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BY
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We shll prove the existence of locally connected space ssocited with
n rbitrary topological space which has a universal property with respect to
maps of locally connected spaces. We shll also obtain similar result for
uniform spaces.
The proofs of these results re much easier when the notation emphasizes

that a topological spce is set together with a definite family of subsets.
However, for pplications it is convenient to have the theorems in the usual
lnguage; hence we shall now state our results in such terms.

THEOREM A. Let S be a topological space. There exist a locally connected
topological space S* and a continuous one-to-one mapping of S* onto S such
that

If f is any continuous mapping of a locally connected space A into S, then
f can be factored in the form f f* where f* is a continuous mapping of
A into S*.

The pair (S*, ) is unique within isomorphism.

A special cse of this theorem, used in [1, pp. 54-55], provided the motiva-
tion for this work. A similar theorem for locally rcwise connected spaces is
proved in [2].
The uthor is indebted to the referee for clling his attention to a paper of

G. S. Young [5] in which mny similar theorems re established. In par-
ticular the c-topology of Young is our G’, the a-topology is the topology of [2],
nd the /c-topology appears to be in general intermediate between the
G*-topology nd the a-topology. The two latter coincide for complete metric
spaces.
We shall refer to the pair (S*, ) of Theorem A as a universal locally con-

nected refinement of S.

THEOREM B. Let S be a topological space, and let (S*, ) be a universal
locally connected refinement of S. If S satisfies the first axiom of countability
or any of the separation axioms To, T1, T2 or T3 then so does S*. If the
topology or S can be derived from a uniform structure or a metric, then the same
is true of S*; hence S* will be completely regular whenever S is.

On the other hand, if S is separable, compact, locally compact, parcom-
pact, or connected, then S* need not have these properties. Similarly the
separation axiom T4 need not transfer from S to S*, but we do not nswer
the question concerning Ts.
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THEOREM C. Let $1 and $2 be topological spaces, and let (S, ql) and
(S } be universal locally connected refinements of SI and S, respectively.
If is the product mapping of S X S into $1 X S induced by q and ,
then (S X S } is a universal locally connected refinement of S X S.
THEOREM D. Let G be a topological group, and let (G*, } be a universal

locally connected refinement of the space G. Then group structure can be intro-
duced into G* so that it becomes a topological group and becomes an algebraic
isomorphism.

THEOREM E. Let 8 be a uniform space. There exist a uniformly locally
connected space S* and a uniformly continuous one-to-one mapping of 8" onto
$ such that

If f is any uniformly continuous mapping of a uniformly locally connected
space ( into , then f can be factored in the form f f* where f* is a uni-
formly continuous mapping of ( into $*.

The pair ($*, is unique within isomorphism. If S and S* are the topological
spaces corresponding to and *, respectively, then (S*, } is a universal locally
connected refinement of S.

Much of the content of these theorems can be summarized in the language
of categories in the following statements:
The injection functor of the category 9 of locally connected spaces and

continuous maps into the category : of topological spaces and continuous
maps has an adjoint .

Similarly the iniection of the category 1I of uniformly locally connected
spaces and uniformly continuous maps into the category 1I of uniform spaces
and uniformly continuous maps has an adioint T.
These adjoints can be uniquely chosen so that the diagram

//(R) \\
is commutative, where (R) is the category of sets, the diagonal arrows are
stripping functors, and the vertical arrows represent the passage from uniform
spaces to the corresponding topological spaces.

1. Lattices

By a complete lattice we mean a partially ordered set L such that every
subset of L has a least upper bound (sup) and a greatest lower bound (inf).
No restriction to nonvoid subsets need be made since sup inf L and
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inf 0 sup L. We recall that if every subset of L has a greatest lower
bound, then every subset of L has a least upper bound.

1.1 THEOREM. Let L be a complete lattice with wealc order relation denoted by. Let x ---> x’ be a map of L into itself which is
a increasing" for all x, x x’, and
(b) order-preserving" if x y, then x’ y’.

Let F be the set of fixed points of this map. There is a unique increasing, order-
preserving map x -- x* which retracts L onto F.

