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DIFFERENTIAL GALOIS THEORY I

ANAND PILLAY

1. Introduction

This paper is devoted to an extension of Kolchin’s Galois theory of differential
fields [8], [9], [10], [11]. When we say an “extension” of Kolchin’s theory, we
mean that a larger class of differential field extensions F' < K is subsumed by
our theory. Kolchin’s theory was itself an extension, in the context of differential
algebra, of the classical Picard-Vessiot theory. Kolchin called his differential field
extensions strongly normal. In the Picard-Vessiot theory, the Galois groups have
a natural structure as algebraic matrix groups over the constants (namely algebraic
subgroups of G L(n, C)), where C denotes the constants of the differential field F). In
Kolchin’s theory, the Galois groups correspond to (not necessarily linear) algebraic
groups in the constants, and moreover any algebraic group can arise. Our approach is
quite simple-minded, and consists of replacing the role of the constants in Kolchin’s
definition, by an arbitrary differential algebraic set X, to obtain the notion of an
X-strongly normal extension K of F. The Galois groups that arise have naturally
the structure of finite-dimensional differential algebraic groups (of which algebraic
groups in the constants are a special case). If G is such a Galois group, then the Galois
correspondence is between differential fields L between F and K, and differential
algebraic subgroups of G. This is carried out in Section 2, where we also give an
analogue of Bialynicki-Birula’s approach ([1]). In Section 3 we present an analogue
of Kolchin’s “G-primitive extensions” characterization of strongly normal extensions,
where we make use of the embeddability of differential algebraic groups in algebraic
groups, as well as of “constrained Galois cohomology”. In Section 4 we show that
any finite-dimensional differential algebraic group arises as the Galois group of some
“generalised” strongly normal extension F < K (for some F, K). In Section 5, we
point out that we do obtain a larger class of extensions in our theory, essentially due
to the fact that there are finite-dimensional differential algebraic groups which are not
isomorphic (as differential algebraic groups) to algebraic groups in the constants. In
a sense our work contains a unification of the two grand themes of Kolchin’s work:
differential Galois theory, and the theory of differential algebraic groups.

Various “modern” treatments of Kolchin’s theory have recently appeared (such as
[13]). Inthe present paper model-theoretic language and methods are used throughout,
basically because we find this the most efficient language in which to develop and
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express the general theory. A summary of the model-theoretic approach occurs
below.

This paper ties together various important pieces of work in model theory. The
recognition that in suitable model-theoretic contexts, automorphism groups have the
structure of definable groups, is due to Zilber [24], and later Hrushovski [6]. Using
such ideas, Poizat, in his fundamental paper “Une theorie de Galois imaginaire” [22],
gave a model-theoretic treatment of Kolchin’s differential Galois theory. He even
notes that any definable set can replace the role of the constants, although he does not
give any explicit definition of “generalised” strongly normal extensions (and in fact
it was not so easy for us to come up with the “right” definition). One thing missing in
Poizat’s work was an explication of the “G-primitive extensions” part of the Kolchin
theory. In [20], this was carried out, and the proof generalises to yield Proposition 3.2
in the present paper. The result in Section 4 of the present paper (that any finite-
dimensional differential algebraic group is a Galois group) is new. In the background
to the work here lies the identification of groups definable in differentially closed
fields with differential algebraic groups, proved in [17]. In any case, in this paper
we pull together the various strands mentioned above into a coherent account of a
differential Galois theory which generalises and extends the classical Picard-Vessiot
theory and the Kolchin theory. Somewhat deeper model-theoretic results will appear
in [18], where it is shown that superstable differential fields are closed with respect to
generalised strongly normal extensions. Also in [16], we obtain some results around
the inverse problem for our new differential Galois theory.

I would like to thank Bruno Poizat and Christine Charretton for their generous
hospitality during May 1994 when this work was begun (and when I was an invited
Professor at Universite Lyon-Claude Bernard, whom I also thank).

We will work throughout with ordinary differential fields of characteristic O,
namely fields F of characteristic 0, equipped with a distinguished derivation §. For
a € F we will often write a’ in place of §(a). Everything we say extends to the
context of fields with finitely many commuting derivations. We will usually just
write F' for the field equipped with the derivation, so F < K means that that X is a
differential field extension of F. By an automorphism of a differential field we mean
a field automorphism which respects the derivation.

U will denote a “universal” differential field of some uncountable cardinality «.
What this means is that

(i) any differential field of cardinality < « is embeddable in U,
(ii) whenever F < U, F < K and both F and K have cardinality < «, then there
is an embedding of K into U over F,
(iii) whenever F < K| <U, F < K, < U, F, K| and K; have cardinality < «,
and f is an isomorphism between K| and K, over F, then f extends to an
automorphism of U{.
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In fact, in (ii) and (iii), it is enough if F has cardinality < « and K, K, and K,
are finitely generated over F.

In the remainder of this paper F, K etc. will denote differential subfields of U
of cardinality < k. If F is such and Y is some subset of U or even of U", F(Y)
denotes the differential subfield of I/ generated by F and the coordinates of all points
in Y. Note that F(Y) may very well have cardinality «. We will say that K is finitely
generated over F if K = F(a) for some finite tuple a of elements of I/.

From the point of view of model theory, U/ is precisely a saturated, differentially
closed field of cardinality . We explain now what this means, assuming the rudiments
of first order logic. For more detailed background on model theory and the model
theory of differential fields, as well as attributions of basic results, see [21], [5]
and [15].

The first order language we work in contains symbols for the binary operations
+,—, ., for the distinguished elements 0, 1 and for the unary function é (and nothing
else). From now on, by a formula, we mean a first order formula in this language.
DC Fy (the theory of differentially closed fields of chararacteristic 0) is the set of first
order sentences in this language consisting of

(i) the axioms for differential fields of characteristic O,

(ii) axioms expressing that whenever P (X), Q(X) are differential polynomials (in
the single differential indeterminate X, with coefficients in some differential
field) and order(P) > order(Q), then the system P(X) = 0, Q(X) # O has a
solution.

By definition, a differentially closed field (of characteristic 0) is precisely a model
of DC Fy, namely a differential field of characteristic O in which (ii) holds.
The central fact is:

FACT 1.1. DCFy is complete and has quantifier elimination.

