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INDICES OF CENTRALIZERS FOR HALL-SUBGROUPS
OF LINEAR GROUPS

THOMAS R. WOLF

ABSTRACT. Suppose that P is a Sylow-p-subgroup of a solvable group G. If G is a transitive permutation
group of degree n, then the number of P-orbits is at most 2n/(p + I). This is used to prove that
if G is a faithful irreducible linear group of degree n, then the dimension of the centralizer of P is
at most 2n/(p + I). The latter result generalizes results of Isaacs and Navarro and is also used to
affirmatively answer a question ofMonasur and Iranzo regarding indices ofcentralizers in coprime operator
groups.

Suppose that V is a faithful irreducible module for a solvable group G. While
there is no universal non-trivial upper bound for the dimension of the centralizer
of a non-identity element of G (i.e., one may find V, G, and -7/: g G such
that dim(Cv(g))/dim(V) is arbitrarily close to I), we do show that if P e
SylI,(G), then dim(Cv (P) < 2 dim(V)/(p+ I). Likewise if G is a transitive solvable
permutation group on f2, there are no non-trivial bounds for the number of orbits of a
non-identity element of G, but we do show that if - P Sylt,(G), then the number
of orbits of P on f2 is at most 2lf21/(p + I). In fact, this result aids the proof of the
result on linear groups. We use this to positively answer a question posed by Profs.
E Perez Monasor and M. J. lranzo. Their question and this paper begin with a paper
of Isaacs and Navarro [IN].

HYPOTHESIS CP. We assume that A acts on G via automorphisms, that
(IAI, GI) 1. We let C C6 (A) and zr 7r (G) be the set of prime divisors

oflal.

Assuming Hypothesis CP, Isaacs and Navarro [IN] prove a pretty result that states
if an irreducible character of G is induced from an irreducible character of C, then
indeed C G (i.e., A acts trivially on G). To this end, they prove that if V is a faithful
irreducible GA-module with G solvable, A 1, and the characteristic of V is coprime
to [A[, then dim(Cv(A)) < 2dim(V)/3. We improve this result in Theorem 1.2 by
removing the restriction on the characteristic and showing even that dim(Cv(A)) <

2dim(V)/(p + 1) where p is the largest prime divisor of [A[. Furthermore, we
show that if GA is a transitive permutation group on , the number of A-orbits is at
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most 2tf21/(p + 1), and this, in turn, helps prove the result on linear groups. Besides
removing the restriction on the characteristic and improving the bound, our techniques
seem simpler and more direct than those in [IN]. The aforementioned results about
Sylow subgroups of solvable linear groups and permutation groups are Corollary 1.4,
an easy Corollary to Theorem 1.2.

Assume Hypothesis CP with G solvable and let F F(G), the Fitting subgroup
of G. If A centralizes F, then indeed A centralizes G, (i.e., IF: F fq C implies
that G: C 1). The question posed by Perez and Iranzo is whether G: C is
bounded by a function of IF: F N C I. It is a consequence of Theorem 1.2 that indeed
IG: CI < IF: F N CI tJ for some/, but the first such approximation is much too large
and with a little additional work, we show that G: C < IF: F q C + for a constant
c with 2.24 < t < 2.25 and this is best possible. In a minimal counterexample, F
is a faithful irreducible GA / F-module.

I. Orbits and centralizers

We first quote Lemma 2.2 of [IN], which is used several times.

LEMMA 1.1. Assume that A acts on X X ( Xn for subgroups (or
submodules) Xi ofX that are permuted transitively by A. Let Ai NA(Xi) and let
Ci Cxi(Ai). Then Cx(A) Ci.

We state Theorem 1.2 in a little more generality than mentioned above for con-
venience of applications and to avoid frequent repetition of a routine argument. We
will apply some Hall-Higman results at the end of the proof and have even put these
in a separate Lemma 1.3 that appears afterwards.

THEOREM 1.2. Assume Hypothesis CP withGA normal in F, with G solvable
and A 5 1. Let p be the largest prime divisor of lAI.

(a) If F transitively andfaithfully permutes a set f2, then the number of A-orbits
on f2 is at most 2121/(p + l).

(b) IfV is afaithful irreducible F-module, then dim(Cv (A)) < 2 dim(V)/(p+ I).

Proof. Our proof will use part (a) to prove part (b). We argue by induction on

IGAII21 for part (a) and by induction on IGAI for part (b). The first reduction is
common to both parts. Choose K normal in F with K c_ GA minimal such that p
divides K I. Assume that K < F. If F is a transitive permutation group, we may
write 2 as a disjoint union f2 A t_J.., t_J A for K-orbits Ai. Because K is normal
in F and F is transitive on 2, it follows that the groups K/CK(Ai) are all isomorphic.
Because K acts faithfully on , we have that OiCr(Ai) and that K/Cr(Ai)
has a normal and proper Hall-rr-subgroup. Even p divides IK/Cr(Ai)I for all i. Let
A0 A N K e HalI,(K). Now :/: Cr(Ai)Ao/Cr(Ai) HalI,(K/Cr(Ai)) and
the inductive argument shows that A0 has at most 21Ail/(p + I) orbits on A. Hence
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A0 has at most Ei21Ail/(p + 1) 21fll/(p + 1) orbits on ft. Since A0 A, A has
at most 2121/(p + I) orbits on fl-, proving (a). For (b), we may similarly write V
V ... V,,, for irreducible K-modules Vi with the groups K/Cr(Vi) all isomorphic
and argue by induction that dim(Cv(A)) < dim(Cv(A0)) Ei dim(Cvi(Ao)) <

Ei 2dim(Vi)/(p + I) 2dim(V)/(p + I). Both parts (a) and (b) follow when
K < F. Hence we may assume that p does not divide NI whenever N is a proper
normal subgroup of F. In particular, GA F.

