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1. Introduction and summary
On a probability space (t, P), let {f, n 1, 2, ...} be a sequence of

nonnegative random variables in L1 such that f -- f e L with probability 1,
and define g supf. If g e L, the Lebesgue dominated convergence
theorem asserts that E(f) -- E(f). More generally, as noted by Doob
[1, p. 23], if g e L1, then for any Borel field (0 contained in

E(fl0) E(fl(0) .e.

If one extends this result in a minor manner, Lebesgue’s condition g e L1
is not only sufficient but necessary, as the following converse to the dominated
convergence theorem asserts.

THEOREm 1. If f >>- O, f ---+ f a.e., f e LI f e L and g supf t L,
there are, on a suitable probability space, random variables {f* n 1, 2, },f*,
and a Borel field C such that f*, f f have the same joint distribution as
f, f, f2, and

(2) P{E(f*[C) -- E(/* e)} 0.

In view of this result, it is of interest to find conditions which will ensure
that g e L. As a special case of interest, let h be a nonnegative random
variable in L, let (R) be a monotone sequence of Borel fields contained in (,
and let f E(h 5,). Doob [1, p. 317] has shown that if h log h e L, then
also g supf e L1. It turns out that the condition h log h e L is necessary,
as well as sufficient, in the following sense"

THEOREM 2. If h >= 0, h e L, h log h L there are, on a suitable probability
space, a random variable h* with the same distribution as h and a monotone se-
quence (R)* of Borel fields, which can be chosen either increasing or decreasing, for
which

$
h
$(3) g sup.E( cL.

Theorem 2 will be an immediate consequence of the following result, which
gives sharp upper bounds on the distribution of g*, rather than only informa-
tion about the expectation of g* as in Theorem 2.

THEOREM 3. Let h* be any nonnegative random variable in LI and let h be
the (essentially unique) nonincreasing function on the unit interval (0, 1] whose

Received March 19, 1962.
This paper was prepared with the partial support of the Office of Naval Research.
Prepared with the partial support of the National Science Foundation.

508



CONVERSE TO THE DOMINATED CONVERGENCE THEOREM 509

distribution, with respect to Lebesgue measure m on (0, 1], is the same as that of
h*. Define g on (0, 1] by

1 h(t) dt.() e(x)

Then

0,
for any monotone sequence (R) of Borel fields contained in (, and any

(5) Pig* > } <= mlg > },

where g* supn E(h* {n),
(b) for every > 0 there is an increasing sequence C, of Borel fields in the

unit interval X for which

(6) Pig** >= tc } m{g >= ]c } fork O, 1, 2,..., and g** >- g--e,

where g** denotes supn E(h (n), and
(c) for every > 0 and every decreasing sequence of real numbers
Q n 1, 2, with 0 <= Q, <= 1 and Q, ---> 0 as n -- there are, on a

suitable probability space, a random variable f with the same distribution as h
and a decreasing sequence ), of Borel fields such that for every positive integer k,

(7) P{gl >- ts} >= Qk m{g >= tee},

where gl sup, E(f IDa).

The proof that Theorem 3 implies Theorem 2 will use the following result
of Hardy and Littlewood [2, p. 99]: For any nonnegative monotone decreasing
function h on (0, 1], either h log h, h(t) log g(t), and g are all in L or none is.

Say that a distribution on the real line dominates a distribution if
t(x, ->_ (x, for all x. Theorem 3(a) asserts that for any nonnegative
h* in L, the distribution of g, denote it by , dominates that of sup E[h* )
for any monotone increasing or decreasing sequence of Borel fields . Part
(b) asserts that is, in a very strong sense, best possible for increasing .
Part (c) asserts that the same distribution is best possible for decreasing
qt., though in a somewhat weaker sense.

Inequality (5) has the following consequence. Consider a fair gambling
system, which terminates after N plays, and in which the bettor is not allowed
credit, i.e., a sequence X0, X1, X, X of nonnegative random variables
which form a martingale; Xk is the bettor’s fortune after l plays, and for
simplicity let X0 be constant. Suppose the bettor is allowed to choose, in
advance of play, either of the following options"

Option 1. He uses the system and, at the end is paid, not his final fortune
X, but the largest fortune Y max (X0, X) he ever had in the
course of play.

Option 2. He uses the system, achieving a terminal fortune X. If
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XN is as high as possible, he is given XN. If not, he is given his original
fortune X0 and tries the system repeatedly until a final fortune Z is obtained
which (strictly) exceeds the final fortune X on his first attempt. He is
then given Z.
Though the distribution of Z need not dominate that of Y, it turns out

that Option 2 is always better, in the sense that E(Z) E(Y).
One final easy observation. For any nonnegative martingale X1, Xn,

E(max(X1, Xn)) <= NE(XI). This bound is best possible in that for
every nonnegative X with finite expectation and every e > 0 and N -> 1,
there is a nonnegative martingale, X, X*, where X has the same
distribution as X1, and for which E(max(X X) > NE(X1) e.