Completeness means that if F|, F, are differentially closed fields then any (first
order) sentence of the language is true in F) iff it is true in F,. Quantifier elimination
means that if ¢(xy, ..., x,) is any formula then there is a formula ¥ (x|, ..., x,)
without quantifiers, such that for any differentially closed field F,

FEVYx, ..., xq(@x, ..., x5) & ¥(X1,...., X))

By adefinable set in F (F adifferential field), we mean a subset X of F”" (some n)
such that, for some formula ¢ (xy, ..., x,, y1,..., ym) and tuple (by, ..., by,) from
F,X ={(ai,...,an) € F": F =¢(a1,...,an, by, ...,by)} If Aisasubsetof F
and ¢ and the tuple of b’s can be chosen from A we say that X is A-definable in F.
By a differential algebraic subset of F", we mean the zero-set of some finite number
of differential polynomials in n differential indeterminates, with coefficients from F.
Again if the coefficients can be chosen from a subset A of F, we say the differential
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algebraic set is defined over A or A-definable. Clearly a differential algebraic set is
a special case of a definable set. On the other hand, Fact 1.1 implies:

FACT 1.2. If F is differentially closed, A C F and X C F" is a set definable
over A in F, then X is a finite Boolean combination of differential algebraic subsets
of F", each defined over A.

Let U be a universal diferential field. It turns out that I/ is differentially closed,
and moreover k-saturated. The latter means that if A is a subset of U/ of cardinality
< k and {X;: i € I}is afamily of A-definable subsets of U" every finite subset of
which has nonempty intersection, then N{X;: i € I} # @.

All elements and tuples we consider will come from Y. For ¢(xy,...,x,) a
formula, and ay, . . ., a, elements of i/, we use |= ¢ (ay, ..., a,) to mean the formula
¢ is true of the tuple (ay, ..., a,) inU. By a definable set we will mean a {/-definable
subset of " for some n. Quantifier elimination of DC Fj implies that if F < U and
F is differentially closed, then whenever X is a set definable over F, then XN F" # @
(or in model-theoretic parlance, F is an elementary substructure of /).

From now on we write a, b etc. for abitrary finite tuples of elements of /. (Sim-
ilarly, x, y etc. denote finite tuples of variables.) We may write a € F if every
coordinate of a is in F. If A C U, by tp(a/A) we mean the set of formulas ¢ (x)
(where x is a suitable tuple of variables) with parameters from A such that = ¢ (a),
or equivalently (identifying formulas with the sets they define), the set of A-definable
sets containing a. p, q etc. are often used to denote such (complete) types. tp(a/A)
is said to be isolated if it contains a formula ¢ (x) such that whenever b € U and
= ¢(b), then 1p(b/A) = tp(a/A).

Definition 1.3. Let F < F;. We say that F| is a differential closure of F if
whenever K > F and K is differentially closed, then there is an embedding of F
into K over F.

Given F there is always a differentially closed K containing F of the same cardi-
nality, so the same is true of any differential closure of F.

FACT 1.4. Any F has a differential closure, which is moreover unique up to F-
isomorphism (although not necessarily unique as a differential subfield of U). Any
such differential closure Fy of F has these features:

(i) Forany a € Fy, tp(a/F) is isolated, and tr.degree(F (a)/ F) is finite.
(ii) Whenever a, b are finite tuples from F; such that tp(a/F) = tp(b/F) then
there is an automorphism of Fy over F which takes a to b.

Often we let F denote some differential closure of F.
One can also consider sets which are interpretable in U, that is sets of the form
X/E where X C U" is a definable set, and E is a definable equivalence relation on
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X. Again the notion of such a set being defined over A makes sense. The following
“elimination of imaginaries” result ([22]) shows that such “imaginary” definable sets
can be identified with normal definable sets.

FACT 1.5. Let Y be an interpretable set, defined over A. Then there is some
A-definable set Z C U" (for some n) and some A-definable bijection f between Y
and Z,

It should be noted that we have not equipped definable sets with any geometric
structure. On the other hand, Kolchin [12] develops a theory of abstract differential
algebraic varieties. This theory is developed in a more “natural” manner by Buium
[2], [3]. In any case we have seen above the notion of “affine” differential algebraic
subsets of U". One can define various notions of differential polynomial functions
and differential rational functions, and much as in algebraic geometry, construct
a category of abstract differential algebraic varieties by piecing together “affine”
differential algebraic sets along differential rational transition maps. A group object
in this category is what is called a “differential algebraic group”.There is a natural
notion of such an object being “defined over F””. Any such object will be naturally
interpretable in U, and so, by virtue of Fact 1.5, can be identified with a definable
subset of /", although in doing so the geometry may disappear. We do not really need
to concern ourselves with such differential algebraic varieties, except to point out, that
insofar as differential algebraic groups are concerned, nothing is lost by working in
the (a priori nongeometric) category of definable sets. By a definable group we mean
a group whose underlying set and group operation are both definable. The following
is proved in [17].

FACT 1.6. Suppose G to be an F-definable group. Then there is a unique differ-
ential algebraic group H, defined over F which is F-definably isomorphic to G.

An important fact about any definable group G is that it has a unique smallest
definable subgroup of finite index, which we call G°, the connected component of
G. (This corresponds to the connected component of a differential algebraic group,
defined using the differential Zariski topology.)

In any case we will talk interchangeably about definable groups and differential
algebraic groups.

If X is an F-definable set, then, in accordance with Kolchin’s definitions, we define
the typical §-dimension of X to be max{tr.degree(F{(a)/F): a € X}. (Ifforalla € X,
tr.degree(F (a)/F) is finite then there will be a maximum.) For brevity we will call
a definable set with finite typical §-dimension finite-dimensional. When this typical
8-dimension of X is infinite (so countable) it does not give much information. Better
measures are given by various ordinal-valued model-theoretic dimension functions, or
what we call “ranks”. One such is Lascar’s U-rank. Its definition depends on another
crucial notion: independence (the analogue of algebraic disjointness in algebraic
geometry).
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Definition 1.7. Let A, B and D be subsets of 4. Let F be the differential field
generated by D. We say that A is independent from B over D, if F(A) and F(B) are
algebraically disjoint (or free) over F (as fields).

Definition 1.8. Let a be a tuple from U/, and A € U. We inductively define
U(a/A) > o (« an ordinal) by: U(a/A) > « + 1 if there is B 2 A such that a is not
independent from B over A, and U(a/B) > «; and for a limit ordinal 8, U (a/A) > B
ifU(a/A) > aforalla < 8.

We emphasize that in the next fact a, b etc. denote (finite) tuples from U. Also &
is Cantor’s symmetric sum of ordinals.

FACT 1.9. (i) U(a/A) < w? foralla, A.

(ii)) U@/F) < wifftrdeg(F{a)/F) < w.
(iii) For A € B,U(a/A) = U(a/B) iff a is independent from B over A.
(iv) U(@/BUb)y+U(b/A) <U(a,b/A) <U@/BUa)® U(/A).

If p(x) = tp(a/A) we will also write U (p) for U (a/A).

If X is an A-definable set, then by U (X) we mean max{U(a/A): a € X}. This
does not depend on the choice of A. In our situation (DC Fp) this maximum will
exist. Moreover U (X) will be finite just if X is finite-dimensional in the sense above.
In general U (X) may not so useful a notion, but if X happens to be a definable group,
it is quite useful.

