A CONVERSE TO THE DOMINATED CONVERGENCE THEOREM

BY
David Blackwell ${ }^{1}$ and Lester E. Dubins ${ }^{2}$

1. Introduction and summary

On a probability space $\left(\Omega, B_{1}, P\right)$, let $\left\{f_{n}, n=1,2, \cdots\right\}$ be a sequence of nonnegative random variables in L_{1} such that $f_{n} \rightarrow f \in L_{1}$ with probability 1 , and define $g=\sup _{n} f_{n}$. If $g \in L_{1}$, the Lebesgue dominated convergence theorem asserts that $E\left(f_{n}\right) \rightarrow E(f)$. More generally, as noted by Doob [1, p. 23], if $g \in L_{1}$, then for any Borel field Θ_{0} contained in $\mathbb{B}^{\text {, }}$

$$
\begin{equation*}
E\left(f_{n} \mid \circlearrowleft_{0}\right) \rightarrow E\left(f \mid \circlearrowleft_{0}\right) \quad \text { a.e. } \tag{1}
\end{equation*}
$$

If one extends this result in a minor manner, Lebesgue's condition $g \epsilon L_{1}$ is not only sufficient but necessary, as the following converse to the dominated convergence theorem asserts.

Theorem 1. If $f_{n} \geqq 0, f_{n} \rightarrow f$ a.e., $f_{n} \in L_{1}, f \in L_{1}$, and $g=\sup _{n} f_{n} \notin L_{1}$, there are, on a suitable probability space, random variables $\left\{f_{n}^{*}, n=1,2, \cdots\right\}, f^{*}$, and a Borel field \mathfrak{C} such that $f^{*}, f_{1}^{*}, f_{2}^{*}, \cdots$ have the same joint distribution as f, f_{1}, f_{2}, \cdots, and

$$
\begin{equation*}
P\left\{E\left(f_{n}^{*} \mid \mathfrak{C}\right) \rightarrow E\left(f^{*} \mid \mathfrak{C}\right)\right\}=0 \tag{2}
\end{equation*}
$$

In view of this result, it is of interest to find conditions which will ensure that $g \epsilon L_{1}$. As a special case of interest, let h be a nonnegative random variable in L_{1}, let Θ_{n} be a monotone sequence of Borel fields contained in Θ, and let $f_{n}=E\left(h \mid \otimes_{n}\right)$. Doob [1, p. 317] has shown that if $h \log h \in L_{1}$, then also $g=\sup _{n} f_{n} \in L_{1}$. It turns out that the condition $h \log h \in L_{1}$ is necessary, as well as sufficient, in the following sense:

Theorem 2. If $h \geqq 0, h \in L_{1}, h \log h \notin L_{1}$, there are, on a suitable probability space, a random variable h^{*} with the same distribution as h and a monotone sequence \bigotimes_{n}^{*} of Borel fields, which can be chosen either increasing or decreasing, for which

$$
\begin{equation*}
g^{*}=\sup _{n} E\left(h^{*} \mid @_{n}^{*}\right) \notin L_{1} . \tag{3}
\end{equation*}
$$

Theorem 2 will be an immediate consequence of the following result, which gives sharp upper bounds on the distribution of g^{*}, rather than only information about the expectation of g^{*} as in Theorem 2.

Theorem 3. Let h^{*} be any nonnegative random variable in L_{1}, and let h be the (essentially unique) nonincreasing function on the unit interval (0,1$]$ whose

[^0]distribution, with respect to Lebesgue measure m on (0,1 , is the same as that of h^{*}. Define g on $(0,1]$ by
\[

$$
\begin{equation*}
g(x)=\frac{1}{x} \int_{0}^{x} h(t) d t \tag{4}
\end{equation*}
$$

\]