(a) Suppose that GA transitively permutes f2. First assame that GA is an imprimi-
tive permutation group. Write
that are permuted transitively and faithfully by GA/M for a normal subgroup M of
GA and with < IAil < 121 and M < G. By the last paragraph, p IIG/MI. Since
< 121, we apply the inductive hypothesis to the action of G/M on {A At} to

conclude that the number of A-orbits on {A At} is at most 2t/(p + I). Then
the number of A-orbits on f2 is at most 2tlAil/(p + I) 2lf21/(p -I- l), as desired.
Conclusion (a) follows if GA is imprimitive on

Let n 121. Of course p divides n!, and so _< 21f2l/(p + l). We may thus
assume that A is not transitive on f2 and G > I. We let s s(A) be the number of
A-orbits on 2.

Next, assume that GA is a primitive permutation group and let N be a minimal
normal subgroup of GA with N c_ G. The solvability of G forces N to be an
elementary abelian group. Now N is transitive on since otherwise the N-orbits
form a non-trivial system of imprimitivity for GA. Let P Sylp(A) and observe
that NP is transitive on . If NP < GA, the inductive hypothesis implies that
s < s(P) < 2121/(p + I). So we may assume that GA NP, whence N G and
A P. Now NP is a solvable primitive permutation group with unique minimal
normal subgroup N. It is well known that NH GA and N f3 H where H is
a point stabilizer, that /is a faithful irreducible H-module and the actions of H on

and N are permutation isomorphic. In particular n NI. The complements to N
in GA are all conjugate and indeed P is a point stabilizer in GA. Since N is abelian
and a minimal normal subgroup of GA NP, it follows that Cs(P) I. Since
Cs (P) and the actions of P on N and are permutation isomorphic, then

s < ((n- l)/p) + 2n/(p+ I)- [(p- l)(n- (p+ l))/p(p+ 1)] < 2n/(p+ I)

as desired.
(b) Now suppose that V is an irreducible GA-module. If V is not quasiprimitive,

choose N normal in GA maximal with respect to Vs not homogeneous and write
Vs W ... .W,,, for the rn > homogeneous components W Wm of Vs.
The maximality of N shows that G/N transitively and faithfully permutes the Wi. By
Lemma 1.1, we have that dim(Cv (A)) < dim W ), where is the number of A-orbits
on {WI Win}. By the first paragraph, p IIG/NI. Note that N > because
is not homogeneous. Applying part (a) to the action of GA/N on W W,,, }, we
havet < 2m/(p+ 1). So dim(Cv (A)) < 2mdim(W)/(p+ I) 2dim(V)/(p+ I).
Thus we may assume that V is a primitive GA-module.



INDICES OF CENTRALIZERS 327

Suppose that Or,(GA) 1. Because V is a faithful irreducible GA-module,
Cv(A) _c Cv(Or,(GA)) and dim(Cv(A)) 0 and part (b) follows. Hence we
may assume that Orr’ (GA) 1.

Let F F(G) so thatC F) _c F bythe solvability ofG. Because O,r, (GA) 1,
it follows that CA(F) : F and that A acts faithfully on F. We choose a A of
order p and show dim(Cv(a)) < 2dim(V)/(p+ 1). Since V is quasiprimitive, Z(F)
is cyclic. If a does not centralize Z(F), then Z < a > is a Frobenius group for some
subgroup Z ofZ(F)and then dim(Cv (a)) dim(V)/p (see Theorem 15.16 of [Is]).
We assume then that a centralizes Z(F) and choose a Sylow subgroup Q of F (for
some prime q) that is not centralized by a. Now every characteristic abelian subgroup
of Q is cyclic. We apply Theorem 1.9 of [MW]. If q is odd, then Q EZ(Q) for
an extra-special q-group E that is characteristic in Q and not centralized by a. If
q 2, then the hypotheses imply that GA is solvable and there exists an extra-
special group E normal in GA such that Q ET with T normal in GA and Aut(T)
a 2-group. In all cases E is normal in GA, Ve is homogeneous and a does not
centralize E. Applying Lemma 1.3 (below), dim(Cv(a)) < 2dim(V)/(p + 1) and
thus dim(Cv(A)) < 2dim(V)/(p + 1). I’-I

LEMMA 1.3. Suppose that G QP where Q is an extra-speclal q-group and
el p for a prime p :/: q. Assume V is a G-module and VQ is a direct sum of

faithful irreducible Q-modules. Then dim(Cv(P)) < 2 dim(V)/(p + 1).