Definition 1.10. Suppose G is an A-definable group, withU(G) = «. Leta € G.
We say that a is a generic point of G over A (and tp(a/A) a generic type of G over
A),ifU(a/A) =«a.

FACT 1.11. Let G be a definable group, defined over A. Then there are only
finitely many generic types of G over A (namely there are finitely many generic points
ai,....an of G over A, such that whenever b is a generic point of G over A then
tp(b/A) = tp(a;/A) for somei = 1,...,n). Moreover G is connected if and only
if it has a unique generic type over A.

Now U can also be considered as a universal domain for algebraic geometry. By
an algebraic group we mean an algebraic group with respect to this universal domain.
From the point of view of definability, an algebraic group will then be simply a group
which is (quantifier-free) definable in I/ just using the field language (4, ., 0, 1) and
parameters from /. The following in proved in [11]; another proof appears in [7].

FACT 1.12. Let G be a connected algebraic group of (algebraic-geometrical)
dimension n. Then, as a group definable in U, G is connected and U(G) = w.n.
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C denotes the field of constants of U, namely {a € U: a’ = 0}. So C is a definable
subset of U (defined over ). We have U(C) = 1. C is also a universal domain for
algebraic geometry (and it is worth remarking that any {/-definable set X which is
a subset of C™ for some m, is a constructible set relative to the algebraically closed
field C). If G is an algebraic group defined over some A C C, then note that G(C)
will be an algebraic group in the sense of the universal domain C as well as a group
definable in /. We call such an object an algebraic group in the constants. On the
other hand if H is a definable group whose underlying set happens to be a subset of
C™ for some m, then actually H will be of the form G(C) for some algebraic group
defined over C. Such H is a special case of a finite-dimensional differential algebraic
group. Finite-dimensional differential algebraic groups were studied in detail in [2].

In general, if X is a definable set, defined over F, then by X (F') we mean the set
of points of X all of whose coordinates are in F. In the special case where X = C
we may also write Cr in place of C(F).

The model theoretic notions of the definable closure and the model theoretic al-
gebraic closure have a simple meaning in the present context. We say that a is in
the definable closure of A (dcl(A)) if there is a formula ¢ (x) over A such that a
is the unique element (or tuple) satisfying the formula ¢ (x) (or equivalently {a} is
A-definable). We say that a is in the algebraic closure of A (acl(A)) if there is a
formula ¢ (x) over A satisfied by a which has only finitely many solutions.

FACT 1.13. (i) dcl(A) is the differential field generated by A. (ii) acl(A) is the
(field-theoretic) algebraic closure of the differential field generated by A.

Thus for any set Y contained in U (or even in U"), and any F, dcl(F U Y) will be
F(Y).

Note that if a € dcl(A Ub) there will be an A-definable partial function f(—) such
that f(b) = a.

Finally we mention Kolchin’s notion of strongly normal extensions. Anisomorphic
embedding of K into I/ will be called an isomorphism of K into . For F < K we
will say that such an isomorphism is over F it it fixes F pointwise.

Definition 1.14. Suppose F < K. Then K is a strongly normal extension of F
if

(1) Cr is an algebraically closed field,
(ii) Cr =Ck,
(iii) K is finitely generated over F, and
(iv) whenever o is an isomorphism of K into U over F, then o (K) € K(C).

Following Kolchin we will define Gal(K/F) to be not Aut(K/F') but the larger
group Aut(K (C)/F(C)). Kolchin shows that this group has, naturally, the structure
of an algebraic group in the constants.
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2. Generalised strongly normal extensions

For a given differential field F, insofar as we are interested in developing a Galois
theory for extensions K of F, it is natural to restrict one’s attention to subfields K of
some fixed copy F of a differential closure of F. As in Kolchin’s approach, we will
not build this into our definition, but rather deduce it from the definitions.

Definition 2.1. Let F be a differential field, X an F-definable set, and K a differ-
ential field containing F. Call K an X-strongly normal extension of F if the following
hold:

() X(F)=X (ﬁ ) for some (any) differential closure Fof F.
(i) dcl XUF)NK = F.
(iii) K is finitely generated over F as a differential field,
(iv) for any isomorphism o of K into U/ over F we have o (K) C K(X)

We will call K a generalised strongly normal extension of F if it is an X-strongly
normal extension of F for some F-definable set X.

Remark 2.2. K is a C-strongly normal extension of F iff X is a strongly normal
extension of F in the sense of Kolchin, Definition 1.14. The reason for this is that
Cr = Cp iff Cr is algebraically closed, and also dcl(CU F) N K = F iff Cr = Ck.

Before continuing with the main theme of the paper, we digress a little on the
meaning of (i) and (ii) in Definition 2.1.

LEMMA 2.3. Let F < K be differential fields, and X some F-definable set. The
following are equivalent:

(@) X(F)=X(F)anddcl(XUF)NK =F, )
(b) X(F) = X(K) (for some (any) differential closure K of K).

Proof. (b)=> (a). Suppose X (F) = X (12 ). As F embeds in K over F , it follows
that X (F) = X(I:“). Let ¢ € dcl(X U F) N K. Then there is some finite tuple d from
X(Ie) such that ¢ € dcl(d, F). Butd is contained in X (F),soc € F.

(a) = (b). Let ¢ € X(K). Then there is some formula ¥ (y) over K isolating
tp(c/K). Let d be a canonical parameter for ¥ (y) (by Fact 1.5: elimination of
imaginaries). Any automorphism of ¢/ which fixes X U F pointwise will also fix the
formula ¥ (y) (up to equivalence) and so will fix d. Thus d € dcl(X U F). Clearly
alsod € K. By assumption d € F. Thus the formula ¥ (y) is defined over F, which
means tp(c/F) is isolated. Thus c € X (15‘ ) for some differential closure Fof F. By
assumption ¢ € X (F). We have shown that X(Ie) =X(F). 0O

The nextlemma gives some information on the strength of the assumption X (F) =
X (F). By a strongly minimal set we mean an infinite definable set X every definable
subset of which is finite or cofinite (in X). For example C is strongly minimal.
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LEMMA 2.4.  Suppose X is strongly minimal and defined over F. Then X (F) =
X (F) if and only if X (F) is infinite and acl(FA‘) N X = X(F). In particular, if X (F)
is infinite and F = acl(F), then X(F) = X (F).

Proof. Left to right is easy.