Then
(a) for any monotone sequence \mathbb{B}_{n} of Borel fields contained in \mathfrak{B}, and any $\lambda>0$,

$$
\begin{equation*}
P\left\{g^{*}>\lambda\right\} \leqq m\{g>\lambda\} \tag{5}
\end{equation*}
$$

where $g^{*}=\sup _{n} E\left(h^{*} \mid ®_{n}\right)$,
(b) for every $\varepsilon>0$ there is an increasing sequence \mathfrak{C}_{n} of Borel fields in the unit interval X for which

$$
\begin{equation*}
P\left\{g^{* *} \geqq k \varepsilon\right\}=m\{g \geqq k \varepsilon\} \quad \text { for } k=0,1,2, \cdots, \text { and } g^{* *} \geqq g-\varepsilon \tag{6}
\end{equation*}
$$ where $g^{* *}$ denotes $\sup _{n} E\left(h \mid \mathfrak{C}_{n}\right)$, and

(c) for every $\varepsilon>0$ and every decreasing sequence of real numbers $\left\{Q_{n}, n=1,2, \cdots\right\}$ with $0 \leqq Q_{n} \leqq 1$ and $Q_{n} \rightarrow 0$ as $n \rightarrow \infty$, there are, on a suitable probability space, a random variable f with the same distribution as h and a decreasing sequence \mathscr{D}_{n} of Borel fields such that for every positive integer k,

$$
\begin{equation*}
P\left\{g_{1} \geqq k \varepsilon\right\} \geqq Q_{k} m\{g \geqq k \varepsilon\} \tag{7}
\end{equation*}
$$

where $g_{1}=\sup _{n} E\left(f \mid D_{n}\right)$.
The proof that Theorem 3 implies Theorem 2 will use the following result of Hardy and Littlewood [2, p. 99]: For any nonnegative monotone decreasing function h on $(0,1]$, either $h \log h, h(t) \log g(t)$, and g are all in L_{1}, or none is.

Say that a distribution μ on the real line dominates a distribution ν if $\mu(x, \infty) \geqq \nu(x, \infty)$ for all x. Theorem 3(a) asserts that for any nonnegative h^{*} in L_{1}, the distribution of g, denote it by μ, dominates that of $\sup _{n} E\left[h^{*} \mid \oiint_{n}\right.$) for any monotone increasing or decreasing sequence of Borel fields \mathbb{B}_{n}. Part (b) asserts that μ is, in a very strong sense, best possible for increasing \mathbb{B}_{n}. Part (c) asserts that the same distribution μ is best possible for decreasing Θ_{n}, though in a somewhat weaker sense.

Inequality (5) has the following consequence. Consider a fair gambling system, which terminates after N plays, and in which the bettor is not allowed credit, i.e., a sequence $X_{0}, X_{1}, X_{2}, \cdots, X_{N}$ of nonnegative random variables which form a martingale; X_{k} is the bettor's fortune after k plays, and for simplicity let X_{0} be constant. Suppose the bettor is allowed to choose, in advance of play, either of the following options:

Option 1. He uses the system and, at the end is paid, not his final fortune X_{N}, but the largest fortune $Y=\max \left(X_{0}, \cdots, X_{N}\right)$ he ever had in the course of play.

Option 2. He uses the system, achieving a terminal fortune X_{N}. If
X_{N} is as high as possible, he is given X_{N}. If not, he is given his original fortune X_{0} and tries the system repeatedly until a final fortune Z is obtained which (strictly) exceeds the final fortune X_{N} on his first attempt. He is then given Z.

Though the distribution of Z need not dominate that of Y, it turns out that Option 2 is always better, in the sense that $E(Z) \geqq E(Y)$.

One final easy observation. For any nonnegative martingale X_{1}, \cdots, X_{N}, $E\left(\max \left(X_{1}, \cdots, X_{N}\right)\right) \leqq N E\left(X_{1}\right)$. This bound is best possible in that for every nonnegative X_{1} with finite expectation and every $\varepsilon>0$ and $N \geqq 1$, there is a nonnegative martingale, $X_{1}^{*}, \cdots, X_{N}^{*}$, where X_{1}^{*} has the same distribution as X_{1}, and for which $E\left(\max \left(X_{1}^{*}, \cdots, X_{N}^{*}\right)\right)>N E\left(X_{1}\right)-\varepsilon$.

