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1. Introduction

A structure theory is developed for a class of Banach algebras which we call
inner product algebras (IP-algebras). We were led to these algebras by the
algebra of almost periodic functions under convolution.

Let A AP(G) be the set of all almost periodic functions on a topological
group G considered as a Banach algebra under the norm f sup If(t) I,
pointwise addition, and convolution multiplication. This algebra is rich in
structure. Not only is it a Banach algebra in the norm f 11, but also it is a
pre-Hilbert space in the norm If (f, f)1/2, where the inner product is given
by (f, g) Mt[f(t)g--] (here M is the mean-value functional of yon Neu-
mann [8]). This pre-Hilbert space is, in general, not complete (even for G
the real numbers). Denote the convolution of f and g by fg where fg(s)
Mt[f(st-1)g(t)] [8, p. 456]. The two norms are connected [7], [8] by (1)
if[ -<_ 11/11 and (2) fg <- Ill g for all f, g e A. Also (3) Af 0 implies
f 0. Moreover the natural involution f --+f* defined by f*(t) f(t-1) satis-
fies (4) (fg, h) (g, f’h) (f, hg*) for all f, g, h e A. Also (5) f lies in the
closure of fA for each f e A [8, Theorem 17]. Our interest in AP(G) from
the point of view of the general theory of Banach algebras began with the dis-
covery that any Banach algebra with an involution which is a pre-Hilbert
space satisfying conditions (1)-(5) (or even weaker conditions, see Theorem
4.9) is a semisimple dual Banach algebra.
A somewhat analogous situation was treated by Ambrose [1] who started

with the L2-algebra of a compact group as a model and abstracted to H*-alge-
bras. Likewise starting with AP(G) we abstract to what we call IP-algebras
and right IP-algebras. As in [1] our main goal is a structure theory for the
algebras under consideration. We have, at the same time, been able to
manage with requirements substantially weaker than those numbered above.

Let A be a Banach algebra which is also a pre-Hilbert space (Ah) in terms
of the norm Ill. Suppose that, as in (1) and (3), convergence in the norm
Ilfll implies convergence in fl and Af 0 impliesf 0. We callA a
right IP-algebra if there exists a dense right ideal r such that each f e r has a
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right adjoint f*, (gf, h) (g, hf*) for all g, h, and right multiplication byf isa
continuous mapping of A into A. By an IP-algebra we mean an algebra
which is both a left and right IP-algebra. An advantage of requiring what
is needed from (2) and (4) to hold only on a dense ideal rather than every-
where is that (unlike the H*-algebra case) certain types of infinite direct
sums of [right] IP-algebras are [right] IP-algebras. This admits a much larger
variety of examples (see 2).

For structure theorems see Theorems 3.5, 4.3, 4.7, and 4.8. It is shown
that any IP-algebra satisfying (5) is the direct topological sum of topologi-
cally simple IP-algebras each of which is continuously isomorphic to an alge-
bra of completely continuous operators on a Hilbert space including all the
finite-dimensional operators on that space.

2. Preliminaries and examples
Let A be an algebra over the complex field which is a Banach algebra under

a norm x and also a pre-Hilbert space in terms of a positive-definite inner
product (x, y). Unless otherwise specified the topology on A is taken to be
that provided by the norm x we use A to designate A as a topological
space under the norm Ix] (x, x) 1/. Furthermore we let H denote the
Hilbert space completion of A. It is not assumed that A is a normed
algebra.

Let R,[L,] denote the operation of right [left] multiplication by
x, R(y yx. Let

![gr /Y e A Ry is a continuous mapping of A into A},
and define ![9, analogously. Consider x e !r, z e A. There exists a > 0 such
that [IR(Y) a y Y e A. Then ]]Rz(y) <- (a z Yl, Y cA,
so that ![9 is a right ideal of A.
We call an element x* [x’] a right [left] adjoint of x if (yx, z) (y, zx*) for

all y, z e A [(xy, z) (y, x’z) for all y, z e A]. In general no such elements
need exist.

In these terms we formulate our basic definitions.

2.1. DEFINITIONS. We call A a right IP-algebra [left IP-algebra] if it satis-
fies the following conditions"

(a) For each x A, the functional g,(y) (x, y) is continuous on A.
(b) Ax 0impliesx 0 [xA O implies x 0].
(c) !r [![9] contains a dense right [left] ideal [] of A where each

element of [,] has a right [left] adioint in A.

We call A an IP-algebra if it is both a right and a left IP-algebra (in terms
of the same Banach algebra norm and inner product). Obviously every H*-al-
gebra is an IP-algebra.

We make some elementary observations on the definition of a right IP-
algebra. It is trivial that the right adjoint of x is unique, if it exists. Suppose
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X* exists. Then xx* 0 implies x 0. For if xx* 0, then (yx, yx) 0
for all y, so that Ax O.
We consider next the significance of (a) from the point of view of linear

space theory. Here (b) and (c) are irrelevant as are the ring properties of
A, but the completeness of A in the norm x is essential.