2. Proof of Theorem

The Borel field e will be the smallest field with respect to which some
random variable Z is measurable. We first reduce the theorem to the special
case in which each f,‘ has only two values, 0 and v,‘ > 0, and at every sample
point exactly onef is positive. Thus, if p,‘ P[f, v,‘}, we have 0 < p,‘ < 1,
_,p,‘ 1, f =-- O,E(g) _,,‘p,v,‘
To achieve this reduction, write

F,‘ max(f. f, 0), G,‘ min(fn f, 0).

Then F >= 0, F,‘ eL,

supsF_>- g--feLl, F.--.0 a.e.,

sup,‘ Gn <=feL, G,‘---->O

For any Borel field e, it follows from (1) that E(G,‘ e) 0 a.e., so that

P{E(h e) ---, E(f[ e)} P{E(f, f e) ---> O}

P(E(F,, q-- G, [e) ---+ OI P{E(F, e) 0}.

Thus if we find, enlarging the probability space if necessary, a Borel field
e for which PIE(F,, [e) -- 0} 0, it will follow that

P{E(h e) E(f e)} 0.

Thus we have reduced the theorem to the special case of the Fn, i.e., to the
case f 0.
Suppose now that f 0. Denote by Ak the event

{fk g-- 1, f < g-- 1 for i < ]}.

The A are disjoint, and ’ P(A) 1. Choose a simple function (i.e.,
one with only finitely many values) s such that s vanishes off Ak, 0 =< sk =< f
on A, and

1E(s) >- fk dP 2
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Then supk sk

E sup 8
k

Since s _-< f, for any e,
P{E(s e) --, 0} 0 implies

sk, so that

g dP-- 2 E(g) 2

P{E(fkl) -- 0} 0,

so that we have reduced the theorem to the case of the s, i.e., the case in
which f 0, each fn is simple, and at each sample point at most one fn is
positive. Starting from this case we represent each fn as the sum of a finite
number of nonnegative functions, each having only two values, one of which
is 0, and no two of which are simultaneously positive. Rearranging these
functions into a single sequence, omitting those which are 0 with probability
1 and, if the set B on which all these functions vanish has positive probability,
taking the indicator IB as an additional function, yield a sequence fl, f,
with the properties stated at the beginning of the section, and the reduction
is complete. We now prove the theorem in the special case.

Let k be the positive integer such that 1 < 2kP1 2, and let S,
n 1, 2, denote the set of integers i >= 2 for which 2n+ <= v < 2n+k+.
Define"

r, s pi, t, r - 2-(+)"

r r- sp,
where S tJ S /i i __> 2 and v >- 2+1};

t,--r+2-.
Let W, Z0, Z, be independent integer-valued random variables with
distributions as follows"

P(W- O) 1 t, P(W- n) t for n > 0.

P(Zo 1) (p- 2-)/(1 t),

P(Zo i) p/(1 t) fori => 2, ieS,

Forn ->_ 1,
P(Z0 i) 0 otherwise.

P(Z 1) 2-(+n)/tn
P(Z i) pi/t,, foriS,

P(Z i) 0 otherwise.

Define X Zw, and verify that P(X n) pn thus"

P(X 1) =oP(W n, Zn-- 1) pl- 2--k- E=I =p;
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for i > 1, i S,

P(X i) P(W O, Zo i) p;
for i e S,

P(X i) P(W n, Z, i) p.

Thus, if we define v. on {X n}, 0 otherwise, [.} has the same
joint distribution as/fn}, i.e., has only the two wlues 0,

nd t ech smple point exactly one . is positive.
For ny Borel field e, E(. ) v, P[X n

for which the event [v PX n e} 1 infinitely often} hs probability one.
We show that the Borel field e determined by Z0, Z, hs the property.
For i e S,

P[X=i]e} =0 if Zi,

Thus, ifZ i, vP{X i e} vt Sincet 2-(’+)nd,forieS,
2+, wehvevt. 1. Thus, forn 1 wheneverA {Z 1}

occurs, so doesB [vP{X =i[e} 1 for some ieS}. TheA re
independent, with P(A,) r/t,. We show that

(rJt )

If r < 2-( + t, < 2-(’+- so that

2n+k+l
If r 2-(’+) for infinitely many n, then (rn/t) for infinitely many
n, and the series (r./t) diverges. If r. < 2-(+) for sufficiently lrge n,
say for n n0,

whereT {i 2,v 2"+}. Since

we conclude that .r p v diverges. Thus (r/t) diverges, so that, with
probability 1, infinitely many A, and hence infinitely many B, occur. This
completes the proof.