2. Proof of Theorem 1

The Borel field \mathfrak{C} will be the smallest field with respect to which some random variable Z is measurable. We first reduce the theorem to the special case in which each f_{n} has only two values, 0 and $v_{n}>0$, and at every sample point exactly one f_{n} is positive. Thus, if $p_{n}=P\left\{f_{n}=v_{n}\right\}$, we have $0<p_{n}<1$, $\sum p_{n}=1, f \equiv 0, E(g)=\sum_{n} p_{n} v_{n}=\infty$.

To achieve this reduction, write

$$
F_{n}=\max \left(f_{n}-f, 0\right), \quad G_{n}=\min \left(f_{n}-f, 0\right)
$$

Then $F_{n} \geqq 0, F_{n} \in L_{1}$,

$$
\begin{array}{rll}
\sup _{n} F_{n} \geqq g-f \& L_{1}, & F_{n} \rightarrow 0 & \text { a.e. } \\
\sup _{n}\left|G_{n}\right| \leqq f \in L_{1}, & G_{n} \rightarrow 0 & \text { a.e. }
\end{array}
$$

For any Borel field \mathfrak{e}, it follows from (1) that $E\left(G_{n} \mid \mathcal{C}\right) \rightarrow 0$ a.e., so that

$$
\begin{aligned}
P\left\{E\left(f_{n} \mid \mathfrak{C}\right) \rightarrow E(f \mid \mathfrak{C})\right\}= & P\left\{E\left(f_{n}-f \mid \mathfrak{C}\right) \rightarrow 0\right\} \\
& =P\left\{E\left(F_{n}+G_{n} \mid \mathfrak{C}\right) \rightarrow 0\right\}=P\left\{E\left(F_{n} \mid \mathfrak{C}\right) \rightarrow 0\right\}
\end{aligned}
$$

Thus if we find, enlarging the probability space if necessary, a Borel field \mathfrak{C} for which $P\left\{E\left(F_{n} \mid \mathcal{C}\right) \rightarrow 0\right\}=0$, it will follow that

$$
P\left\{E\left(f_{n} \mid \mathfrak{C}\right) \rightarrow E(f \mid \mathfrak{C})\right\}=0
$$

Thus we have reduced the theorem to the special case of the F_{n}, i.e., to the case $f=0$.

Suppose now that $f=0$. Denote by A_{k} the event

$$
\left\{f_{k} \geqq g-1, f_{k}<g-1 \quad \text { for } \quad i<k\right\}
$$

The A_{k} are disjoint, and $\sum P\left(A_{k}\right)=1$. Choose a simple function (i.e., one with only finitely many values) s_{k} such that s_{k} vanishes off $A_{k}, 0 \leqq s_{k} \leqq f_{k}$ on A_{k}, and

$$
E\left(s_{k}\right) \geqq \int_{A_{k}} f_{k} d P-\frac{1}{2^{k}}
$$

Then $\sup _{k} s_{k}=\sum_{k} s_{k}$, so that

$$
\begin{aligned}
& E \sup _{k} s_{k}=\sum E\left(s_{k}\right) \geqq \sum_{k} \int_{A_{k}} f_{k} d P-1 \\
& \geqq \sum_{k} \int_{A_{k}} g d P-2=E(g)-2=\infty .
\end{aligned}
$$

