A CONVERSE TO THE DOMINATED CONVERGENCE THEOREM

BY

DAVID BLACKWELL¹ AND LESTER E. DUBINS²

1. Introduction and summary

On a probability space $(\Omega, \mathfrak{G}, P)$, let $\{f_n, n = 1, 2, \dots\}$ be a sequence of nonnegative random variables in L_1 such that $f_n \to f \in L_1$ with probability 1, and define $g = \sup_n f_n$. If $g \in L_1$, the Lebesgue dominated convergence theorem asserts that $E(f_n) \to E(f)$. More generally, as noted by Doob [1, p. 23], if $g \in L_1$, then for any Borel field \mathfrak{G}_0 contained in \mathfrak{G} ,

(1)
$$E(f_n \mid \mathfrak{B}_0) \to E(f \mid \mathfrak{B}_0)$$
 a.e.

If one extends this result in a minor manner, Lebesgue's condition $g \in L_1$ is not only sufficient but necessary, as the following converse to the dominated convergence theorem asserts.

THEOREM 1. If $f_n \ge 0$, $f_n \to f$ a.e., $f_n \in L_1$, $f \in L_1$, and $g = \sup_n f_n \notin L_1$, there are, on a suitable probability space, random variables $\{f_n^*, n = 1, 2, \dots\}, f^*$, and a Borel field \mathbb{C} such that f^*, f_1^*, f_2^*, \dots have the same joint distribution as f, f_1, f_2, \dots, and

(2)
$$P\{E(f_n^* \mid \mathfrak{C}) \to E(f^* \mid \mathfrak{C})\} = 0$$

In view of this result, it is of interest to find conditions which will ensure that $g \ \epsilon \ L_1$. As a special case of interest, let h be a nonnegative random variable in L_1 , let \mathfrak{G}_n be a monotone sequence of Borel fields contained in \mathfrak{G} , and let $f_n = E(h | \mathfrak{G}_n)$. Doob [1, p. 317] has shown that if $h \log h \ \epsilon \ L_1$, then also $g = \sup_n f_n \ \epsilon \ L_1$. It turns out that the condition $h \log h \ \epsilon \ L_1$ is necessary, as well as sufficient, in the following sense:

THEOREM 2. If $h \ge 0$, $h \in L_1$, $h \log h \notin L_1$, there are, on a suitable probability space, a random variable h^* with the same distribution as h and a monotone sequence \mathfrak{G}_n^* of Borel fields, which can be chosen either increasing or decreasing, for which

(3)
$$g^* = \sup_n E(h^* \mid \mathfrak{B}_n^*) \notin L_1.$$

Theorem 2 will be an immediate consequence of the following result, which gives sharp upper bounds on the distribution of g^* , rather than only information about the expectation of g^* as in Theorem 2.

THEOREM 3. Let h^* be any nonnegative random variable in L_1 , and let h be the (essentially unique) nonincreasing function on the unit interval (0, 1] whose

Received March 19, 1962.

¹ This paper was prepared with the partial support of the Office of Naval Research.

² Prepared with the partial support of the National Science Foundation.

distribution, with respect to Lebesgue measure m on (0, 1], is the same as that of h^* . Define g on (0, 1] by

(4)
$$g(x) = \frac{1}{x} \int_0^x h(t) dt.$$

Then

(a) for any monotone sequence \mathfrak{G}_n of Borel fields contained in \mathfrak{G} , and any $\lambda > 0$,

(5)
$$P\{g^* > \lambda\} \leq m\{g > \lambda\},$$

where $g^* = \sup_n E(h^* \mid \mathfrak{B}_n),$

(b) for every $\varepsilon > 0$ there is an increasing sequence \mathbb{C}_n of Borel fields in the unit interval X for which

(6) $P\{g^{**} \ge k \varepsilon\} = m\{g \ge k \varepsilon\}$ for $k = 0, 1, 2, \cdots$, and $g^{**} \ge g - \varepsilon$, where g^{**} denotes $\sup_n E(h | \mathbb{C}_n)$, and

(c) for every $\varepsilon > 0$ and every decreasing sequence of real numbers $\{Q_n, n = 1, 2, \dots\}$ with $0 \leq Q_n \leq 1$ and $Q_n \rightarrow 0$ as $n \rightarrow \infty$, there are, on a suitable probability space, a random variable f with the same distribution as h and a decreasing sequence \mathfrak{D}_n of Borel fields such that for every positive integer k,

(7)
$$P\{g_1 \ge k\varepsilon\} \ge Q_k m\{g \ge k\varepsilon\},$$

where $g_1 = \sup_n E(f \mid \mathfrak{D}_n)$.