Proof. Observe that q :/: char(V). Set Z Z(Q) so that Z is the unique
minimal normal subgroup of Q and Cv(Z) 1. We may assume that P centralizes
Z since otherwise dim(Cv(P)) < dim(V)/p (see Theorem 15.16 of [Is]). Since
P centralizes Z and p - q, the commutator group [Q,P] is an extra-special group
containing Z (e.g., see Lemma 12.4 of [MW]). In particular, Z is the unique minimal
normal subgroup of [Q,P]. Since Cv(Z) 1, it follows that Vtt2., is a direct sum of
faithful irreducible [Q,P] modules. So we may assume that Q [Q, P] and thus
CQ/z(P) 1.

Let F be the underlying field and let K be an extension field of F. Note that
V (R) K is a direct sum of faithful irreducible Q-modules. Since dimr(V (R) K)
dimF(V) and dimr(Cv(R)r(P)) dimF(Cv(P)), it is no loss to assume that F is
algebraically closed. Also, it is no loss to assume that V is indecomposable and thus
absolutely indecomposable (even absolutely irreducible if p char(F)). Applying
Hall-Higman techniques {specifically [Hu, V,17.13] when-p char(F) and [HB
IX,2.6 and VII,5.3] when p char(F)}; we conclude there exists a non-negative
integer m such that dim(Cv(P)) arid. dim(V) satisfy one of the following:

dim(Cv(P)) m and dim(V) mp + 1;
dim(Cv(P)) m and dim(V) mp 1;
dim(Cv(P)) m + and dim(V) mp + 1; or
dim(Cv(P)) m + and dim(V) mp + p 1.
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Since Q is non-abelian, ql dim(V) and thus m > 0 in the first 3 cases. Also mp > 2
in the second case. In the last case, m > 0 or p > 2. In all four cases, it is easily
verified that dim(Cv(P))/dim(V) < 2/(p + 1), as desired. El

COROLLARY 1.4. Assume P Sylp(G)for a solvable group G.
(a) If G transitively andfaithfully permutes a set g2, then the number of P-orbits

on f2 is at most 21fl/(P / 1).
(b) IfV is afaithful irreducible G-module, then dim(Cv P < 2 dim V / p+ ).

Proof. Let L Op,(G), let M Op,p(G) and P e Sylp(M). This corollary
now follows by applying Theorem 1.2 to M, P, and G in place of G, A, and F
(respectively). El

If W is a faithful irreducible H-module and S is a transitive permutation group
on n letters, then the wreath product HwrS is an irreducible linear group of degree
n* dim(W). Corollary 1.4 yields restrictions on which subgroups of HwrS can be
irreducible. An argument very similar to that of Corollary 1.4 gives the following.

COROLLARY 1.5. Suppose that H is a Hall-zr’-subgroup of a 7r-solvable
group G. Let p be the smallest prime divisor of lH I.

(a) IfG transitively andfaithfully permutes a set 2, then the number of H-orbits
on f2 is at most 21921/(p + l).

(b) IfV is afaithful irreducible G-module, then dim(Cv (H)) < 2 dim(V)/(p+ ).

In Theorem 1.2, we used part (a) to prove part (b). Next we use part 1.2(b) to
prove a result similar to that of 1.2(a).

COROLLARY 1.6. Assume G is a solvable primitive permutation group on 2 with
point stabilizer H. If P Sylp (H)for a prime p, then the number s of P-orbits
on 2 is at most 21[/(p + 1) unless (i) Ig2l 4, G $4, Ipl 2 and s 3; or (ii)
I1 9, Iel 3 and s 5.

Proof Since G is solvable primitive permutation group on f2, G has a unique
minimal normal subgroup N that acts transitively and regularly on . Furthermore
G NH, N 1"3 H and N is a faithful irreducible H-module and an elementary
abelian r-group for a prime r. If r p, then P 6 Sylp (G) and the result follows from
Corollary 1.4. We thus assume that N is an elementary abelian p-group. Because
p IIAut(N)l, in fact INI p" for an integer n > 1. Since P c_ H, the actions of P
on N and on f2 are permutation isomorphic. By Corollary 1.4, IC(P)I _< INI2/tp+).
Hence the number of orbits of P on N or f2 is at most

INI2/tp+) d- (INI- INI2/tP+))/p II/P + (P l)lg212/tP+)/p.
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Now [f2[/p+(p- l)[212/(P+)/p < 2121/(p + 1)ifand only if p" INI---121 >_
(p + I)tP+)/(P-). This inequality is valid except when pn 22, 23, 24 or 32 and so it
suffices to establish the corollary in these four cases. If p" 32, then H

_
GL(2, 3)

and exception (ii) is easily verified. If p" 22, 23, or 24, then G is a subgroup of the
semi-linear group F(p") of order (p" l)n (see Corollary 2.13 and Theorem 2.14
of [MW]). Thus [el [n and CN(P) IN[ I/IPI. In particular, n -7/: 3 and exception (i)
occurs when n 2. Finally, when p" 24, P is cyclic of order 2 or 4 and P has at
most 10 orbits, whence the conclusion of this corollary is valid.