Proof. The set F is not empty since sup L F by virtue of (a). Suppose
y e F where a runs over an arbitrary index class A. Now for any e A we

and thereforehave inf y

_
y hence (inf y)’ y y,

(inf y)’

___
inf y inf y.

Since the opposite inequality is given by (a), we conclude inf y e F.
Now for any x e L, put x* inf {y e F[y x}. It is immediately clear

that x --* x* is an increasing, order-preserving retraction of L onto F.
Suppose x --+ x is an increasing, order-preserving map which retracts L

onto F. Pick a definite x e L. If y e F and y

___
x, then y y

___
x; thus,

x is a lower bound for the set G {y e F Y D_ z}. Now x e F and x

_
x, so

x e G. Hence x inf G x*. This prove the uniqueness.
We shall refer to the map x --. x* as the idempotent map associated with

X--Xr.
1.2 COrOLLArY. If every element of L is the join of members of F, then,

x ---> x is the only order-preserving retraction of L onto F.

Proof. For in this case, the map must also be increasing.

2. The lattice of topologies
Let S be a set. By a topology for S we mean a collection 3 of subsets of S

such that

(a) If

___
5, then U G 3.

(b) IfG,G2e3, thenGnGe3.
(c) O 5 and S 5.

When a particular topology 3 for S is fixed, the members of 3 are usually
called open sets. We note that the requirement e 3 is redundant because
we can take in a).

It is obvious that the set of all topologies for S is partially ordered by set
inclusion. We remark that there is a largest topology for S, namely, the set
of all subsets of S; with this topology S is a discrete space. There is also a
least topology for S, the set {, S}. Note that no separation axioms are
demanded for a topology.

If {3} is a family of topologies for S, then f3 3 is also a topology. There-
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fore, the partially ordered set of topologies is a complete lattice, in which
inf, 5, , 5,. It need not be true, however, that sup, 5, [3,5,.

If C is any collection of subsets of S, then there is a least topology 5 of S
such that 5

___ . This topology may be described nonconstructively as the
greatest lower bound of all topologies containing 9C, or constructively as the
set consisting of S, and all sets which can be represented as arbitrary unions
of finite intersections of members of 9C. We shall say that 9C generates 5.

Since we shall be considering several topologies for a given set at the same
time, it is necessary to call attention to which is meant whenever a topo-
logical concept is used. Suppose for example that f is a map of a set A into
a set S, and that and 5 are topologies for A and S, respectively. We shall
say that f is 8-5-continuous if and only if, for all G e 5, f-l(G) 8. This is, of
course, one of the standard definitions for continuity. The identity map of
S is 51-52-continuous if and only if 52 51. We have the following lemma’

2.1 LEMMA. Let f be a map of A into S. Let be a fixed topology for A.
There is a topology for S such that, if 3 is a topology for S, then f is 8-3-
continuous if and only if 5 .

Proof. This is obvious as soon as we verify that

{G _c If-(a) }
is a topology for S.

If X is subset of S and 3 is a topology for S, then we shall say that X is
a-connected if it is impossible to find sets G1 and G2 in g such that

X Gl U G2 Gl n X # 9, G2 n X # 9, and GlnG2nX 9.

This is the usual definition of connected, and, without using any separation
axioms, it is easy to prove that every g-connected subset of X is contained
in a maximal g-connected subset of X, and that X is the disjoint union of
these maximal sets which we call the g-components of X. Moreover, if f is
an &g-continuous map of A into S, and B is an &connected subset of A,
thenf(B) is a g-connected subset of S.
A topological space is said to be locally connected if and only if every point

has arbitrarily small connected neighborhoods. It is well known that this is
equivalent to the assertion that every component of every open set is open.
Hence we shall say that 3 is a locally connected topology for S if and only if g

contains the g-components of every member of g.

Consider a topology 3 for S, and let 3’ be the topology generated by the
3-components of members of g. Obviously, 3’

___
g, and 3 is a locally connected

topology for S if and only if g’ g.

2.2 LEMMA. Let f be a map of A into S. Let 8 and g be topologies for A
and S respectively, such that f is &g-continuous. Then f is 8’-5’-continuous.