Since $s_{k} \leqq f_{k}$, for any \mathbb{C},

$$
P\left\{E\left(s_{k} \mid \mathfrak{e}\right) \rightarrow 0\right\}=0 \quad \text { implies } \quad P\left\{E\left(f_{k} \mid \mathfrak{C}\right) \rightarrow 0\right\}=0,
$$

so that we have reduced the theorem to the case of the s_{k}, i.e., the case in which $f=0$, each f_{n} is simple, and at each sample point at most one f_{n} is positive. Starting from this case we represent each f_{n} as the sum of a finite number of nonnegative functions, each having only two values, one of which is 0 , and no two of which are simultaneously positive. Rearranging these functions into a single sequence, omitting those which are 0 with probability 1 and, if the set B on which all these functions vanish has positive probability, taking the indicator I_{B} as an additional function, yield a sequence f_{1}, f_{2}, \cdots with the properties stated at the beginning of the section, and the reduction is complete. We now prove the theorem in the special case.

Let k be the positive integer such that $1<2^{k} P_{1} \leqq 2$, and let S_{n}, $n=1,2, \cdots$, denote the set of integers $i \geqq 2$ for which $2^{n+k} \leqq v_{i}<2^{n+k+1}$. Define:

$$
\begin{aligned}
& r_{n}=\sum_{i e s_{n}} p_{i}, \quad t_{n}=r_{n}+2^{-(n+k)} ; \\
& \quad r=\sum_{n} r_{n}=\sum_{i e s} p_{i},
\end{aligned}
$$

where $S=\cup S_{n}=\left\{i: i \geqq 2\right.$ and $\left.v_{i} \geqq 2^{k+1}\right\}$;

$$
t=\sum t_{n}=r+2^{-t} .
$$

Let W, Z_{0}, Z_{1}, \cdots be independent integer-valued random variables with distributions as follows:

$$
\begin{gathered}
P(W=0)=1-t, \quad P(W=n)=t_{n} \text { for } n>0 . \\
P\left(Z_{0}=1\right)=\left(p_{1}-2^{-k}\right) /(1-t), \\
P\left(Z_{0}=i\right)=p_{i} /(1-t) \\
P\left(Z_{0}=i\right)=0 \quad \text { for } i \geqq 2, i \notin S, \\
\end{gathered} \quad \text { otherwise. } \quad l
$$

For $n \geqq 1$,

$$
\begin{aligned}
& P\left(Z_{n}=1\right)=2^{-(k+n)} / t_{n}, \\
& P\left(Z_{n}=i\right)=p_{i} / t_{n} \\
& \text { for } i \epsilon S_{n}, \\
& P\left(Z_{n}=i\right)=0 \quad \text { otherwise. }
\end{aligned}
$$

Define $X=Z_{W}$, and verify that $P(X=n)=p_{n}$ thus:

$$
P(X=1)=\sum_{n=0}^{\infty} P\left(W=n, Z_{n}=1\right)=p_{1}-2^{-k}+\sum_{n=1}^{\infty} 2^{-(k+n)}=p_{1} ;
$$

for $i>1, i \notin S$,

$$
P(X=i)=P\left(W=0, Z_{0}=i\right)=p_{i}
$$

for $i \in S_{n}$,

$$
P(X=i)=P\left(W=n, Z_{n}=i\right)=p_{i}
$$

Thus, if we define $\phi_{n}=v_{n}$ on $\{X=n\}, \phi_{n}=0$ otherwise, $\left\{\phi_{n}\right\}$ has the same joint distribution as $\left\{f_{n}\right\}$, i.e., ϕ_{n} has only the two values $0, v_{n}$,

$$
P\left\{\phi_{n}=v_{n}\right\}=p_{n}
$$

and at each sample point exactly one ϕ_{n} is positive.
For any Borel field $\mathfrak{e}, E\left(\phi_{n} \mid \mathfrak{C}\right)=v_{n} P\{X=n \mid \mathbb{C}\}$. It suffices to find a \mathcal{C} for which the event $\left\{v_{n} P\{X=n \mid \mathcal{C}\} \geqq 1\right.$ infinitely often $\}$ has probability one. We show that the Borel field \mathcal{C} determined by Z_{0}, Z_{1}, \cdots has the property. For $i \in S_{n}$,

$$
\begin{aligned}
& P\{X=i \mid \mathbb{C}\}=0 \quad \text { if } \quad Z_{n} \neq i \\
& P\{X=i \mid \mathbb{C}\}=t_{n} \quad \text { if } \quad Z_{n}=i
\end{aligned}
$$