The proof that Theorem 3 implies Theorem 2 will use the following result of Hardy and Littlewood [2, p. 99]: For any nonnegative monotone decreasing function h on (0, 1], either h log h, $h(t) \log g(t)$, and g are all in L_1 , or none is.

Say that a distribution μ on the real line *dominates* a distribution ν if $\mu(x, \infty) \geq \nu(x, \infty)$ for all x. Theorem 3(a) asserts that for any nonnegative h^* in L_1 , the distribution of g, denote it by μ , dominates that of $\sup_n E[h^* | \mathfrak{G}_n)$ for any monotone increasing or decreasing sequence of Borel fields \mathfrak{G}_n . Part (b) asserts that μ is, in a very strong sense, best possible for increasing \mathfrak{G}_n . Part (c) asserts that the *same* distribution μ is best possible for decreasing \mathfrak{G}_n , though in a somewhat weaker sense.

Inequality (5) has the following consequence. Consider a fair gambling system, which terminates after N plays, and in which the bettor is not allowed credit, i.e., a sequence X_0 , X_1 , X_2 , \cdots , X_N of nonnegative random variables which form a martingale; X_k is the bettor's fortune after k plays, and for simplicity let X_0 be constant. Suppose the bettor is allowed to choose, in advance of play, either of the following options:

Option 1. He uses the system and, at the end is paid, not his final fortune X_N , but the largest fortune $Y = \max(X_0, \dots, X_N)$ he ever had in the course of play.

Option 2. He uses the system, achieving a terminal fortune X_N . If

 X_N is as high as possible, he is given X_N . If not, he is given his original fortune X_0 and tries the system repeatedly until a final fortune Z is obtained which (strictly) exceeds the final fortune X_N on his first attempt. He is then given Z.

Though the distribution of Z need not dominate that of Y, it turns out that Option 2 is always better, in the sense that $E(Z) \ge E(Y)$.

One final easy observation. For any nonnegative martingale X_1, \dots, X_N , $E(\max(X_1, \dots, X_N)) \leq NE(X_1)$. This bound is best possible in that for every nonnegative X_1 with finite expectation and every $\varepsilon > 0$ and $N \geq 1$, there is a nonnegative martingale, X_1^*, \dots, X_N^* , where X_1^* has the same distribution as X_1 , and for which $E(\max(X_1^*, \dots, X_N^*)) > NE(X_1) - \varepsilon$.

2. Proof of Theorem 1

The Borel field C will be the smallest field with respect to which some random variable Z is measurable. We first reduce the theorem to the special case in which each f_n has only two values, 0 and $v_n > 0$, and at every sample point exactly one f_n is positive. Thus, if $p_n = P\{f_n = v_n\}$, we have $0 < p_n < 1$, $\sum_{n=1}^{\infty} p_n = 1, f \equiv 0, E(g) = \sum_n p_n v_n = \infty$.

To achieve this reduction, write

$$F_n = \max(f_n - f, 0), \quad G_n = \min(f_n - f, 0).$$

Then $F_n \geq 0$, $F_n \in L_1$,

$$\begin{aligned} \sup_n F_n &\geq g - f \notin L_1, \qquad F_n \to 0 \quad \text{a.e.,} \\ \sup_n |G_n| &\leq f \notin L_1, \qquad G_n \to 0 \quad \text{a.e.,} \end{aligned}$$

For any Borel field \mathfrak{C} , it follows from (1) that $E(G_n \mid \mathfrak{C}) \to 0$ a.e., so that

$$P\{E(f_n \mid \mathbb{C}) \to E(f \mid \mathbb{C})\} = P\{E(f_n - f \mid \mathbb{C}) \to 0\}$$
$$= P\{E(F_n + G_n \mid \mathbb{C}) \to 0\} = P\{E(F_n \mid \mathbb{C}) \to 0\}.$$

Thus if we find, enlarging the probability space if necessary, a Borel field \mathbb{C} for which $P\{E(F_n \mid \mathbb{C}) \rightarrow 0\} = 0$, it will follow that

 $P\{E(f_n \mid \mathfrak{C}) \to E(f \mid \mathfrak{C})\} = \mathbf{0}.$

Thus we have reduced the theorem to the special case of the F_n , i.e., to the case f = 0.