Proof. Let IX S f-(X) 8’}. To prove the lemma, we must
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prove that 5’ t, and, since t is a topology for S, it is sufficient to show
that the generators of 5’ are in t.

Let H be a 5-component of a set G e 5. Then f-I(G) 5. Let J be any
-componentoff-l(G) whichtouchesf-(H);thenf(J) G andf(J) n H 0.
Since J is k-connected andf is -5-continuous, f(J) is 5-connected. It follows
thatf(J)

___
H and J f-’(H). This shows thatf-l(H) is a union of -com-

ponents of a member of 5. Hence, f-(H) e , or H e t. This proves the
lemma.

2.3 THEOREM. Let 5 be a topology for the set S. Among the locally connected
topologies for S which are larger than 5 there is a least, 5*. Suppose furthermore,
that f maps a set A into S, and that is a locally connected topology for A such
that f is -5-continuous. Thenf is -5*-continuous.

Proof. Consider the map 5 -- 5’ in the lattice of all topologies for S. We
have already noted that this map is increasing; that it is order-preserving
follows from Lemma 2.2 applied to the identity map of S. Since the fixed

5points of the map 5 - are precisely the locally connected topologies for S,
the first statement of the theorem follows immediately from Theorem 1.1.
:Now consider the largest topology t for S such that the map f is -t-con-

tinuous (recall Lemma 2.1). Then f is also ’-’-continuous, by Lemma 2.2.
Since is a locally connected topology for A, this means f is a4t’-continuous.
But this implies that ’

___
t, whence ’ t. Now 5

___
t because f is

3-3-continuous, and therefore, from the definition of 5", 5" ; this implies
$thatf is also 5-5 -continuous.

Translated into the usual language of topology, this theorem becomes
Theorem A stated in the introduction except for the uniqueness statement.
The uniqueness argument is the standard one for structures having a "uni-
versal" property. Suppose (T, is another pair having the properties of
(S*, }. Applying the factorization properties to and we have ** * S*and where maps continuously into T, and b* maps T con-

* *tinuously into S*. Then and are inverse maps of one another, so that
S* and T are homeomorphic.

2.4 COrOLLArY. Under the hypothesis of Lemma 2.2, f is g -5 -continuous.
$

Proof. Since g* 5, it is clear thatf is -5-continuous. Now the theorem
applies to show that it is also -5 -continuous.
To prove the uniqueness of the adjoint functor assuming it commutes with

the stripping functor we need the following proposition.

2.5 t)RO’OSITION. The only order-preserving retraction of the lattice of all
topologies for S onto the set of locally connected topologies is given by 5 5".

Proof. For any subset X of S, {0, X, S} is a locally connected topology;
hence every topology of S is a join of locally connected topologies. Hence
the proposition follows from 1.2.
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In the next section we shall need the following result.

2.6 :LEMMA. Every member of 3" is a union of 3 -components of members of
$

5. In other words, the 3 -components of members of 3 are a basis of 3"

Proof. Let 3 be the set of all sets which can be expressed as the union of
3*-components of members of 3. We shall show first that 3 is a topology for
S. Since S e 3, and 3 is closed under arbitrary unions, the only point
issue here is whether it is closed under finite intersections. Suppose that

3"H1 and H2 are -components of G1 and G2 respectively, where G1 and G e 3.
Let J be any 3*-component of G n G which touches H n H.. As a 3*-
connected subset of G1 which touches H1, J

___
H1. Similarly, J H,

so J H1 H.. This proves that H1 n H is the union of those components
of G G. which it touches; hence H1 H. e 3. The intersection of two mem-
bers of 3 has the form ([J, Hi.,) ([J H2,) [J ,,(H, n H,.) and is
therefore a member of 3.

Since 3

___
3* and 3* is locally connected, every 3*-component of a member

of 3 is in 3*; therefore, 3 3*. On the other hand it is obvious that 3

_
3.