Right to left. Assume thatc € X (ﬁ ), ¢ ¢ X(F). Then our assumption implies
that ¢ ¢ acl(F). Now tp(c/F) is isolated by a formula ¢ (x), and =¢ (x) — x € X.
¢ (x) has infinitely many solutions, and also = ¢ (x) — x # a for eacha € X (F).
So the formula ¢ (x) contradicts strong minimality of X. O

We will now see that any generalised strongly normal extension of F is contained
in a differential closure of F ,.and so in Definition 2.1, we could replace condition (ii)
by the condition F < K < F.

LEMMA 2.5.  Suppose K to be an X -strongly normal extension of F. Then K is
contained in some differential closure F of F.

Proof. LetK = F(a),andlet p(x) = tp(a/F). By2.1(iv), for any b realising p,
b e dcl(a, F, X). The compactness theorem, yields an F-definable (partial) function
f(—, =), and a formula ¢(x) € p(x) such that whenever a;, b; both satisfy ¢ (x),
there is some tuple ¢ from X such that a; = f(by, ¢). (Actually the compactness
theorem yields finitely many functions, but a standard trick, together with the infinite-
ness of F, gives us a single function.) Now let F be a differential closure of F inside
K.Letb € F satisfy ¢ (x). So clearly there is some tuple ¢ from X (12 ) such that a
= f(blA, c). By Lemma 2.3, ¢ is contained in X (F), and thus a is contained in F. So
K<F. 0O

We now continue with the main line of the analysis.

Remark 2.6. Let K be an X-strongly normal extension of F. Let o be an iso-
morphism of K into U over F. Then o extends to a unique automorphism t of K (X)
fixing X pointwise.

Proof. Let K = F{a) and let ¢ (x) be a formula over F isolating tp(a/F). We
claim that ¢ (x) isolates a complete type over F{X). If not then there are a;, a; inU,
a tuple b from X and some formula ¥ (x, y) over F such thatf = ¢(a1) A p(az) A
v(ay, b) A=Y (az, b). As Fisan elementary substructure of I/, we can find such a,
ay and b inside F. Butas X (I:“ ) is contained in F the tuple b is from F, contradicting
the fact that ¢ (x) isolates a complete type over F.

Thus tp(a/F({X)) = tp(o(a)/F(X)), and hence o extends to a unique isomor-
phism 7 between K (X) and o (K)(X) which fixes X and F pointwise. But it fol-
lows easily from (iv) of Definition 2.1 that K(X) = o(K)(X). This proves the
remark. O



DIFFERENTIAL GALOIS THEORY I 687

Definition2.7. Let K be an X-strongly normal extension of F. Then by
Gal(K /F) we mean the group of automorphisms of K (X) which fix F and X point-
wise. By gal(K/F) we will mean simply the group of automorphisms of X which
fix F pointwise. Moreover gal(K/F) can be considered naturally as a subgroup of
Gal(K /F).

By Remark 6, any o € gal(K/F) extends to a unique t € Gal(K/F). Thus we
can, and will, identify gal(K /F) with a subgroup of Gal(K /F). The purpose of this
section will be to show that there is a canonical isomorphism p of Gal(K/F) with a
finite-dimensional F-definable group G, where moreover G C dcl(X U F), and that
wutakes gal(K /F) to G (I:“ ). We now carry this out (via a well-known model-theoretic
construction of definable automorphism groups; cf. [24] and [6]).

Construction 2.8. We assume K to be an X-strongly normal extension of F', and
by (2.5), that K < F. We will construct the group G and isomorphism p using
certain data, and then point out that a different choice of data yields the same group,
up to F-definable isomorphism.

Let a be some tuple such that K = F(a). By Fact 1.4, tp(a/F) is isolated, by the
formula ¢ (x) say, and also K has finite transcendence degree over F. Let Z be the
set of solutions of ¢(x) inU. So b € Z iff there is an F-automorphism of U taking
a to b, or equivalently if b = o (a) for some isomorphism o of K into /. By (iv) of
Definition 2.1, b € dcI(F U X Ua) for any b € Z. By the compactness theorem (and
remarks following 1.13), there is an F-definable function fy(—, —) such that for any
b € Z, there is some tuple ¢ from X such that b = fy(a, c¢). Let Yy be the set of
tuples ¢ from X such that fy(a, ¢) is defined and in Z. Equivalently, by Remark 2.6,
Yy is the set of ¢ from X such that forany b € Z , fy(b, c) is defined and in Z. Y is
then an F-definable set of tuples from X.

Define the following equivalence relation E on Yo: E(cy, c2) iff fola,c1) =
fo(a, c2). Again by 2.6, this is equivalent to fo(b, c1) = fo(b,c2) forallb e Z. E
is thus F-definable. Let Y = Y,/E. By Fact 1.5, we can (and do) identify ¥ with an
F-definable set contained in dcl(FUX). Ford € Y,and b € Z,let f (b, d) be defined
to be fo(b, ¢) for some (any) ¢ € Yy such that c/E = d. Noting that Aut(U{/F) acts
transitively on Z, we then have:

(x) For any by, by € Z, there is unique d € Y such that f (b, b;) = d, and so we
can write d = h(b,, b,) for some F-definable function h(—, —).

Also note that (as Z C K (X)), Gal(K/F) acts on Z, and moreover by 2.6, for any
b € Z there is unique o € Gal(K/F) such that o (a) = b. Thus:

(x%) Gal(K/F) acts regularly on Z.
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Define u: Gal(K/F) — Y by u(o) = h(a, o(a); thatis to say, u(o) is the unique
d € Y such that f(a,d) =o(a).
Then by the definition of Y and (x) and (*%), we have:

LEMMA 2.9. u is a bijection between Gal(K/F) and Y.

Let G denote the group whose underlying set is Y and whose group operation is
induced from pu.

LEMMA 2.10. The group G is F-definable and finite-dimensional, and G C
dcl(X U F). The induced (regular) action of G on Z is (F U a)-definable.

Proof. 'We start by considering the action of Y on Z induced by p; namely, for
geY,andb € Z, g.b = ' (g)(b). We show this to be definable. Let u~'(g) = o
(a member of Gal(K/F)). Leta; = o(a) = f(a,g). Letb e Z,andletg, € ¥
such that b = f(a, g1). Then (as 0(g1) = g1) a(b) =0 (f(a, g1)) = f(o(a), &)
= f(f(a,g),g). Thus g.b = f(f(a,g), g1), where g, = h(a, b). This shows the
(F U a)-definability of the action of Y on Z. It easily follows that the induced group
operationon Y, is F-definable. We give the details. Letg,, g, € Y. Leto; = u~'(g;)
fori =1,2.