2. Indices of centralizers

We will show that IG: AI < IF: F fq CI+ for a constant c (defined after
Lemma 2.1) if G is solvable, F F(G), and Hypothesis CP applies. Theorem 2.4,
the key result in this direction, shows that if V is an irreducible GA-module, then
G: C _< V: Cv (A)I. The argument, involves applying induction when V is an-
induced module. Lemma 2.1 uses Lemma 1.1 to help control indices of centralizers
in this situation.

2.1 LEMMA. Assume Hypotheses CP. Suppose that V is a faithful GA-module
and V6 W. .Wmforsubmodules Wi that arepermutedby A ins orbits. Label
the Wi so that W W lie in the distinct orbits of A. Let Hi G/C6(Wi), let
Ai NA (Wi) and Ci CHi (Ai). Assume that dim(W/) =.dim(Wi) and Inil HI
for all where H H. Then [G: C[ < ]Hlm/(Fli=l to.[Ci]).

Proof For j to s, we let Yj be the sum of all Xi in the A-orbit of Xj, so that
each Yj is GA-invariant and V Y Y.. Let Dj C6(Yj). If s > 1, we
argue by induction on dim(V) that IG/Dj: CG/Dj(A)] IG: DjCI < IHIttJ)/ICjl
where t(j) dim(Yj)/dim(Wj). Since (IGI, IAI) and Nj= to .Dj and, we
have

IG: CI < FIj= to sIG/Dj:C6/oj(A)] < Inlm/Flj= to slfyl,
as desired. Thus we may assume that s 1.
Now V6 W ... Wm for submodules Wi that are permuted transitively by

A/A0 for some normal subgroup A0 of A. Since A NA (Wl), there is an injection
99: GA ---> GA/C6A(W) A/Ao (e.g., see Lemma 2.8 of [MW]). Now [G: C[
Io(G): o(C)l Io(G): C6(99(A))1. The normal Hall-r-subgroup, say R, of the
wreath product GAI/CGA(WI) A/Ao is a direct product of m groups isomorphic
to H GAI/CGA(WI) that are permuted transitively by A/Ao. By Lemma 1.1,
IG’CI- Io(G)’C)(o(A))l _< IR’C(o(A))I--Inlm/lCn(A) -IHI’/C.

Notation. We let . 24/3 and a (1n(48) + ln(,))/ln(9) and note that
9 48/. and 2.24 < ot < 2.25. Also ,k 2.88
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The bounds given in the next lemma are best possible for groups of even order.

2.2 LEMMA. (i) If V 0 is a faithful completely reducible G-module .fir a
solvable group G, then IGI _< IVI/Z. IflGI is odd, then IGI _< IV1/4.5.
(ii) If G =fi is a normal subgroup ofa primitive permutation group F on and G
is solvable, then IGI < If21+/,k.

Proof. The first statement in (i) is [MW, Theorem 3.5], which also shows that
IGI _< IVI/X when IVl is odd. But IVl2/. < IV]/4.5 for IVl > 6. The second
statement of part (i) then easily follows via inspection.

For part (ii), choose a minimal normal subgroup M of GA with M

_
G. Then

M is abelian, M regularly and transitively permutes , MH GA and M N H
where H is a point stabilizer in GA. Also, Ct-/(M) is normal in G and fixes every
point of f2, whence Cn(M) and M is a faithful H F/M-module. Then M is
a completely reducible and faithful G/M-module. By part (i), IGI IG/MIIMI <

IMI+/Z Ifl+/..

The next bound, used in Theorem 2.4 when V is an induced module, is an easy
consequence of Lemma 2.2 and Theorem 1.2(b).

2.3 PROPOSITION. Assume Hypotheses CP with G solvable and A 1. Suppose
that GA is a transitive permutation group on 2 and assume also that G or GA
is primitive. Let m I1 and s be the number ofA-orbits on g2. Then IG: C(A)I _<
.’"-L/I.5 or GA $3, IAI 2, s 2, rn 3 IG:

Proof. Certainly m > 1. We assume that G since otherwise s and
the inequality is trivial. Hence m > 2. The conclusion is evident if m 3. If
m 4, the hypotheses imply that GA An with AI 3, so that s 2 and
G: Co (A)I 4 2’’-’ < ."-’* / 1.5. We thus assume that m > 4.
Applying Lemma 2.2(ii), we have that IG" CI < IGI < m+/). By Theo-

rem 1.2(a), m s > m/3. For m > 29, an easy computation shows that 1.5m"+ <
240n+3/9 j,,,+3/3. Thus, for m > 29, it follows that

IG: CI _< ma+n/Z < (m+3)/3/1.5 ."/3/I.5 < .’"-s/I.5,

as desired. If A is not a 2-group, then Theorem 1.2(a) even shows that m s < m/2.
For m > 7, an easycomputation shows that 1.5m’+ < 24m+2/6 ,,,,+2)/2. When
m > 7 and A is not a 2-group, it follows that

IG’CI <_ ma+/,k < .’"+2/2/1.5,k < Z’"-’/I.5,

as desired. Thus the proposition is valid when m > 7 provided A is not a 2-group
and is always valid when m > 29.
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Choose a minimal normal subgroup M of GA with M c__ G. Then M is abelian,
M regularly and transitively permutes g2, MH GA and M f3 H for a point
stabilizer H in GA. In particular, rn Ifl IMI p" a prime p and integer n. As
in Lemma 2.2, observe that M is a faithful irreducible H-module. By the coprimeness
hypothesis, we can assume that A c_ H and so that the permutation actions of A on
M and f2 are isomorphic.