Now I claim that 3 is a locally connected topology, for every point of
has arbitrarily small 3-neighborhoods which are 3*-connected. But since
3* D__ 3, this implies that they are also 5-connected. But this is the usual
criterion for local connectivity.
Now because 3* is the least locally connected topology larger than 3, it

follows that 3*
___

3. This proves that 3* 3; the lemma is proved.

3. Uniform spaces

The proof of Theorem E could be given by a procedure strictly analogous
to that of Theorem A, by using the lattice of all uniform structures for S.
However, it seems to be somewhat easier to use the facts proved in Section 2.
We begin by recalling the definitions to explain our notation. A uniform

structure for S is a collection of subsets of S X S satisfying the conditions

(a) For allae,andallpS, (p,p}.
(b) If a e , there exists e such that --1
(C) If a e t, there exists e t such that/ a.

(d) If a e and e t, there exists e such that
(e) Ifaeqianda_ X S X S, thenXet.

The formal multiplication in (c) and the inverse in (b) refer to the operations
of relation algebra"

a I(P, q}l (lr) (p, r) e and (r, q}/};

We shall also write a(p) for {q] (q, p} e a}.
If we drop the saturation requirement (e), the set t is called a uniform basis
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for S. A uniform basis becomes a uniform structure if we adjoin all sets X
satisfying the hypothesis of (e).
We shall refer to a set X s n a-set if and only if X X X

___
a.

Associated with a uniform structure at for S is a topology 3 defined by

Let f be a mapping of a set A into the set S. Let be a uniform structure
for A, and let 8 be the corresponding topology. Let at be a uniform structure
for S with corresponding topology 3. Then f is -at-uniformly continuous
if and only if, for all a at, there exists 0 such that, if (a, b} e 0, then
(f(a), f(b)) e a. Such a map is 8-3-continuous, but, of course, the converse
need not hold.
We shall say that at is uniformly locally connected if and only if, for all

a e at, there exists e at such that, for all p e S, (p) is in a 3-connected subset
of a(p). When this is true, the corresponding topology 3 is locally connected.

3.1 LEMMA. Let S be a set, at a unifor)n structure for S, and 5 the correspond-
ing topology. For each a e at let a* be the set of all ordered pairs (p, q} e S X S
such that p and q are in a 5*-connected a-set. The set of all such pairs is a basis
for a uniform structure at* of S. This uniform structure is uniformly locally
connected, at at*, and the topology associated with at* is 3*.

Proof. We shall show first that the set of all a is a uniform basis for S.,
Requirement (a) is obvious, while (b) is valid because every a is symmetric.
Suppose a e at. Choose e at so that /

___
a. Then B*/* a*; for if p and q

are in a 3*-connected fl-set X, and q and r are in a 3*-connected fl-set Y, then
p and r are in the 5*-connected a-set X u Y. This proves (c). Finally, if,

___
a n , then ,* a* n iS*, so (d) holds.

Let at* be the corresponding uniform structure for S. If a e at, then a* a,
at*. at*so a e Thus at c

Let 3 be the topology for S defined by at*. Suppose G e 3. If p e G,
we can pick a e at so that a*(p) G. Now pick e at so that /S-1 a.

Then p e 3-Int/(p) e 3 c 3" let H be the 3*-component of 3-Int (p) which
contains p. Then H is a 3*-connected a-set, so H a*(p) G. On the
other hand, H e because is locally connected. Thus G is a 3*-neighbor-

3*.hood of any of its points, so G e This proves that 3

___
3*.

For any a e at, the set a*(p) is the union of all 3*-connected a-sets which
contain p, and this set is 3*-connected. Since the identity is 3*-3-continuous,,
a (p) is 3-connected. This shows that at* is uniformly locally connected,
and, in particular, 3 is locally connected. The inclusion 3 3 is trivial, so
we conclude that 3" 3 because 3" is the least locally connected topology
larger than 3. Hence 3 3*; this finishes the proof of the lemma.

3.2 IEMMA. Let S, at, 3, at*, 3" be as in the previous lemma. Let A be any
set, and let be a uniform structure for A which defines the topology 8. Assume
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that is uniformly locally connected. Suppose that f is an --uniformly con-
tinuous map of A into S. Then f is -*-uniformly continuous.