Then oy.02(a) = 01(02(a)) = 01(f(a, &) = f(o1(a), ) = f(f(a, &), &)
Thus g;.82 =qer £(01.07) is the unique g3 € Y such that f(a, g3) = f(f(a, g1), &2)-
But Y C dcl(F U X) so by 2.6, this condition holds for a iff it holds for all (some)
b € Z. This shows the group operation on G to be F-definable. Astr.degree(F(b)/F)
=tr.degree(K /F) is finite for all b € Z and G acts regularly on Z, clearly G is finite-
dimensional O

We briefly discuss how canonical the above construction of G is. It clearly depends
on the choice of a € K (and so of Z), of Y (coming from choice of fy) and of f. A
different choice of these data (say a,, Z,, Y}, f1) would give rise to an F-definable
group G| and an isomorphism p: Gal(K/F) = G,. It is easy to check that the
isomorphism w;.u~': G = G, is then F-definable. Moreover there is clearly an
F-definable bijection between Z and Z; (as K = F(a) = F{a;)) which (together
with w;.;~! will induce an isomorphism between the above defined actions of G on
Z and G on Z;. On the other hand, if G is F-definable and F-definably isomorphic
to G, then clearly G, can arise by a suitable choice of data. It can similarly be
seen that (up to F-definable isomorphism) the choice of G does not even depend
on X, only on the extension F < K. Thus attached to any generalised strongly
normal extension F < K is a finite-dimensional F-definable group, unique up to
F-definable isomorphism. We will sometimes refer to G as the Galois group of K
over F, hopefully without confusion.

Before continuing, let us remark on the situation when X = C. Then the Galois
group G of L over F is F-definable and contained in dcl(F U C). Thus there is an
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F-definable subset V of C" (some n), an F-definable equivalence relation E on V,
and an F-definable bijection of V/E with G. Now stability implies that both V, E
and the induced group structure on V/E are Cr-definable. As mentioned earlier, C
with all induced structure from I/ is simply an algebraically closed field. It follows
that V/E with the induced group structure is an algebraic group defined over Cr in
the sense of the universal domain C. We may of course assume G to be this group,
and we see that the Galois group of K over F is an algebraic group in the constants,
defined over Cr.
Let us return to the notation coming from the original data in Construction 2.8.

LEMMA 2.11. u(gal(K/F)) = G(ﬁ' )= G(F ), and this induces an tsomorphtsm
between the (faithful) action of gal(K /F) on Z (F ) and the action of G(F )on Z(F).

Proof. Leto € Gal(K/F). First note that

() o(a) € Fiff u(c) € G(F). This is because
(ii) o(a) € F{a, u(o)) and u(o) € F{a,o(a)). On the other hand, as G is
contained in dcl(X U F) and X(ﬁ) = X (F), we see that
(iii) G(F) = G(F).

The inclusion of u(gal(K/F)) in G(I:“ ) follows from (i). On the other hand, if
w(o) € G(F) then also u(o~") € G(F), so by (ii) 0 (a) € F(a) anda € F{o(a)),
whereby the restriction of ¢ to K clearly determines an automorphism of K, and o €
gal(K/F). The rest of the lemma is left to the reader. O

We proceed to specify the Galois correspondence. We again make use of data as
in Construction 2.8.

THEOREM 2.12. Let K be an X -strongly normal extension of F with Galois group
G. For L an intermediate differential field(F < L < K),letG; ={g € G: g(c) =c
forallc € L}. Then K is an X-strongly normal extension of L, G is an F-definable
subgroup of G and is the Galois group of L over K. Moreover the correspondence
taking L to G|, establishes a 1-1 correspondence between the intermediate differential
fields and the F-definable subgroups of G. Also L is an X-strongly normal extension
of F if and only if G| is a normal subgroup of G, in which case the quotient group
G/ Gy is the Galois group of L over F.

Proof. ltis easy to see that L is finitely generated over F, say L = F(b). Thus
F=1.Letbh= t(a) for some F-definable function t. Then clearly, for g € G,
gb = biff t(a) = t(g.a) (=1t(f(a,g))) iff t(b) = t(f(,g)) forany b € Z.
Thus G, is an F-definable subgroup of G. Now if ¢ is an isomorphism of K into
U over L, then in particular o is an isomorphism of X into U over F, so 0(K) C
(K, X), and thus K is an X-strongly normal extension of L. Letnow o € Gal(K/L).
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Let g € G = pu(o). Then t(a) =t(o(a) = t(g.a). Thus g € G,. Similarly if
o € n~'(Gyp) then o € Gal(K/L). Thus G is the Galois group of L over K.

Now let H be any F-definable subgroup of G. Let W = {g.a: g € H}. W is then
a K-definable set. Let (by 1.5) b be a canonical parameter for W. Then b € K. Let
L = F(b). So by the paragraph above K is an X-strongly normal extension of L with
Galois group G,. We claim that H = G. Firstly, if g € H, then forany h € H,
g.(h.a) = (g.h).aisin W (as g.h € H). Thus p,"(g)(W) =W, so u“'(g)(b) =b.
Thus g € G. Conversely if g € G, then g.W = W,sog.a € W. So g.a = h.a
for some h € H, whereby g = h € H.

The rest is left to the reader.

COROLLARY 2.13. Let K be a generalised strongly normal extension of F, with
Galois group G. Then G is connected if and only if F is relatively algebraically
closedin K.

We complete this section with some remarks connecting our point of view with
that of [1]. For the sake of the next lemma, let us fix X, F and K an X-strongly
normal extension of F. Leta, Z, Y, f, be as above, and let G be the Galois group
of K over F, with isomorphism u: Gal(K/F) — G. Let G* = G;i.e., G* has the
same underlying set as G (namely Y), but the multiplication x on G* is defined by:
gxh=h.g.

LEMMA 2.14. Let * denote the map from G* x Z to Z defined by gxb = f (b, g).
Then * defines a regular (group) action of G* on Z. (So Z becomes an F-definable
principal homogeneous space for G*.)

Proof. From the proof of Lemma 2.10 we see that forany g, h € Y, f(a, g.h) =
f(f(a,g),h). Thus (h % g) xa (= f(a, g.h)) = h x (g * a). This remains true for
any b € Z in place of a. So G* acts on Z. It is clear that the action is regular. O

The following extends Bialynicki-Birula’s characterization of strongly normal ex-
tensions to generalised strongly normal extensions. It is convenient to restrict our
attention to the case where F is relatively algebraically closed in K (as is also done

in [1]).

PROPOSITION 2.15. Let F < K (< U) be differential fields where F is relatively
algebraically closed in K. The following are equivalent.

(i) K is a generalised strongly normal extension of F .

(ii) There are a connected algebraic group H,, defined over F, an (algebraic)
principal homogeneous space W for H,, defined over F, and an F-definable
connected (differential algebraic) subgroup H of H\ such that:

(a) dim(H,) (as an algebraic group) = typical § dim(H);
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(b) H(F) = H(F),and F = dcl(H U F) N K);

(c) K = F(W) (here meaning the function field of W), that is to say,
K = F(a) where a is a generic point of W over F in the algebraic-
geometrical sense.