Suppose that MAIM is normal in GA/M. Then CM(A) CM(MA/M)
because M is a faithful irreducible GA/M-module and A 1. Hence the number
s of A-orbits on M is at most + ((m 1)/2) (m + 1)/2. Also A centralizes
G/M and so G" C M: M N C MI m. Because rn > 4, it follows that
IG" CI m < ."-/2/1.5 < .’"-’/1.5. The conclusion of the proposition is
satisfied if MA/M is normal in G/M. If rn p, then GA/M is abelian because M
is a faithful irreducible GA/M-module and so MA/M is normal in M.

Summarizing, we have that the proposition is valid provided that rn < 5, rn > 29
or rn is prime. If, in addition, A is not a 2-group, the proposition is valid for rn > 7.
But rn p" is a prime power. Since (p, IAI) 1, we may assume that A is a
2-group and rn 32, 52, or 33. Because M is a faithful irreducible GA/M-module,
IGA/MI IIMI and Op(GA/M) 1. When rn 32, 52, or 33, it follows that IG/MI
divides 1, 3, or 13 (respectively). In all three cases, we now have

IG: CI < IGI mlG/MI < 24’"/9/1.5 )’"/3/1.5 <_ ,m-s/l.5,

where the last equality follows from Theorem 1.2(a).

2.4 THEOREM. Suppose that V is a .faithful completely reducible GA-module
with A =fi I. Then IG’Ca(A)I < IV’Cv(A)l/l.5.

Note. Even if A 1, we have G" Ca (A)I < V" Cv (A)I. We will use the
induction argument this way.

Proof. We will argue by induction on ]VI. Since (IGI, IAI) 1, we have
that GA/[G, A] G/[G, A] q) A[G, A]/[G, A] and [G, A] is the normal Hall-rr-
subgroupofA[G, A]. Alsowehave G =[G, A]C andso IG: CI-I[a, A]: CIG.AI(A)I.
But V is a faithful completely reducible A[G, A]-module and so it is no loss to assume
that G [G, A]. In particular, GA A[G, A] 0’r(GA). Since (IGI, IAI) I,
we have that NC/N Ca/N (A) whenever N is an A-invariant subgroup of G.

First suppose that V X Y for GA-modules X and Y. Set K Caa (X)
and L Caa (Y). If GA acts faithfully on X, the argument follows by induction
as IX: Cx (A)I < V: Cv (A)I. Thus we may assume neither X nor Y is a faithful
GA-module. Since V X Y is a faithful GA-module, neither X nor Y is a trivial
GA-module. Both L and K are proper non-trivial normal subgroups of GA. We
apply the inductive hypothesis to the action of GA on X to conclude that:

IG: (K C G)CI IGK" KCI IGK/K" KC/KI < IX’Cx(A)I"/I.5



332 THOMAS R. WOLF

and also that IG" (LnG)CI <_ IY’Cr(A)I’/I.5. Since K nL 1, the group K nG
is A-isomorphic to a subgroup of LG/L G/L n G and thus

IK n G: K n G n CI IK n G’Crns(A)l < IG: (L n G)CI <_ IY’Cr(A)I’/1.5.

Then

IG’CI IG" (K n G)CIIK n G: K nGnCI _< IX’Cx(A)I’IY’Cy(A)I’/I.5:.
So we may assume that V is an irreducible GA-module.

Suppose that V is not quasi-primitive and choose N maximal in GA such that
Vv is not homogeneous. Write VN W @... @ Wm for the rn > homogeneous
components W! Wm of VN. The maximality of N shows that GA/N transitively
and faithfully permutes the Wi.

Label the Wi so that WI W. lie in the distinct orbits of A and set Ai NA (Wi).
Let L be the normal Hall-zr-subgroup of N, let Hi L/Ct, (Wi) so that Hi is Ai-
isomorphic to the normal Hall-zr-subgroup of N/Cv(Wi). If Ci CHi(Ai), then
Lemma 2.1 applied to LA yields

IL: L nCl _< IHlm/(Fli= to.lCil) IHlm-’Fli= to.lHi" Cil.

Lemma 1.1 shows that Cv(A) D @... @ Ds where Di Cwi(Ai) and so
IV:Cv(A)I- IWlm-’Fli=to.lWi:Dil. By Lemma 2.2, Inl _< IWl’/,. By
induction applied to the action of LAi (or even NAi) on Wi, we have that Hi: Cil <_
Wi: Di for each i. Thus

IL’L n CI <_ IHlm-’Fli= to.lni" Cl _< IWl’m-’)/Zu"-’)Fli= to.lWi" Dil’
IV" CV(A)I‘/,V"-’.

If IAI is even, then Inl must be odd and we similarly apply Lemma 2.2 to conclude
that IL: L n Cl _< IV: Cv(A)l’/(4.5)m-’. Now

IG’CI IG/GnN:Cs/snv(A)IIGnN:CNI ING/N’Clvs/v(A)IIL" LncI.