Proof. Let e Pick a t so that a* . Select 0 e so that (a, b) e 0
implies <f(a), f(b)) e a. Choose 01 e ff so that 01 0-1 0, and finally choose
02 e ff so that, for any a e A, 02(a) is contained in an 8-connected subset of
l(a).
Now, if (a, b} e 02, a and b are in an S-connected subset X of 01 (b). Here

X is a 0-set. We know that f is -5-continuous; by applying Theorem 2.3
it is 8-5 -continuous. Therefore f(X) is a 5*-connected a-set in S. This
implies that (f(a), f(b)} e . This proves that f is -t*-uniformly
continuous.
Except for the uniqueness statement, which follows from the factorization

property as usual, Theorem E is a translation into customary terms of the
content of Lemmas 3.2 and 3.3.
We reprove a theorem that is standard in the metric case at least.

3.3 THEOREM. Let X be a uniformly locally connected subset of a uniform
space a. Then CI(X) is uniformly locally connected.

Proof. Let be the uniform structure of a, and let a e . We must
prove that there is a e ) such that, for all p e CI(X), (p) n CI(X) is con-
rained in a connected subset of a(p) n Cl(X).

Choose first , e ) so that /, a; then, for all p e a, Cl(/,(p) a(p).
Next choose a symmetric in ) so that t , and, for all q e X, (q) n X is
contained in a connected subset of ,(q) a X. Finally choose so that .
Now suppose p e CI(X). Pick q in (p) n X; then

(p) x (q) a x K

_
(q) X (p) X

where K is a connected set. Hence

(p) a CI(X)

_
Int (p) a Cl(X) Cl(Int (p) a X) CI(K)

Cl(,/(p) n X) Cl(,(p)) a CI(X) a(p) CI(X).

Since CI(K) is connected, the theorem is proved.

3.4 THEOrEm. If $ is a complete uniform space, then the space $* of Theorem
E is also complete.

Proof. There are a complete uniform space ( and a uniform isomorphism
of * onto a dense subspace $’ of (. Now the map v is a uniformly

continuous map of ’ into ; since the latter is complete, it can be extended to a
continuous map f of a into $.

As the closure of the uniformly locMly connected set ’, ( is locally con-
nected. Hence f can be factored" f where maps ( continuously
into $*. If x e $’, then (f*(x)) f(x) (-l(x)); since is one-to-one,

f**(x) -1(x) and v(f* (x)) x Thus agrees with the identity map
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on a dense subset of a. By continuity, z f* is the identity mp of (. This
shows that r($*) a. Hence $* is complete.

If the uniform structure of $ cn be defined by metric, then the structure
has a countable basis. It follows from the proof of Lemm 3.2 that the
uniform structure of $* hs a countable basis and can, therefore, be derived
from a metric. However, we can do much better.

Suppose p is the metric which defines the uniform structure t of $. In
the notution of Lemma 3.2, put

z(p, q) inf {tip and q re in a 3*-connected set of p diameter less thn t}.

(This takes the value oo if the set on the right is void, but this is no dis-
advantage .if we make the obvious interpretations of the xioms for a metric
space. If a proper metric .is required, replace by ’ /(1 + ), where
oo/(1 + o 1.) It can be checked immediately that z is a metric which
defines the uniform structure t*. It has the convenient additional property
that open a-blls re 11 connected .in the topology 3" defied by ; moreover
the 3*-component of S containing p is iust qlcr(p, q) < oo}. By Theorem
3.4, if S is complete with respect to p it is complete with respect to . The
referee pointed out that this definition ppears in [4, p. 154 ft.] where it is used
to introduce uniform local connectivity without changing the topology of
locally connected metric space.

4. Additional properties of the space S*

We discuss first the separation xioms.

4.1 THEOREM. Suppose that the topology 3 for the set S satisfies axioms
To, T1, T2, or T. Then 3" does also.

Proof. This is obvious in the cse of xioms To, T1, or T. because, in
passing from 3 to 3", no open sets are lost. However, this rgument is in-
sufficient for axiom T3 because some closed sets are gained.
Assume that 3 satisfies axiom T3. We must prove that if p e G e 3", there

is a set H such that p e H e 3" nd 3*-Cl(H) __c G. By Lemma 2.6 we cn
choose J 3 so that K, the 3*-component of J containing p, stisfies K G.
Since 3 .is T, we can choose L so that p e L e 3 and 3-Cl(L)

___
J. Let H be

the 3*-component of L which contains p. Since L e 3" nd the ltter is
locally connected, H e3*. Now 3-CI(H) is 3*-closed, so

3*-el(H) 3-el(H) 3-el(L) J;

but 3*-Cl(H) is 3*-connected and meets K; hence 3*-Cl(H) c K. This
gives 3*-CI(H) G nd completes the proof.