Suppose now that f = 0. Denote by A_k the event

$$\{f_k \ge g - 1, f_k < g - 1 \text{ for } i < k\}.$$

The A_k are disjoint, and $\sum P(A_k) = 1$. Choose a simple function (i.e., one with only finitely many values) s_k such that s_k vanishes off A_k , $0 \leq s_k \leq f_k$ on A_k , and

$$E(s_k) \geq \int_{A_k} f_k \, dP - \frac{1}{2^k} \, .$$

Then $\sup_k s_k = \sum_k s_k$, so that

$$E \sup_{k} s_{k} = \sum E(s_{k}) \ge \sum_{k} \int_{A_{k}} f_{k} dP - 1$$
$$\ge \sum_{k} \int_{A_{k}} g dP - 2 = E(g) - 2 = \infty.$$

Since $s_k \leq f_k$, for any C,

For $n \geq$

 $P\{E(s_k \mid \mathfrak{C}) \rightarrow 0\} = 0 \text{ implies } P\{E(f_k \mid \mathfrak{C}) \rightarrow 0\} = 0,$

so that we have reduced the theorem to the case of the s_k , i.e., the case in which f = 0, each f_n is simple, and at each sample point at most one f_n is positive. Starting from this case we represent each f_n as the sum of a finite number of nonnegative functions, each having only two values, one of which is 0, and no two of which are simultaneously positive. Rearranging these functions into a single sequence, omitting those which are 0 with probability 1 and, if the set B on which all these functions vanish has positive probability, taking the indicator I_B as an additional function, yield a sequence f_1, f_2, \cdots with the properties stated at the beginning of the section, and the reduction is complete. We now prove the theorem in the special case.

Let k be the positive integer such that $1 < 2^k P_1 \leq 2$, and let S_n , $n = 1, 2, \cdots$, denote the set of integers $i \geq 2$ for which $2^{n+k} \leq v_i < 2^{n+k+1}$. Define:

$$r_n = \sum_{i \in S_n} p_i, \qquad t_n = r_n + 2^{-(n+k)};$$
$$r = \sum_n r_n = \sum_{i \in S} p_i,$$
where $S = \bigcup S_n = \{i : i \ge 2 \text{ and } v_i \ge 2^{k+1}\};$
$$t = \sum_i t_n = r + 2^{-k}.$$

Let W, Z_0, Z_1, \cdots be independent integer-valued random variables with distributions as follows:

$$P(W = 0) = 1 - t, \quad P(W = n) = t_n \text{ for } n > 0.$$

$$P(Z_0 = 1) = (p_1 - 2^{-k})/(1 - t),$$

$$P(Z_0 = i) = p_i/(1 - t) \text{ for } i \ge 2, i \notin S,$$

$$P(Z_0 = i) = 0 \quad \text{otherwise.}$$
1,
$$P(Z_n = 1) = 2^{-(k+n)}/t_n,$$

$$P(Z_n = i) = p_i/t_n \text{ for } i \notin S_n,$$

$$P(Z_n = i) = 0$$
 otherwise.

Define $X = Z_W$, and verify that $P(X = n) = p_n$ thus:

$$P(X=1) = \sum_{n=0}^{\infty} P(W=n, Z_n=1) = p_1 - 2^{-k} + \sum_{n=1}^{\infty} 2^{-(k+n)} = p_1;$$

for i > 1, $i \notin S$,

$$P(X = i) = P(W = 0, Z_0 = i) = p_i;$$

for $i \in S_n$,

$$P(X = i) = P(W = n, Z_n = i) = p_i$$

Thus, if we define $\phi_n = v_n$ on $\{X = n\}$, $\phi_n = 0$ otherwise, $\{\phi_n\}$ has the same joint distribution as $\{f_n\}$, i.e., ϕ_n has only the two values 0, v_n ,

$$P\{\phi_n = v_n\} = p_n,$$

and at each sample point exactly one ϕ_n is positive.

For any Borel field C, $E(\phi_n | C) = v_n P\{X = n | C\}$. It suffices to find a C for which the event $\{v_n P\{X = n | C\} \ge 1 \text{ infinitely often}\}$ has probability one. We show that the Borel field C determined by Z_0 , Z_1 , \cdots has the property. For $i \in S_n$,

$$P\{X = i \mid C\} = 0 \quad \text{if} \quad Z_n \neq i,$$
$$P\{X = i \mid C\} = t_n \quad \text{if} \quad Z_n = i.$$