Thus we have

IG" CI <_ ING/N’C,vs/,v(A)IIV’Cv(A)I’/.

and also

G: C <_ ING/N: Cvs/,v(A)llV" Cv(A)l’/(4.5)’’-’

when AI is even. Assume first that GA/N is not isomorphic to $3. Then Proposi-
tion 2.3 shows that ING/N" Cso/N (A)I < .m-. / 1.5 and thus IG" CI < IV" Cv (A)I /
1.5 when V is imprimitive unless GA/N $3 and AN/NI 2. On the other hand,



INDICES OF CENTRALIZERS 333

if GA/N $3 and IAN/N[ 2, then rn 3, s 2, ING/N" CN/N(A)I 3 and
A[ is even. Hence

IG’CI <_ 3[V’Cv(A)I/(4.5)’’-’ -IV’Cv(A)I/I.5.

The conclusion G" C < V" Cv (A)I / 1.5 holds whenever V is an imprimitive GA-
module.

If O,,(GA) 1, then Cv(A)

_
Cv(O,(GA)) and Lemma 2.2 yields

[G: C < GI < V / 1.5 V" Cv (A)Ia / 1.5. So we assume that O,(GA) 1.
Now we assume that V is a primitive GA-module. We let F F(GA) and note

F F(G) because Or,(GA) 1. First assume that F is abelian. Since VF is
homogeneous, GA may be identified as a subgroup of the semi-linear group F(V)
with F

_
F0(V); i.e., the elements of V may be labeled by those G F(qn) in a

one-to-one fashion (where q" IVl) such that GA c_ F(V) {x axlO a

GF(q"), .tr GaI(GF(qn)/GF(q))} and Z c_ F0(V), the cyclic normal subgroup
of multiplications with order qn (see [MW, Corollary 2.3]). So A is isomorphic to a
subgroup of F(V)/F0(V), whence A is cyclic. If -7/: P is a Sylow subgroup of A,
then P is cyclic and we may find a characteristic subgroup Y of Z such that Y P is a
Frobenius group. Because Cv(Y) {0}, we have that dim(Cv(P)) dim(V)/IPI
(see [Is, Theorem 15.16]). If [P[ > 2, then

IV’Cv(A)I >_ IV’Cv(P)I >_ IV[ 2a/3 > 3lvI/2 >_ 3lzl/2 >_ 3IG:C(A)I/2

and the conclusion of the theorem holds. If [A[ 2 and -7/: a A, then a xa for
some x in F0(V) and field automorphism cr of order 2 and the centralizers in F0(V)
of a and tr coincide as a group of order q/2 (where q" IV 1). Then

IG" CI < qn/2 W < qna/2/l.5 IV’Cv(A)I/I.5,

as desired. Hence we may assume that F is non-abelian.
Because V is a primitive GA-module, every abelian normal Subgroup Y of GA

is cyclic and also Y c_ G because O,(GA) 1. Furthermore Y c_ Z(G) because
0(GA) GA and GA/C(Y) is abelian. In particular, if Z Z(F), then Z is
cyclic and Z Z(G). Observing that GA is solvable when [El is even, we quote
Theorem 1.9 of [MW] to conclude that F/Z is abelian and is a direct sum ofirreducible
GA/Fmmodules ofeven dimension (possibly of different characteristics). The same
theorem shows also that F EZ for a normal subgroup E of GA and the Sylow
subgroups of E are extra-special or of prime order. Furthermore, F/Z is a faithful
G/F-module by a theorem ofGaschutz [MW, Theorem 1.12]. Since F is non-abelian,
F>Z.
Now e2 IF" Z[ for an integer e > 1. Since V is a homogeneous G-module,

the structure of F implies that Vz - teW for an irreducible Z-module W (e.g., see
Lemma 2.4 of [MW]) and some positive integer t. Since .W is a faithful Z-module
for the cyclic group Z, we have that IZII IWl 1. Every prime divisor of e divides

Zl and W 1. In particular, Wl >_ 3.
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Theorem 1.2 yields Cv(A)l < IVl2/3 and furthermore ICv(A)l < IVl /2 unless
A is a 2-group. If A does not centralize Z, we may pick z in Z with A A
and then < A, A > generates a subgroup of AZ that intersects Z non-trivially.
Then Cv(< A, A >)= {0} and so ICv(A)I _< IVl */2. So ICv(A)I _< IVl 2/3, and
furthermore ICv(A)I < IVl /2 unless A is a 2-group centralizing Z.
We firstprove the conclusion is valid when G F. In thiscase, Ial IF/ZllZl

e2tZI < e21Wl. Recall 2.24 < {x < 2.’25. If A is a 2-group that centralizes Z, then
e > 2and

IG" CI < IG: ZI- e2 < 3ea/3/1.5 < IWle/3/l.5 < IVl’/3/l.5 < IV’fv(A)l’/l.5,

as desired. By the last paragraph, we may assume that ICv(A)I _< IVI /2. Since
e > we have

IG" ZI < e2 < 3e/2/1.5 < IWle’/2/l.5 < 1V1’/2/1.5 < IV:Cv(A)I’*/I.5.

