nearly representable; in fact it is the composition of the nearly representable
operator T with the operator V*": L!(A, X) = L!(A) (f — x*f). Since L'()) has
the NRNP, the operator T*" is a representable operator and therefore |x*u,| <« m
for A a.e. w ( Proposition 1 of [12]).

Now, using the same argument as in Lemma 2 of [20], we have the conclusion of
the lemma. O

As a consequence of Lemma 4, there exists a measurable subset, &', of Q with
M\ ) = 0 and such that for each w € €/, |u,| < m. Let g, € L'[0, 1] be
the Radon-Nikodym density of |u,| with respect to m for w € Q' and g, = 0 for
o € 2\ . By («) of Theorem 1, we have the following: for every I measurable
subset of [0, 1], the map w — |u,|(I) = f, 8, (t) dt is measurable so one can
deduce from the Pettis-measurability theorem that w — g, (R — L![0, 1]) is norm-
measurable. Moreover, fQ llgwll dA(w) < ||IT||. From this, one can find a function
e L'(A®m) with '(w, -) = g, for A a.e. w € Q.

Let V, be the measurable subset of 2 x [0, 1] given by

Vo ={(w,t); n—1<T'(w,t) <n}.

The V, ’s are clearly disjoint and € x [0, 11 = |J,, V».

Notice that for w € @, xv, (@, )[(w, ) € L*[0, 1] and therefore for every
h € L'[0,1], xv,(w, Yh()T(w, ) € L0, 1]; that is, xv,(w, )h(-) € L'(Ipal).
Hence the following map is well defined:

k. Q@ — L(L'[0, 1], X)

© —> {/(;n(w)(h) = [ xv, (0, D) dpo(t) fwe

otherwise.

It is clear that ||k, (w)]|] < n for every w.
Claim. The map w — k,(w) is strongly measurable.

Since X is separable, it is enough to show that forevery f € L![0, 1]and x* € X*,
the map w — (k,(w)(f), x*) is measurable.
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Let h,: [0,1] — X™ be a weak*-density of u, with respect to m for w €
Q' and O otherwise. The map w — (h,(-), x*) belongs to L'(A, L'[0, 1]). Let
h" e LY x [0, 1]) so that for ae. w € Q, i (w,-) = (he(-), x*). Now the
map (w,t) = xy, (v, Hh (w,t) (2 x [0,1] — R) is measurable and for every
feL'o,1],

(kn(@)(f), x*) = /IXv,,(w,t)(hw(t),X*) dt = /;Xu,(w, D (, 1) f (1) dt.

This shows that w — (k,(w)(f), x*) is measurable.
Let us now define an operator 7™: L'[0, 1] — L*®(A, X) by T™(f) = k,(-)(f)
for every f € L'[0, 1].

LEMMA 5. For every n € N, the operator Jx o T™ is nearly representable.

Proof. Fix a Dunford Pettis operator D and let yk(") = }Ll fik ® hji be an
approximating sequence for xy, in L'(2 x L'[0, 11) with 0 < 3" < xy, for every

k € N (see [10], p. 198). Consider the sequence of operators T, k("): L'[0,1] —
L'(:, X) defined by

T (f)(w) = f (@, 1) f (1) dppo ().

We claim that the operator Tk(”) is nearly representable. Indeed, if we denote by My, ,
and M), the multiplication by f; , and &; , respectively, we have Tk(”) = ,j'k=1 Mg, 0
T o My,,. For that, let f € L'[0, 1]; forae. w € Q,

Jk Jk
(Z Mg oTo Mh,-.k> (H@) =Y fia@) Thjr.f)()
— L

Jj= j=
J

=Y fixlw) f hj k() £ (1) dpn(t)
j=1

Jk
= / (Z Fi(@)h (0 f () ) dpo(t)
j=1

j=

_ / Y (@, 1) £ () dpta(D).

Now since for every j < ji, My, o T o My, o D is representable, so is Tk(") oD. To
conclude the proof of the lemma, let  — v,fw and  — v2 be the representation
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given by Theorem 1 of 7\ o D and Jx o T® o D respectively. We have

/ v, — v2| dr(w)

2!
= / sup D W2, (m) = v2 U1l dA(w)
Q

leN 77

2!
= fQ sup 3 _ I f (%" @) = x3,@, ) D) OdRo D] dA(@)

leN m=1

< f f 17 (@, 1) = xv, (@, D] 1D|(X0,1) (1) T(@, 1) dt di(w)

where | D] is the modulus of D (see [18]). Notice that since 0 < yk(") < Xxv,, we have

v (@, 1) = xv, (@, )] 1D (1) @) T, 1) < 2 xv, (@, 1) |Dl(xp.1) ) T(w, 1)
< 2n|D|(x0,11)(®).