Thus, if $Z_n = i$, $v_i P\{X = i \mid \mathbb{C}\} = v_i t_n$. Since $t_n \ge 2^{-(n+k)}$ and, for $i \in S_n$, $v_i \ge 2^{n+k}$, we have $v_i t_n \ge 1$. Thus, for $n \ge 1$ whenever $A_n = \{Z_n \ne 1\}$ occurs, so does $B_n = \{v_i P\{X = i \mid \mathbb{C}\} \ge 1$ for some $i \in S_n\}$. The A_n are independent, with $P(A_n) = r_n/t_n$. We show that

$$\sum_n (r_n/t_n) = \infty$$

If $r_n < 2^{-(n+k)}$, $t_n < 2^{-(n+k-1)}$, so that

$$(i_n/t_n) \ge 2^{n+k-1}r_n = \sum_{i \in S_n} 2^{n+k+1}p_i/4 \ge \sum_{i \in S_n} p_i v_i/4.$$

If $r_n \geq 2^{-(n+k)}$ for infinitely many n, then $(r_n/t_n) \geq \frac{1}{2}$ for infinitely many n, and the series $\sum (r_n/t_n)$ diverges. If $r_n < 2^{-(n+k)}$ for sufficiently large n, say for $n \geq n_0$,

$$\sum_{n} (r_n/t_n) \geq \sum_{n \geq n_0} \sum_{i \in S_n} p_i v_i/4 = \sum_{i \in T} p_i v_i/4$$

where $T = \{ i \ge 2, v_i \ge 2^{n_0 + k} \}$. Since

$$\sum_{i} p_i v_i = \infty$$
 and $\sum_{i \in T} p_i v_i \leq 2^{n_0 + k} \sum p_i \leq 2^{n_0 + k}$,

we conclude that $\sum_{i \in T} p_i v_i$ diverges. Thus $\sum (r_n/t_n)$ diverges, so that, with probability 1, infinitely many A_n , and hence infinitely many B_n , occur. This completes the proof.

3. Proofs of other results

For part (a) of Theorem 3 use an inequality of Doob [1, p. 314] which asserts that, for every $\lambda > 0$,

(8)
$$\lambda P\{g_n^* \ge \lambda\} \le \int_{\{g_n^* \ge \lambda\}} h^* dP_{q_n^*} dP_{q_n^*} = \lambda$$

512

where $g_n^* = \max_{1 \le i \le n} E(h^* \mid \mathfrak{R}_i)$. Letting $\lambda \downarrow \lambda_0 > 0$ yields

$$\lambda_0 P\{g_n^* > \lambda_0\} \leq \int_{\{g_n^* > \lambda_0\}} h^* dP.$$

Letting $n \to \infty$, and dropping the subscript in λ_0 , you obtain, for every $\lambda > 0$,

(9)
$$\lambda P\{g^* > \lambda\} \leq \int_{\{g^* > \lambda\}} h^* dP,$$

and letting $\lambda \uparrow \lambda_0$ yields an inequality like (9) with the event $\{g^* > \lambda\}$ replaced by $\{g^* \ge \lambda_0\}$. For any λ for which $P\{h^* > \lambda\} = 0$, we have also $P\{g^* > \lambda\} = 0$, and (5) is trivial. If $P\{h^* \ge \lambda\} > 0$, note that g is monotone, and let u be the largest number for which $g(u) \ge \lambda$. Then for any event A for which

$$\frac{1}{P(A)}\int_{A}h^{*}\,dP \ge \lambda,$$

we must have $P(A) \leq u$. The event $A = \{g^* \geq \lambda\}$ has the property, from the remark following (9), so that

(10)
$$P\{g^* \ge \lambda\} \le u = m\{g \ge \lambda\}.$$

Letting $\lambda \downarrow \lambda_0$ yields (5), and (a) is established.

The remark on gambling systems is a consequence of $E(g^*) \leq E(g)$, which follows from (5). For, with $h^* = X_n$, and \mathfrak{B}_i the Borel field determined by $X_0, \dots, X_i, g^* = Y$, and

$$E(Z) = \int_0^1 \alpha(u) \, du,$$

where $\alpha(u) = g$ (smallest v with h(v) = h(u)). Since $\alpha(u) \ge g(u)$, $E(Z) \ge E(g)$, and the proof is complete.

For part (b), let $C_n = \{(n-1)\varepsilon \leq g < n\varepsilon\}$, and let \mathbb{C}_n be the Borel field determined by C_1, \dots, C_{n-1} . If C_n is nonempty, it is an interval $a < u \leq b$. When C_n occurs, $E(h | \mathbb{C}_n) = E(h | u \leq b) = g(b) \geq (n-1)\varepsilon$. Thus, on $C_n, E(h | \mathbb{C}_n) \geq g - \varepsilon$, and $g^{**} = \sup_n E(h | \mathbb{C}_n) \geq g - \varepsilon$ everywhere.