So we assume that A does not centralize Z, Zl > 2 and Wl >_ 4. Because e > 1,
note that e2 < 4{"-2/2/1.5. Then IG’CI < IGI < e21Wl < lW14{’e-2/2/l.5 <

IWllWlt’-2/2/l.5 <_ 1W1/2/1.5 <_ IVl’/2/l.5 < IV’Cv(A)l’/l.5. So the con-
clusion holds when G F.
Now F F(GA), Z Z(F) Z(G) and (Ial, IAI) 1. We have that F/Z is

the direct sum F /Z... Fk /Z for irreducible GA/F-modules Fi /Z oforder f/2 for
prime powers fi such that fl fk e. We may assume that G/F does not centralize
F/Z, because G/F and G/F acts faithfully on F/Z. If B GA/CtA(F/Z),
then B has a non-trivial normal Hall-zr-subgroup B0 GCGA (FI/Z)/CGA (FI/Z)
because G does not centralize F/Z. In particular, F(B0) has order coprime to

fl because F/Z is a faithful irreducible B-module. Also B0 and F/Z are rr-groups,
while B/B0 is a zr’-group. Furthermore O’r (B) B and so B/B0 1. In particular,
B is non-abelian and Blf is divisible by at least three distinct primes. If f is 2 or 3,
then Aut(F, Z) is a {2,3}-group and we have a contradiction. If f 4, then B/Bo
has odd order and F/Z is a faithful irreducible module of order 24 for the solvable
group B, whence B B0 or B is abelian (e.g., see Corollary 2.15 of [MW]), again a
contradiction. Thus f cannot be 2, 3, or 4. Thus e f... fk > 9 or e f is 5,
7, 8, or 9.
A simple computation shows that e2+ < 3(2ea-3)/3 < IWl2-3)/3 for e > 9.

But because every prime divisor of e must divide Wl and Wl is a prime power, we
see also that e2{a+ < IWl2’-3)/3 when e is 5, 7, or 9. Indeed similar computations
yield

e2{’+1 < IWl2te-3)/3 except when e 8, and IWl 3;

e2/* _< IWl"-2/= except when and (e, IWl) 1(8, 3), (8, 5), (9, 4)};

e2’*+) < IWlt/3 for odd e except when

and (e, IWl) 1(5, 11), (7, 8), (9, 4), (9, 7)}.
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Since G/F acts faithfully and completely reducibly on F/Z, Lemma 2.2 implies
that IG/FI < IF/ZII. e2/, and thus IG/ZI IG: FilE: Zl _< e2ta+l)/I.5.
Furthermore IZl divides IWl- and so Ial _< IWle2+li/I.5. Assume that e > 9
or that > 1. We apply the last paragraph to conclude that IGI < IWIte12/l.5.
Likewise, Ia: Zl < IW1/3/I.5 for odd e. If A is a 2-group centralizing Z, then e
is odd, ICv(A)l _< IVI2/3 and

Ia" Co(A)I _< IG: Zl _< IW1’"/3/1.5 --IV1’/3/I.5 <_ IV’Cv(A)I-/I.5.

Otherwise ICv(A)I < IVI 1/2 and

IG" C(A)I < IGi < Iwltet/211.5-" IV1/211.5 IV’Cv(A)III.5.

The conclusion G: C(A)I < V: Cv (A)I" / 1.5 of the theorem holds when e > 9 or
> 1. Thus we may assume that and e {5, 7, 8, 9}. By the same argument,

we may even assume that (e, Wl) 1(5, 11), (7, 8), (8, 3), (8, 5), (9, 4), (9, 7)}.
Assume for this paragraph that A has even order. Because (IAI, IGI) 1, we have

that e is odd and (e, IWl) {(5, 11), (7, 8), (9, 4), (9, 7)}. Now GIF - Bo has odd
order and is a non-trivial normal subgroup of B, which acts irreducibly on F/Z. If s
is a prime divisor of F(G/F), then s must divide e2 since is the centralizer in
F/Z of the Sylow-s-subgroup of F(G/F). Thus routine arguments then show that
IG/FI is 3 or 5. Then

IG/ZI <_ 5e2 _< minllWl’/3/l.5, IWltte-2)/211.5},

with the last part of the inequality is easily verified by inspection. If A centralizes Z,
then

IG" C(A)I _< IG: ZI _< IW1’’/3/1.5 IV1/3/I.5 <_ IV’Cv(A)Ia/I.5

Otherwise ICv(A)I IVI I/2 and

IG’C(A)I _< IGI _< IW1’/2/I.5- IV1/2/1.5 <_ IV’Cv(A)I/I.5.

Hence the theorem is valid when AI is even.
We now may assume that IAI is odd. In particular, ICv(A)I _< IVI /2. If e is 5 or

7, it follows from the preceding three paragraphs that

IG: CI _< IGI <_ [Wle2t+)/l.5 <_ IWIIWIt’-2)/2/I.5
IW1/2/I.5 IVI"/2 _< IVI’Cv(A)I/I.5,

as desired. If e is 9, then the prime divisors of IAI are larger than 3 and so ICv(A)I _<
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IVI /3 by Theorem 1.2. For e 9, it follows from the preceding three paragraphs
that

IG: CI _< ]GI _< ]Wle2t+/I.5 < IWllWlt2te-3/3/l.5
iwl2e/3/i.5 ivi2/3 < Iv.ev(A)l/l.5,

as desired. Hence we may assume that e is 8.
With e 8, we have that WI is 3 or 5 and that A is solvable of odd order.