(d) Forg € H(F),tp(a/F) = tp(g.a/F), or equivalently the map taking
any P(a) € K to P(g.a) (P an F-rational function) determines an
automorphism of the differential field K over F.

Proof. For the (i) = (ii) direction we will be brief. Suppose first K is an X-
strongly normal extension of F, with Galois group G. By Corollary 2.13, G is
connected (as a definable group). We may assume that in Construction 2.8, a, f and
Y are chosen such that:

(i) K = F(a).
(ii) For generic cinY (= G) over F, F(c) = F(c).
(iii) Forany c € Y, f(a,c) € F(a,c) and ¢ € F(a, f(a,c)) (in particular f is
F-definable in the field language).

By (ii) we have:
(iv) For generic, independent g, h € G, g.h € F(g,h). O

Now let G* be as above. Let g be a generic point of G* over F. Let V; the
irreducible variety over F of which c is the generic point. Similarly, let Wy be the
irreducible variety over F of which a is the generic point. By (iii), the map f(—, g)
determines a birational isomorphism of W, with itself. Let g, g, be independent
generic points of G* over F(a) (in the sense of differential fields). Then clearly
g1, &2, a are generic independent points (over F) of Vp, Vy, Wy in the algebraic
geometrical sense, and moreover (g; * g2) * a = g * (g2 * a); namely f(a, g * g2)
= f(f(a, g2), g1). By (iii) and (iv) and Weil’s Theorem [23], there is a connected
algebraic group H| over F, and a (algebraic) homogeneous space W for H, defined
over F, such that g is a generic point of H; over F, a is a generic point of W over
F, the multiplication on H; agrees with % generically, and the action of H) agrees
with * generically. As g € F(a, g *a), clearly W is a principal homogeneous space.
Clearly Z is a subset of W (every element of Z is a generic element of W over F in
the algebraic geometrical sense). Also the identity map (on generic elements of G*)
extends to an F-definable embedding of G* into H,. So we may suppose G* to be
equal to its image, and thus a subgroup of H;. Define H = G*. Note the action of
H on Z (by x) is the restriction of the action of H; on W (which we will also call x).
Note that dim(H,) = tr.deg(F (g)/F) = typical §-dim(H). So (a) holds. (b)—(d) are
clear.

We now prove the converse. Suppose (ii) holds. We will show that X is an H-
strongly normal extension of F. We use the model theory of DC Fy. First, as F is
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relatively algebraically closed in K, tp(a/F) is stationary (meaning that whenever
tp(a,/F) = tp(a/F) = tp(a/F) and each of ay, a; is independent from L over F
then tp(a, /L) =tp(az/L)). We will first show:

Claim. For some b realising tp(a/F) with b independent from a over F, there
is g € H such that g.a = b.

Proof of claim.  Let K be some differential closure of K . By (b) and Lemma 2.3,
H(K) = H(F). Let g € H be generic over F, such that g is independent from F(a)
in the differential field sense. Let b = g.a (where . denotes the (F-rational) action of
H; on W). Now (a) implies that F(g) = F(g) and tr.deg(F(g)/F) =d =dim(H,) =
trdeg(F(a)/F). As F(a) = F(a), clearly F(b) = F(b), and note tr.deg(F (b)/F)
< d. Now (as H; acts regularly on W), F(a, g,b) = F(a, g) = F(a, b), and this
field has transcendence degree 2d over F. It follows that a is independent from b in
the differential field sense. To prove the claim all we need show is that tp(b/F) =
tp(a/F). Let ¥ (x) be a formula over F true of a. By (d) and the fact mentioned
above that H(F) = H(Ie), it follows that the sentence Vy(y € H — ¥ (y.a)) is true
in K. As K is an elementary substructure of U/, this sentence is true in I/, whereby
¥ (x) is true of b. The claim is proved.

Now let o be an arbitrary isomorphism of K into U over F. Letc = o(a). Letd
be a realisation of tp(a/F) which is independent of a,c over F. Then tp(a,d/F) =
tp(d,c/F) =tp(a, b/F)(astp(a/F)isstationary). By the claim, thereare g, h € H
such that g.a = d and h.d = c. Asa,c,d € W, it follows that (h.g).a = c. As
h.g € H,weseethatc € (K, H), and so o (K) C (K, H). We have shown that K is
an H-strongly normal extension of F'.

We complete this section with a clean characterisation of generalised strongly
normal extensions, the proof of which should be clear to the reader.

LEMMA. K is a generalised strongly normal extension of F if and only if

() F<K <F,and
(ii) there is an F -definable group G and F-definable principal homogeneous
G-space X such that G(F) = G(F) and K = F(a) for some a € X.

3. Galois cohomology and (G,H)-primitive elements

In this section we give a “canonical form” for generalised strongly normal ex-
tensions; namely, we show that a generalised strongly normal extension K of F is
generated over F by an element o of some F-algebraic group which satisfies some
formula or “differential equation” (over F) of a specific form. In fact the result fol-
lows easily from (i) the embeddability of differential algebraic groups into algebraic



DIFFERENTIAL GALOIS THEORY I 693

groups, and (ii) the triviality of certain “constrained cohomology” groups. The re-
quired result (ii) was proved by Kolchin, but we give another proof here, working in
the a priori more general definable category.

We start by defining what are essentially Kolchin’s first constrained cohomology
groups (see [12] and also [19]).

Definition 3.1. Let F be a differential field, and Fa diffe[ential closure. Let G
be an F-definable differential algebraic group. Let G be Aut(F/F).

(i) By a definable cocycle from G to G we mean a map s from G to G (I:’ )Asuch
that foro, T € G, s(0.t) = s(0).0(s(1)), and also, for some tuple a € F and
some F-definable partial function h, s(o) = h(a, o (a)) for all 0 € G. The
set of such definable cocycles is denoted by Z1 (G, G).

(ii) Ifs,t € Z;ef(g , G), we say s and ¢ are cohomologous if there is some b € G
such that for all 0 € G, t(0) = b~'.s(c).0(b). (This is easily seen to be an
equivalence relation, which we call E.).

(ili) A definable cocycle s is said to be trivial if for some b € G, s(0) = b~ .o (b)
forallo € G. (Note that the trivial cocycles are cohomologous to each other.)

(iv) By H} (G, G) (or sometimes H) (F/F, G)) we mean Z\ (G, G)/E., the
set of cohomology classes of the set of definable cocycles. This is a pointed
set, the distinguished element being the class of trivial cocycles.

The following is essentially proved in [12].

PROPOSITION 3.2.  Suppose F to be algebraically closed and G to be.an algebraic
group defined over F (namely a group defined over F in the field language). Then
H)«(F/F,G) is trivial.