3. Proofs of other results
For prt () of Theorem 3 use n inequality of Doob [1, p. 314] which

sserts that, for every > 0,

h dP,(8) kPg }
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where g* maxl<_i_< E(h* (g). Letting k },0 > 0 yields

h* dP.,oPIg* > 0} <= g*>x01

Letting n -- , and dropping the subscript in k0, you obtain, for every k > 0,

h* dP,(9) ),P{g* > X} <
g*>l

and letting k " X0 yields an inequality like (9) with the event {g* > X} re-
placed by {g* k0}. For any k for which P{h* > X} O, we have also
P{g* > X} O, and (5) is trivial. If P{h* => X} > O, note that g is monotone,
and let u be the largest number for which g(u) >= k. Then for any event A
for which

1 f h* dP > ,,
P(A) 34

we must have P(A) <= u. The event A /g* => k} has the property, from
the remark following (9), so that

(10) P{g* >= k} <= u m{g >=
Letting k $ k0 yields (5), and (a) is established.
The remark on gambling systems is a consequence of E(g*) <= E(g), which

follows from (5). For, with h* Xn, and (R)i the Borel field determined by
X0,.-. ,X,g Y, and

E(Z) (u)du,

where a(u) g (smallest v with h(v) h(u)). Since a(u) => g(u),
E(Z) >=_ E(g), and the proof is complete.

:For part (b), let Cn (n 1)e =< g < ne}, and let an be the Borel field
determined by C1, C,_. If C, is nonempty, it is an interval a < u b.
When Cn occurs, E(hl,) E(hlu _-< b) g(b) ->_ (n- 1). Thus, on
Cn,E(hle,) g- e, andg** sup, E(h[,) >_- g-- eeverywhere.

])’or part (c), set Q0 1, and define p, Q,_ Q, so that p, => 0,
p, 1. Let a be a random variable, independent of g, h (this may re-

quire extending the probability space) with P{a n} p,. The Borel field, will specify the value of a and, when a lc, will specify, for every i,
1 <_- i -<_ / n, whether C, defined in the proof of part (b), occurs. More
formally, if I is the indicator or characteristic function of C (I has 1 as its
value on C and 0 off Ci), and J is the indicator of {a =/}, ), is the Borel field
determined by the functions J,/ 1, 2, and those functions J I, for
which/c>nandl =<i_-</-n. Then, for anyi,/c, nwithi> /c- n > 0
we have, on C n {a ]},

E(h],) E(h]a, U->_, C) >= (/c n)v.
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For/c-<_i, wechoosen= 1;for/c> i, wechoosen= /c-i 1. We then
see that on C n a /c} either gl >= (/c 1) or gl >- (i 1) according as
/c _<_ ior/c > i. We conclude that, on (U>jC) his >j},g_>-j. Since
U>j C {g >_- je}, we obtain

P{g >- j} >= P{g >= jv} P{c > Jl QP{g >= J},

which is assertion (7).
The proof of Theorem 2 is now easy. We may suppose that h is a nonin-

creasing function on the unit interval, and that probability is Lebesgue meas-
ure. Since h log h is not in L1, the result of Hardy and Littlewood referred to
following (7) implies that g, defined as in Theorem 3, is not in L1. To
choose (g* increasing, with g* L1, choose as (R)* the e. of part (b) of
Theorem 3. Then g* >= g e, so that g* e L1. To choose (g* decreasing, note
first that, since g e L m(g >- tee) . We may then choose a mono-
tone sequence Q converging to 0 with 1 _>- Qe >- 0, ]c 1, 2 for which

(11) Q m(g lee) .
For this choice of Q, and (g* chosen as the )n of (c) of Theorem 3, the g* of
Theorem 2 is the g of Theorem 3. From (7) and (11), clearly,

52 _-> (R),

so that g* Lt. This completes the proof.
As for the final remarks about nonnegative martingales, let

Y max (X, X),

and note that Y <_- X, so E(Y) N NE(X). To find a process where
E(Y) > NE(XI) e, let X’ X* be the successive fortunes of a gambler
who at time j gambles as follows. He stakes his entire fortune X] on a long
shot, so that with small probability, namely -, his fortune increases to
tX, and with high probability, namely 1 -1, his fortune decreases to 0.
It is easy to verify that E(Y*) nE(X) (n 1) t-E(XI). This com-
pletes the proofs.

Added in proof. Theorem 2, with a particularly interesting choice of (g*,
has also been obtained by D. L. BURKHOLDER, in Successive conditional ex-
pectations of an integrable function, Ann. Math. Statistics, vol. 33 (1962), pp.
887-893.
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