Thus Z is cyclic of order 2 or 4 and thus Z < Z(GA). If A0 CA(F/Z), the
A0 centralizes G/F, F/Z and Z, whence A0 centralizes G. Then A0 because
Or,(GA) 1, and F/Z is a faithful irreducible GA/F-module. Since Z < Z(GA),
GA/F even acts symplectically. Then IGA/FI must divide ISp(6, 2)1 34*5*7*29.
For p > 2, an abelian p-group of GA/F can have rank at most dim(F/Z)/2 3
(see Lemma 12.5 of [MW]). If T is a Sylow-3-subgroup of F(GA/F) F(G/F),
then T cannot be elementary abelian of order 34 and so IAut(T)l is not divisible
by 5 or 7. Now F(GA/F) must be a {3,7}-group with order coprime to [AI. If
3 divides IF(GA/F)I, then T and F(GA/F) are centralized by A, a contradiction
because the solvability of GA implies that F(GA/F) must contain its own centralizer
in GA/F. So IF(GA/F)I 7. Since Aut(F(GA/F)) is abelian, it follows that
F(GA/F) GA/F has order 7 and GA/F is non-abelian of order 2 I. Now

IG:C(A)I _< IG" ZI 7*26 < 34/1.5 < Iwlea/2/I.5
IV1/2/I.5 <_ IV’Cv(A)I/I.5,

as desired to complete the proof. (Alternatively, one could derive a contradiction here,
because a non-abelian group of order 21 cannot act irreducibly on a G F(2)-vector
space of dimension 6).

Applying Theorem 2.4 to the action of GA on.F(G) now gives an affirmative
answer to the question posed by Perez and lranzo.

2.5 COROLLARY. Assume Hypothesis CP with G solvable and F F(G). Then
IG’CI < IF: F fq CI’+.

Proof. We will argue by induction on GI. We may assume that A :/: and
that O, (GA) 1, i.e., that A acts faithfully on G. So F F(GA). Because
(IAI, IGI) 1, CG/t:(A) FC/F.
Now F/C(G) is a completely reducible and faithful G/F-module (possibly of

mixed characteristic) by a Theorem of Gaschutz (see Satz III.4.2(d) and III.4.5 of
[Hu]). If D/F CGA/F(F/(G)), then D/F is art’-group that centralizes G/F and
F/(G). Since D/F is a rr’-group and G is a rr-group, D/F centralizes G/(G).
By Satz 1II.3.18 of [Hu] D/F centralizes G and hence D/F 1. Thus F/(G) is
a faithful GA/F module. Furthermore it is a completely reducible GA/F-module



INDICES OF CENTRALIZERS 337

because it is completely reducible as a G/F-module and (IGA/GI, IF/(G)I)
(see Theorem VII.7.20 of [HB]). Since A 1, Theorem 2.4 applied to the action of
GA/F on F/(G) shows that

IG" FCI IG/F: CG/F(A)I <_ IF/(G)" CF/tG)(A)I
IF" (G)(F N C)I < IF" F N CI.

Then IG" CI IG: FCIIF: F fq CI IF’F f3 CI+. D

2.6 Example. There is an infinite family (Wi, Hi) where Wi is an elementary
abelian 3-group and is a faithful and irreducible module for Hi, a {2,3}-group and
such that nil W 1!(24) t/3. Indeed W0 may be chosen to have order 32, H0 to be
GL(2, 3), and Hi to be Hi_ $4 (see Example 3.8 of [MW] for details).

For the moment, fix i. Let V be the direct sum of 5 copies of Wi and let G be the di-
rect sum of 5 copies of Hi. Let F be Hi Z5 so that G is a normal Hall-zr-subgroup of F
with zr {2, 3}. Let A be a Hall-zr’-subgroup of F so that IAI 5. Also V is a faith-
ful irreducible F-module. Applications ofLemma 1.1 show that G: CG (A)I Hi 4

while IV: Cv(A)l IWil4. Thus IG: CG(A)I IV: Cv(A)I/(24)4/3. By letting-- cx, Wl o and also V:Cv(A)I -- o. Thus the bound in Theorem 2.4
cannot be improved with an exponent less than

Let F* be the semi-direct product F V and G* G V, so that G* is a solvable
normal Hall-rr-subgroup of F* and A is a Hall-r’-subgroup of F*, AI 5. Set
C CG.(A) and note that C CG(A)Cv(A). Since V is a faithful irreducible
F-module, it follows that V F(G*) F(F*). Now

IG*’CI IG’CG(A)IIV’Cv(A)I

IV: Cv(A)I+t/(24)4/3 IF(G*)" F(G*) q CI’+/(24)4/3.

By letting -- o, we see that IF(G*)" F(G*) CI -- x. In particular, the exponent
in Corollary 2.5 cannot be lowered. I-!
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