Proof. LetG= Aut(ﬁ /F)andlets € z;ef(g , G). We must show s to be a trivial
cocycle. Let a be a tuple from F and h an F-definable function, such that for any
o € G,s(o)=h(a,o(a)). Let ¢ (x) be aformulaover F isolating tp(a/F). Forany b
in F satisfying ¢ (x) there is 0 € G with o (a) = b, and thus h(a, b) is defined (and in
G(I:")).Thus for all realisations a;, b; of ¢ (x) inl, h(ay, by) is defined and in G. For
eachsuchay, by, f(ai, b)) isin F(ay, b;),soin F(ay, aj, af, ..., by, by, b}, ...). So
by compactness (and a standard trick) there is some function A, definable over F in
the field language, and some n, such that for all realisations a;, by of ¢ (x), h(ay, b)
=ho(ay, ..., af"), by,..., bg")). So replacing a by (a,d’, ...,a"™) we may assume
that & is definable over F in the field language.

Claim. For any realisations b, ¢ of ¢ (x) in F, h(a, b).h(b.c) = h(a, ).
Proof of Claim 1. Let t,0 € G be such that t(a) = b, and tr.0(a@) = c.

Then s(t.0) = s(t).1(s(0)) = h(a, b).t(h(a,o(a)) = h(a,b).h(t(a), 1.0(a)) =
h(a, b).h(b, c) as required.
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As F is an elementary substructure of U, the claim holds for any realisations b, ¢
of ¢(x) inU.

Let us choose realisations b, ¢ of ¢ (x) in U such that {(b, c, F } is F-independent
in the sense of differential fields. In particular, {a, b, c} is independent over F in the
algebraic-geometrical sense, and we also have that h(a, b).h(b.c) = h(a,c). The
latter formula is one over F in the field language (as multiplication on G is F-rational).
As F is algebraically closed there is d € F such that

(%) h(a, b).h(b,d) = h(a,d),and h(a,d), h(b,d) € G.

Now leto € G. Then (as F is algebraically closed, so the type over F determined
by ¢ (x) is stationary) we have that tp(a, b/F) =tp(b, o(a)/F), and thus

(xx) h(b, o(a)).h(c(a),d) = h(b, d).
From (*) and (xx) we obtain
(* % %) h(a, b).h(b, 0 (a)).h(o(a),d) = h(a, d).

But (by the truth of the claim in Uf), h(a, b).h(b, 6 (a)) =h(a, o (a)). Thuss(o) =
h(a,o(a)) = h(a,d).h(o(a),d)". Puta = h(a,d)~" (a member of G(F)). Then
h(o(a),d)=0(a™"). Thuss(o) = a~'.0(a). Asthisistrue forallo € G (the choice
of o did not depend on o), we have shown that the cocycle s is trivial, completing the
proof of the proposition. O

Finally in this section, we give an analogue of Kolchin’s notion of “G-primitive”
elements, and show that generalised strongly normal extensions are generated by such
elements (at least when the base field is algebraically closed).

First suppose that F is a differential field, and G, H are F-definable groups (i.e.,
differential algebraic groups, defined over F) with G < H. Let H/G denote the set
of left cosets of G in H. By Fact 1.5 there is some F-definable set W (a subset of 4"
for some n), and an F-definable bijection between H/G and W, in other words W
is an F-definable homogeneous space for H, isomorphic to H/G. We will identify
H /G with such a set W. Thus we are able to write (H/G)(F') for the set of F-points
of H/G. Note that if F is differentially closed then (H/G)(F) = H(F)/G(F), but
this will not hold in general for arbitrary F. Let v denote the canonical projection
from H to H/G. If H happens to be a connected algebraic group defined over the
constants Cy, and G = H(Cy), then H/G can be identified with the Lie algebra of
H and v is Kolchin’s logarithmic derivative.

Definition 3.3. Suppose G < H are F-definable groups. « is said to be an
(H, G)-primitive element over F, if« € H and v(x) € (H/G)(F).

Before the next proposition, it should be remarked that any connected definable
(differential algebraic) group defined over F, can be F-definably embedded in a
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connected algebraic group H defined over F. (This is proved in [17] and also in [2]
for finite-dimensional differential algebraic groups.)

PROPOSITION 3.4. (i) Suppose « is an (H, G)-primitive element over F (where
G < H are F-definable groups), K = F{a),G(F) = G(ﬁ') anddcl(GUF)NK = F.
Then K is a generalised strongly normal extension of F (in fact a G-strongly normal
extension of F), and moreover the map taking o € Gal(K/F) to a Vo) e His
an isomorphism between Gal(K / F) and an F -definable subgroup of G.

(ii) On the other hand, suppose F is algebraically closed, and K is a generalised
strongly normal extension of F. Let G be the Galois group of K over F (with canonical
isomorphism p: Gal(K/F) — G). Let H be any algebraic group defined over F
in which G definably (over F) embeds. Then K = F(a) where « is some (H, G)-
primitive element over F. Moreover for any o € Gal(K/F), u(o) = a~'.o(a).

Proof. (i) If o is an isomorphism of K into ¢/ over F, and B8 = o(«), then
v(B) = v(a), and thus «~'.8 € G. So o(K) C (K, G). Together with the other
hypotheses of (i) this means that K is a G-strongly normal extension of F. The rest
is clear.

(i) We may assume G is an F-definable subgroup of H. Let K = F(a) (which
by Lemma 2.5 we may assume to be contained in F). Let p be the canonical
isomorphism of Gal(K / F') with G. So for some F-definable functlon h(-, —) u(o) =
h(a, o(a)) for all o € Gal(K/F) .Then the map s from Aut(F/F) to G(F) deﬁned
by s(0) = h(a, o (a)) is clearly a homomorphism. But G(F) G(F), SO Aut(F/F)
acts trivially on G(F'), and thus s is a definable cocycle from Aut(F /F) into G(F ).
As G is a subgroup of the algebraic group H (which is defined over F), s is actually in
Zdef(F /¥, H). By Proposition 3.2, s is trivial, namely there is« € H (F) such that for
anyo € Aut(F/F), h(a,o(a)) =a~'.o(a). Thusforo € Aut(F/F), o fixesa iffo
fixesa. By 1.4, K = F{a) = F{a). Let ¢ (x) isolate tp(a/F), x(y) isolate tp(a/ F),
and let 7(x), k(y) be F-definable functions such that « = t(a) and a = x ().
Then the sentences Yx(¢(x) — h(a,x) = a~'.t(x)), and Vy(x(y) = a~ly =
h(a, k(y)) are both true in 1:", so also in /. So clearly for 0 € Gal(K/F), u(o) =
a o).

Finally, let d = v(0) = /G € H/G. For any automorphism o of U over F,
we know that &~ !.o () is in G, hence /G = o(a/G). Thus d isin F. So « is an
(H, G)-primitive element over F. This completes the proof of the proposition.