For part (c), set $Q_0 = 1$, and define $p_n = Q_{n-1} - Q_n$, so that $p_n \ge 0$, $\sum_{i=1}^{\infty} p_n = 1$. Let α be a random variable, independent of g, h (this may require extending the probability space) with $P\{\alpha = n\} = p_n$. The Borel field \mathfrak{D}_n will specify the value of α and, when $\alpha = k$, will specify, for every i, $1 \le i \le k - n$, whether C_i , defined in the proof of part (b), occurs. More formally, if I_i is the indicator or characteristic function of C_i (I_i has 1 as its value on C_i and 0 off C_i), and J_k is the indicator of $\{\alpha = k\}$, \mathfrak{D}_n is the Borel field determined by the functions J_k , $k = 1, 2, \cdots$, and those functions $J_k I_i$, for which k > n and $1 \le i \le k - n$. Then, for any i, k, n with i > k - n > 0 we have, on $C_i \cap \{\alpha = k\}$,

$$E(h \mid \mathfrak{D}_n) = E(h \mid \alpha, \bigcup_{j > k-n} C_j) \ge (k-n)\varepsilon.$$

For $k \leq i$, we choose n = 1; for k > i, we choose n = k - i + 1. We then see that on $C_i \cap \{\alpha = k\}$ either $g_1 \geq (k - 1)\varepsilon$ or $g_1 \geq (i - 1)\varepsilon$ according as $k \leq i$ or k > i. We conclude that, on $(\bigcup_{i>j} C_i) \cap \{\alpha > j\}, g_1 \geq j\varepsilon$. Since $\bigcup_{i>j} C_i = \{g \geq j\varepsilon\}$, we obtain

$$P\{g_1 \ge j\varepsilon\} \ge P\{g \ge j\varepsilon\} P\{\alpha > j\} = Q_j P\{g \ge j\varepsilon\},$$

which is assertion (7).

The proof of Theorem 2 is now easy. We may suppose that h is a nonincreasing function on the unit interval, and that probability is Lebesgue measure. Since $h \log h$ is not in L_1 , the result of Hardy and Littlewood referred to following (7) implies that g, defined as in Theorem 3, is not in L_1 . To choose \mathfrak{G}_n^* increasing, with $g^* \notin L_1$, choose as \mathfrak{G}_n^* the \mathfrak{C}_n of part (b) of Theorem 3. Then $g^* \geq g - \varepsilon$, so that $g^* \notin L_1$. To choose \mathfrak{G}_n^* decreasing, note first that, since $g \notin L_1$, $\sum_k m(g \geq k\varepsilon) = \infty$. We may then choose a monotone sequence Q_k converging to 0 with $1 \geq Q_k \geq 0$, $k = 1, 2 \cdots$, for which

(11)
$$\sum_{k} Q_k m(g \ge k\varepsilon) = \infty.$$

For this choice of Q_k , and \mathfrak{G}_n^* chosen as the \mathfrak{D}_n of (c) of Theorem 3, the g^* of Theorem 2 is the g_1 of Theorem 3. From (7) and (11), clearly,

$$\sum P\{g^* \ge k\varepsilon\} = \infty$$

so that $g^* \notin L_1$. This completes the proof.

As for the final remarks about nonnegative martingales, let

$$Y = \max(X_1, \cdots, X_N),$$

and note that $Y \leq \sum X_i$, so $E(Y) \leq NE(X_1)$. To find a process where $E(Y) > NE(X_1) - \varepsilon$, let X_1^*, \dots, X_N^* be the successive fortunes of a gambler who at time *j* gambles as follows. He stakes his entire fortune X_j^* on a long shot, so that with small probability, namely t^{-1} , his fortune increases to tX_j^* , and with high probability, namely $1 - t^{-1}$, his fortune decreases to 0. It is easy to verify that $E(Y^*) = nE(X_1) - (n-1)t^{-1}E(X_1)$. This completes the proofs.

Added in proof. Theorem 2, with a particularly interesting choice of \mathfrak{G}_n^* , has also been obtained by D. L. BURKHOLDER, in *Successive conditional expectations of an integrable function*, Ann. Math. Statistics, vol. 33 (1962), pp. 887–893.

BIBLIOGRAPHY

1. J. L. DOOB, Stochastic processes, New York, Wiley, 1953.

2. G. H. HARDY AND J. E. LITTLEWOOD, A maximal theorem with function-theoretic applications, Acta Math., vol. 54 (1930), pp. 81-116.

UNIVERSITY OF CALIFORNIA BERKELEY, CALIFORNIA

514