Andby the Lebesgue dominated convergence theorem, limg_, f Iv,?w — va? |dA(w) =
0 and hence by passing to a subsequence (if necessary), we may assume that
limg_, o0 [V2, — V2| =0forae. we Q.

Fix By a subsetof 2 with A(By) = Oand forevery w ¢ By, limy_,o0 [vP,—v2| = 0.
Since Tk(") o D is representable, one can find a subset By of 2 with A(By) = 0 and such
that for each w ¢ By, v,f?w has a Bochner integrable density. We can conclude that
for w ¢ (Upe Bx, the measure v? is the limit for the variation norm of a sequence of
measures with Bochner integrable densities and therefore it has a Bochner integrable
density. Now using Proposition 1, the operator Jx o T™ o D is representable. The
lemma is proved. [

We are now ready to complete the proof of the theorem. By Proposition 5, the
operator Jx oT ™ is representable and therefore the operator K,,: L' (2 x [0, 1]) - X
given by K, (f) = f ky(w)(f(w, -)) dXM(w) is representable (see Proposition 4).

Let¢,: Q2 x[0,1] — X be arepresentation of K, and consider ¢ = Z:":l On Xv,-
We claim that ¢ belongs to L' (Q x [0, 1], X).

For that, fix o, [0, 1] = X** a weak*- density of u,, with respect to |, |(see [8]
or [15]). The map «,, satisfies:

M) Nlaw®ll =1 |pel ae.;
(2) Forevery x* € X*, (x*, [ f due) = [(x*, au(®)) f(2) d|pal ().

It follows that for all A ® m-measurable subsets V,

Ko, (xv) =weak*—f/ xv, (@, 1) au(t) T(, 1) dt dA().
\4
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Since K, is represented by ¢,, we have

K,(xv) = f/;/ On(w, 1) di(w) dt.

So if we denote by G, the representing measure of the operator K,,, we have

lonll = 1GAl(2 x [0, 1]) = /f xv, (@, O (@, NdL @ m(w, 1).

From this it follows that ¢ is Bochner integrable.
For every A ® m-measurable subset V, we get

[ [ as@) = 3 [ [ 50,0 dieat) drce
n=1

= Y KaOxv) = Y_ Kn(xv-xv,)
n=I n=l1

= Zf/v On(w, Dy, (@, 1) dt dAM()
n=1

= /f o(w, t) dt dAM(w).
v

In particular, for every A € X,, and B € X,

/uw(A) dA(w):/ {f o(w,1) dt} dr(w)
B B UJa

which shows that ., (A) = f 4 ¢(w, 1) dt for a.e. w. The theorem is proved. O

Before stating the next extension, let us recall (as in [23]) that, if E is a K&the
function space on (€2, X, A) (in the sense of [18]) and X is a Banach space then E (X)
will be the space of all (classes of) measurable map f: 2 — X sothatw — || f(w)||
belongs to E.

COROLLARY. If E does not contain a copy of ¢y and X has the NRNP, then E(X)
has the NRNP.

Proof. Without loss of generality, we may assume that E is order continuous,
(€2, X, 1) is a separable probability space (see [18]) and the Banach space X is
separable. By a result of Lotz, Peck and Porta [19], the inclusion map from E into
L'(A) is a semi-embedding. The same is true for the inclusion Jx: E(X) — L'(A, X)
(see [21], Lemma 3). Now let T: L'[0,1] — E(X) be a nearly representable
operator. The operator Jx o T is also nearly representable and hence representable
(by Theorem 2). So the operator T must be representable (see [4]). O
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4. Concluding remarks

If X and Y are Banach spaces with the NRNP, then X ®,Y (®, is the projective
tensor product) need not satisfy the NRNP. This can be seen from Pisier’s famous
example that L' /H)®, L'/H{ contains co (hence failing the NRNP) while L'/ H]
has the NRNP.

If X is a Banach space and (2, X) is a measure space, we denote by M (£2, X*)
the space of X*-valued o -additive measures of bounded variation with the usual total
variation norm. In light of Theorem 2, one can ask the following question: Does
M (2, X*) have the NRNP whenever X* does? It should be noted that for non-dual
space, the answer is negative: the space E constructed by Talagand in [22] is a Banach
lattice that does not contain cq (so it has the NRNP) but M (2, E) contains cg.

Finally, since L!-spaces are the primary examples of Banach spaces with the
NRNP, the following question arises: Do non-commutative L!-spaces have the
NRNP? Note that since C; (the trace class operators) has the RNP, it has the NRNP;
howeveritis still unknown if Cg has the NRNPif E is a symmetric sequence space that
does not contain c¢y. We remark that non-commutative L'-spaces have the ARNP[13].
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