Thus, if $Z_{n}=i, v_{i} P\{X=i \mid \mathcal{C}\}=v_{i} t_{n}$. Since $t_{n} \geqq 2^{-(n+k)}$ and, for $i \epsilon S_{n}$, $v_{i} \geqq 2^{n+k}$, we have $v_{i} t_{n} \geqq 1$. Thus, for $n \geqq 1$ whenever $A_{n}=\left\{Z_{n} \neq 1\right\}$ occurs, so does $B_{n}=\left\{v_{i} P\{X=i \mid \mathbb{C}\} \geqq 1\right.$ for some $\left.i \epsilon S_{n}\right\}$. The A_{n} are independent, with $P\left(A_{n}\right)=r_{n} / t_{n}$. We show that

$$
\sum_{n}\left(r_{n} / t_{n}\right)=\infty .
$$

If $r_{n}<2^{-(n+k)}, t_{n}<2^{-(n+k-1)}$, so that

$$
\left(\imath_{n} / t_{n}\right) \geqq 2^{n+k-1} r_{n}=\sum_{i \epsilon S_{n}} 2^{n+k+1} p_{i} / 4 \geqq \sum_{i \epsilon S_{n}} p_{i} v_{i} / 4
$$

If $r_{n} \geqq 2^{-(n+k)}$ for infinitely many n, then $\left(r_{n} / t_{n}\right) \geqq \frac{1}{2}$ for infinitely many n, and the series $\sum\left(r_{n} / t_{n}\right)$ diverges. If $r_{n}<2^{-(n+k)}$ for sufficiently large n, say for $n \geqq n_{0}$,

$$
\sum_{n}\left(r_{n} / t_{n}\right) \geqq \sum_{n \geqq n_{0}} \sum_{i \epsilon S_{n}} p_{i} v_{i} / 4=\sum_{i \in T} p_{i} v_{i} / 4
$$

where $T=\left\{i \geqq 2, v_{i} \geqq 2^{n_{0}+k}\right\}$. Since

$$
\sum_{i} p_{i} v_{i}=\infty \quad \text { and } \quad \sum_{i \xi T} p_{i} v_{i} \leqq 2^{n_{0}+k} \sum p_{i} \leqq 2^{n_{0}+k}
$$

we conclude that $\sum_{i \epsilon T} p_{i} v_{i}$ diverges. Thus $\sum\left(r_{n} / t_{n}\right)$ diverges, so that, with probability 1 , infinitely many A_{n}, and hence infinitely many B_{n}, occur. This completes the proof.

3. Proofs of other results

For part (a) of Theorem 3 use an inequality of Doob [1, p. 314] which asserts that, for every $\lambda>0$,

$$
\begin{equation*}
\lambda P\left\{g_{n}^{*} \geqq \lambda\right\} \leqq \int_{\left\{g_{n}^{*} \geqq \lambda\right\}} h^{*} d P \tag{8}
\end{equation*}
$$

where $g_{n}^{*}=\max _{1 \leqq i \leqq n} E\left(h^{*} \mid \circlearrowleft_{i}\right)$. Letting $\lambda \downarrow \lambda_{0}>0$ yields

$$
\lambda_{0} P\left\{g_{n}^{*}>\lambda_{0}\right\} \leqq \int_{\left\{g_{n}^{*}>\lambda_{0}\right\}} h^{*} d P
$$