4. Existence of generalised strongly normal extensions

In this section we show that any finite-dimensional differential algebraic group is
the Galois group of some generalised strongly normal extension K of some F. (We
do not fix F in advance. This would constitute the inverse Galois problem, which is



696 ANAND PILLAY

treated in [16].) We make more serious use of stability theory (independence and the
U -rank). For ease of exposition we will work with connected G.

PROPOSITION 4.1.  Let G be a connected definable group of finite U-rank. Then
there are differentialfields F < K (with G defined over F) suchthat K is a generalised
strongly normal extension of F, with Galois group G.

Proof. Let Fy be some differentially closed field over which G is defined. By
[17], there is a connected algebraic group H defined over Fj and an Fy-definable
embedding of G in H. We may assume G to be a subgroup of H. By Fact 1.12, the
U-rank of H is w.m (some m > 0). As above we treat the homogeneous space H/G
as an Fy-definable subset of /" for some n. Let v be the (Fy-definable) projection
from H to H/G. Now choose « to be a generic point of H over Fj, in the sense of
differential fields (see 1.10). Let ¢ = v(x). Let F = Fy(c) and K = Fy{c). Note
that F < K,and K = F(a).

By Fact 1.9 (iv) we have
(%) U/ Fo{c)) + U(c/Fo) < Ule, ¢/ Fy) < Ut/ Foc)) @ U(c/ Fp).

Now the set defined by v(y) = c is clearly in definable bijection with G, and the
latter has finite U-rank. Thus

(%) U(a/ Fp(c)) < w.

Now 1.4 also yields U («, ¢/ Fy) = U (/ Fy) which we know to be w.m. Together
with (%) and (*x) this yields

(xx %) U(c/Fp) = w.m.

Claim 1. tp(a/F) is isolated, by the formula v(x) = c. Thus we have F < K
< F.

Proof of Claim 1. Let B8 € H with v(B) = c. Asin (xx), U(tp(B/Fy{c)) < w.
(* x %) together with 1.4 (iv) implies that U(8/Fy) = w.m. By 1.12 and 1.11,
tp(B/Fo) = tp(a/Fo). Thus tp(B,v(B)/Fo) = tp(a, v()/Fo), and tp(B/F) =
tp(a/F), as required.

Claim2. G(F) = G(K) (= G(Fp)).

Proof of Claim 2. As Fy is differentially closed, it is well known that any ele-
ment of Fy(a) not in Fy cannot be independent from « over Fy. But we know that
U(a/Fy) = w.m and for any g € G, U(g/Fy) < w. By 1.4 (iv), « is indepen-

dent from g over Fj for all g € G. Thus G(K) = G(Fp). This proves Claim 2.
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By Claims 1, 2, and (i) of Proposition 3.4, K is a G-strongly normal extension of
F, whose Galois group is the image of the map u: Gal(K/F) — G defined by
w(o) = a~l.o(a). So we must show that yisonto G. Letg € G. Let 8 = a.g.
Then v(a) = v(B). By Claim 1, tp(8/F) = tp(a/F) so there is an isomorphism
o of K into U over F taking o to 8. o extends to (unique) T € Gal(K/F), and
u()=g. 0O

5. Additional remarks

In this section we point out that the theory presented here properly generalises the
Kolchin theory.

LEMMA 5.1. Let K be a generalised strongly normal extension of F with Galois
group G. Assume G to be connected. Then K is a strongly normal extension of F if
and only if G is (definably) isomorphic to some algebraic group in the constants (i.e.,
to H(C) for some algebraic group H defined over C).

Proof. (=) Clear (from material in Section 2).

(<) Note that the right hand condition does not specify that the isomorphism is
defined over F. We will deduce this. In any case we have to show

(i)Cr =Cg, and

(ii) G is definably isomorphic over F to H (C) for some algebraic group H defined
over Cr.

Proof of (i). First, as Fisan elementary substructure of I/ and G is F-definable,
we can assume that the algebraic group in the constants (say H,) is defined over C;
and the isomorphism j: G = H, is defined over F. Now there is some surjective
map, say pr from H; onto C (where pr is defined over F. Then composing pr
with j yields an F-definable map j; from G onto C. We obtain some F definable
setY C dcl(ﬁ U G) and an F-definable bijection k between Y and C. This induces
an F-definable field structure on Y , which we denote L. As G is F-definable and
G(ﬁ‘) = G(F), it follows that K is F-definable, and K(I:“) = K(F). We claim
that k is also F-definable. Otherwise, let k' # k be the image of k under some F-
automorphism of . Then the composition of k~! with k' yields a nontrivial definable
automorphism of C, which is known to be impossible. So k is F-definable. It follows
(as K (F) = K(F)) that C, which is the image of K (F) under k, is contained in F,
yielding (i).

Proof of (ii). Let H) be as in the proof of (i). The parameters for the F-definable
isongorphism between G and H; can be chosen from F U G(ﬁ‘ ) U H, (I:“ ). But
G(F) = G(F) and by (i) the same is true of H;. Thus G is F-definably isomorphic
to H;. This proves (ii).
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It follows from (i) and (ii) that K is a C-strongly normal extension of F with Galois
group H,.

In order to show that there are generalised strongly normal extensions which are
not strongly normal extensions, we make use of the easy direction of the above
lemma (together with Proposition 4.1); in particular, we exhibit connected finite-
dimensional definable groups which are not definably isomorphic to algebraic groups
in the constants (or in the language of Buium, are not split). Such examples are
well-known (see [2]), but we mention a couple.

Let ¢ be the “logarithmic derivative” from the multiplicative group of ¢ onto the
additive group of U, defined by ¢(x) = x'/x. Ker(¢) = C*. Let G be ¢~ '(C).
Then G is a definable subgroup of C* of U-rank 2. We claim that G is not definably
isomorphic to any group H which is an algebraic group in the sense of the universal
domain C. For then H would be 2-dimensional, commutative, so by virtue of its
abstract structure it would be the direct product of a one-dimensional diagonalizable
group and a one-dimensional unipotent group. Pulling back the unipotent subgroup to
G we see that G has a definable subgroup which is torsion free. So/* has a definable
subgroup which is torsion free. This contradicts results of Cassidy [4] which state
that any differential algebraic subgroup of U* contains C*.

The next example is somewhat deeper. Let A be a simple abelian variety over U,
which is not isomorphic (as an algebraic group) to one defined over C. Of course A
is also a group definable in /. Buium [2] shows that A has a unique smallest infinite
definable subgroup G, that G is finite-dimensional, and is not definably isomorphic
to any algebraic group in the constants. The existence of G is connected to Manin’s
“theorem of the kernel” in [14].
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