4.2 THEOREM. f 3 satisfies the first axiom of countability, then so does 3*.

Proof. Let p be point of S, and let G1, Gs, be a fundamental sequence
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of 5-open neighborhoods of p. If Hi is the 3*-component of Gi which contains
p, then it follows immediately from Lemma 2.6 that H1, H2, is a funda-
mental sequence of 3*-neighborhoods.

4.3. We omit the proof of Theorem C since it is entirely straightforward by
using the universal property. However, we remark that the corresponding
theorem is false for infinite direct products. With substantially abbreviated
notation we find

(H so) * (H s:) *.
Moreover, if {S} is a collection of locally connected spaces, then the com-
,o  nts (II so)* o  on nt
of S.
We omit even the statement of the corresponding facts for direct products

of uniform spaces.

4.4 TEOREM. Let G be an algebraic group. Let 3 be a topology for G which
is compatible with the group structure. Then 3" is also compatible with the
group structure.

Proof. Let us denote by 3 3 the topology for G G induced by the
topology 3. Let f be the map of G G into G given by f(gl, g2) gl gl.
We are given that f is (5 3)-3-continuous. It is, therefore, (3" 3*)-3-
continuous. Since 3* X 3* is locally connected topology (the direct prod-
uct of two locally connected spaces is locally connected), f is also (3" 3*)-3*-
continuous, as claimed.

In classical language this becomes Theorem D.

4.5 Examples. If G is the character group of the additive group of rational
numbers with discrete topology, and 3 is the usual topology of G, then G is a
compact, connected, metrizable group. However, with topology 3", G con-
sists of uncountably many components each of which is homeomorphic to the
real numbers R. Thus we see that in the passage from 3 to 3* separability,
the second xiom of countability, nd connectivity have all been lost.
Now let S be the direct product of uncountably many copies of G, and let

31 be the Tychonoff topology for S induced by 3. Now in the topology 3’,
the components of S are homeomorphic to uncountable direct products of
copies of R. Thus S, which was compact, afortiori locally compact, para-
compact, and T4, with the topology 3, has none of these properties with
topology 3’.

5. A generolizotion
Let be any subcategory of the category of topological spaces and con-

tinuous maps. Suppose we have another class S of topological spaces and a
special collection E of continuous maps from these spaces to the various spaces
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in . It is unimportant whether S and E are in the category or not, but
we do require that f be in Z whenever ( e and f is a morphism of .

Let each of the spaces in be replaced by the same set endowed with the
largest topology which makes all of the maps of continuous. Each
morphism of will remain a continuous function when the topologies of its
domain and range are thus altered. Hence the change of topology of the
spaces and the retention of the morphisms as set maps constitute a covariant
functor frcrn to another subcategory / of . The classes and will
retain the necessary relations to ’, so they define a new functor on ’ which
turns out to be the identity. Thus our functor is, in a sense, idempotent.
A number of examples can be given. In each of the following we shall

take to be the whole of , and 2 to consist of all possible continuous maps
from the members of 8 to topological spaces.
When we take 8 to be the class of all locally connected topological spaces,

ve get the functor described above. When we take S to consist of just one
space, the unit interval, we get the locally-arcwise connection functor described
in [2]; the effect on each space is the introduction of Young’s a-topology.
When we take to be the class of all compact spaces, the resulting functor
may appropriately be called the ]c-functor; some of its properties are described
in [3, p. 241, Exercise K]. If 8 contains just one space, and this space consists
of a single convergent sequence and its limit point, then the functor replaces
each space by one in which the topology is sequential. Perhaps surprisingly,
the result is no different if 8 contains all metric spaces.
The ideas of this construction apply to certain other categories such as the

category of uniform structures. There is also a dual construction. It may
prove valuable to study these various functors carefully to obtain more de-
tailed information concerning their properties.
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