Letting $n \rightarrow \infty$, and dropping the subscript in λ_{0}, you obtain, for every $\lambda>0$,

$$
\begin{equation*}
\lambda P\left\{g^{*}>\lambda\right\} \leqq \int_{\left\{g^{*}>\lambda\right\}} h^{*} d P \tag{9}
\end{equation*}
$$

and letting $\lambda \uparrow \lambda_{0}$ yields an inequality like (9) with the event $\left\{g^{*}>\lambda\right\}$ replaced by $\left\{g^{*} \geqq \lambda_{0}\right\}$. For any λ for which $P\left\{h^{*}>\lambda\right\}=0$, we have also $P\left\{g^{*}>\lambda\right\}=0$, and (5) is trivial. If $P\left\{h^{*} \geqq \lambda\right\}>0$, note that g is monotone, and let u be the largest number for which $g(u) \geqq \lambda$. Then for any event A for which

$$
\frac{1}{P(A)} \int_{A} h^{*} d P \geqq \lambda
$$

we must have $P(A) \leqq u$. The event $A=\left\{g^{*} \geqq \lambda\right\}$ has the property, from the remark following (9), so that

$$
\begin{equation*}
P\left\{g^{*} \geqq \lambda\right\} \leqq u=m\{g \geqq \lambda\} \tag{10}
\end{equation*}
$$

Letting $\lambda \downarrow \lambda_{0}$ yields (5), and (a) is established.
The remark on gambling systems is a consequence of $E\left(g^{*}\right) \leqq E(g)$, which follows from (5). For, with $h^{*}=X_{n}$, and \mathbb{B}_{i} the Borel field determined by $X_{0}, \cdots, X_{i}, g^{*}=Y$, and

$$
E(Z)=\int_{0}^{1} \alpha(u) d u
$$

where $\alpha(u)=g($ smallest v with $h(v)=h(u))$. Since $\alpha(u) \geqq g(u)$, $E(Z) \geqq E(g)$, and the proof is complete.

For part (b), let $C_{n}=\{(n-1) \varepsilon \leqq g<n \varepsilon\}$, and let \mathfrak{C}_{n} be the Borel field determined by C_{1}, \cdots, C_{n-1}. If C_{n} is nonempty, it is an interval $a<u \leqq b$. When C_{n} occurs, $E\left(h \mid \mathfrak{C}_{n}\right)=E(h \mid u \leqq b)=g(b) \geqq(n-1) \varepsilon$. Thus, on $C_{n}, E\left(h \mid \mathcal{C}_{n}\right) \geqq g-\varepsilon$, and $g^{* *}=\sup _{n} E\left(h \mid \mathfrak{C}_{n}\right) \geqq g-\varepsilon$ everywhere.

For part (c), set $Q_{0}=1$, and define $p_{n}=Q_{n-1}-Q_{n}$, so that $p_{n} \geqq 0$, $\sum_{1}^{\infty} p_{n}=1$. Let α be a random variable, independent of g, h (this may require extending the probability space) with $P\{\alpha=n\}=p_{n}$. The Borel field \mathscr{D}_{n} will specify the value of α and, when $\alpha=k$, will specify, for every i, $1 \leqq i \leqq k-n$, whether C_{i}, defined in the proof of part (b), occurs. More formally, if I_{i} is the indicator or characteristic function of C_{i} (I_{i} has 1 as its value on C_{i} and 0 off C_{i}), and J_{k} is the indicator of $\{\alpha=k\}, D_{n}$ is the Borel field determined by the functions $J_{k}, k=1,2, \cdots$, and those functions $J_{k} I_{i}$, for which $k>n$ and $1 \leqq i \leqq k-n$. Then, for any i, k, n with $i>k-n>0$ we have, on $C_{i} \cap\{\alpha=k\}$,

$$
E\left(h \mid D_{n}\right)=E\left(h \mid \alpha, \mathrm{U}_{j>k-n} C_{j}\right) \geqq(k-n) \varepsilon .
$$

For $k \leqq i$, we choose $n=1$; for $k>i$, we choose $n=k-i+1$. We then see that on $C_{i} \cap\{\alpha=k\}$ either $g_{1} \geqq(k-1) \varepsilon$ or $g_{1} \geqq(i-1) \varepsilon$ according as $k \leqq i$ or $k>i$. We conclude that, on $\left(\mathrm{U}_{i>j} C_{i}\right) \cap\{\alpha>j\}, g_{1} \geqq j \varepsilon$. Since $\mathrm{U}_{i>j} C_{i}=\{g \geqq j \varepsilon\}$, we obtain

$$
P\left\{g_{1} \geqq j \varepsilon\right\} \geqq P\{g \geqq j \varepsilon\} P\{\alpha>j\}=Q_{j} P\{g \geqq j \varepsilon\}
$$

which is assertion (7).
The proof of Theorem 2 is now easy. We may suppose that h is a nonincreasing function on the unit interval, and that probability is Lebesgue measure. Since $h \log h$ is not in L_{1}, the result of Hardy and Littlewood referred to following (7) implies that g, defined as in Theorem 3, is not in L_{1}. To choose $®_{n}^{*}$ increasing, with $g^{*} \notin L_{1}$, choose as $®_{n}^{*}$ the \mathfrak{C}_{n} of part (b) of Theorem 3. Then $g^{*} \geqq g-\varepsilon$, so that $g^{*} \notin L_{1}$. To choose \mathbb{B}_{n}^{*} decreasing, note first that, since $g \notin L_{1}, \sum_{k} m(g \geqq k \varepsilon)=\infty$. We may then choose a monotone sequence Q_{k} converging to 0 with $1 \geqq Q_{k} \geqq 0, k=1,2 \cdots$, for which

$$
\begin{equation*}
\sum_{k} Q_{k} m(g \geqq k \varepsilon)=\infty . \tag{11}
\end{equation*}
$$

For this choice of Q_{k}, and \circlearrowleft_{n}^{*} chosen as the \mathscr{D}_{n} of (c) of Theorem 3, the g^{*} of Theorem 2 is the g_{1} of Theorem 3. From (7) and (11), clearly,

$$
\sum P\left\{g^{*} \geqq k \varepsilon\right\}=\infty,
$$

so that $g^{*} \in L_{1}$. This completes the proof.
As for the final remarks about nonnegative martingales, let

$$
Y=\max \left(X_{1}, \cdots, X_{N}\right)
$$

and note that $Y \leqq \sum X_{i}$, so $E(Y) \leqq N E\left(X_{1}\right)$. To find a process where $E(Y)>N E\left(X_{1}\right)-\varepsilon$, let $X_{1}^{*}, \cdots, X_{N}^{*}$ be the successive fortunes of a gambler who at time j gambles as follows. He stakes his entire fortune X_{j}^{*} on a long shot, so that with small probability, namely t^{-1}, his fortune increases to $t X_{j}^{*}$, and with high probability, namely $1-t^{-1}$, his fortune decreases to 0 . It is easy to verify that $E\left(Y^{*}\right)=n E\left(X_{1}\right)-(n-1) t^{-1} E\left(X_{1}\right)$. This completes the proofs.

Added in proof. Theorem 2, with a particularly interesting choice of \mathscr{B}_{n}^{*}, has also been obtained by D. L. Burkholder, in Successive conditional expectations of an integrable function, Ann. Math. Statistics, vol. 33 (1962), pp. 887-893.

Bibliography

1. J. L. Doob, Stochastic processes, New York, Wiley, 1953.
2. G. H. Hardy and J. E. Littlewood, A maximal theorem with function-theoretic applications, Acta Math., vol. 54 (1930), pp. 81-116.

University of California
Berkeley, California

[^0]: Received March 19, 1962.
 ${ }^{1}$ This paper was prepared with the partial support of the Office of Naval Research.
 ${ }^{2}$ Prepared with the partial support of the National Science Foundation.