2.2. LEMMA. Let A be a Banach space and pre-Hilbert space as above. Then
(a) of Definition 2.1 holds if and only if there exists M > 0 such that
xl <= M]lxll,forallxeA.

Proof. Suppose that [xl <- M x 1], x e A. By the Cauchy-Schwarz in-
equality, (x, y) <= M lxi Y so that (a) holds. Suppose that (a) holds,
and let H denote the completion of A in the norm If Let x w II - 0
inA and]x- Y l-+0wherey ell. For anyv eAwehave, by (a),that
(v, w) (v, y). Thus y w. The closed graph theorem implies that, for
someM > O, Ixl <-_ Ml[xl],x eA.

2.3. Example. Let Go be a compact topological group, and let C(Go) be
the Banach space of all continuous complex-valued functions on Go. Consider
C(G0) as an algebra under convolution (with respect to Haar measure) where
we set

(fg)(s) f f(st-1)g(t) dt, (fi g) f f(t)- dt,

and f*(t) f(t-). Then C(Go) is a Banach algebra in the sup norm
and a pre-Hilbert space in the norm Ill (f, f)l/2 satisfying the relations
(1) through (5) of 1. In fact C(Go) is a dual algebra [5, p. 700] which is
also an IP-algebra. From (1) and (2) we see that [fg[ <- fg -<-
so that C(G0) is a normed algebra in the norm If[.
Now let G be any topological group, and consider AP(G) as described in

1. If Go is the Bohr compactification of G [10, p. 331], then AP(G) is iso-
metrically isomorphic to C(G0) (with convolution multiplication) where the
isomorphism preserves the inner product. Conversely, since all continuous
functions on a compact group Go are almost periodic, C(Go) is the same as
AP(G0).

Let A C(Go) or AP(G). It is readily seen that Ill Ill* and

Ill If* for all f e A. An important property of A is that the mappings
Ls and Rs are completely continuous as transformations from either A or Ah

into either A or Ah (see [5, 8] and [9]). In particular both A and Aa are CC
algebras [5, p. 698]. The algebra A is a concrete model for the development
of 5 below as well as for the notion of an IP-algebra. An.interesting discus-
sion of AP(G), for G abelian, which proceeds in a direction unrelated to the
development here, was given by Helgason [3].
In general AP(G) as a pre-Hilbert space is not complete. Consider,

for example, G the reals. If AP(G) were complete, the fact that
for all f would imply the existence of some K > 0 such that
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for all f e AP(G). But consider the function

f,(x) e +2-e + + m-e’.
We have

[fl Z=n- and I]fll ---,
so that no such K can exist.

2.4. Example. Consider the Banach space 11 of all sequences a {a}
such that a la < made into a Banach algebra by defining,
for b {b} the product by ab {a b}. Let {} be any bounded sequence
of positive numbers, K for all n. We obtain an IP-algebra if the
inner productis takenas (a, b) a. Clearly a: K[a[Z.
The elements with only a finite number of nonzero coordinates form a dense
set which, as can be seen by computation, lies in . In general is
not the entire algebra as easy examples show.

2.5. DEFINITIONS. Let {A} be a sequence of Banach algebras where we
denote the norm in A by u . Consider the collection A of all sequences
a {a}, ae g, such that a a ll < . Define, for {n}
inA and a scalars, a {,an}, + {an + n}, and aft {a n}. Then
A is a Banach algebra which we call the l-sum of the Banach algebras A.

Consider the collection A of all sequences {a}, a e A, which "vanish at
infinity", i.e., for each e > 0 there exists N where a < e for n N.
Define, in A, the algebraic operations as above, and set a sup a [.
Then A is a Banach algebra which we call the B( sum of the Banach alge-
bras A (see [6, p. 411] and [10, p. 106]).

2.6. LEMMA. Let {A} be a sequence of right IP-algebras. Then, with
appropriate choices of inner products, their B( sum and l-sum are right
IP-algebras.

Proof. Let u-II denote the given Banach-algebra norm in A, (u, v)
the inner product there, and let u (u, u)X. For each n there is,
by Lemma 2.2, a number M > 0 such that u M u [, u e A.
Let) be the right ideal demanded of A in (c) of Definition 2.1.

Consider first A, the B( sum of the algebras A,. Let x {x}, y {y}
betwo elementsofA wherex eA, y eA,n 1, 2, .... Wedefine
an inner product in A by the rule

(x, y) := (x, y)/(nM).
Note that ](x, Y)I r x y 11/6 so that (a) of Definition 2.1 is fulfilled
(see Lemma 2.2).

Trivially Ax 0 implies x 0. Define to be the collection of all
{Xn} where each x e ) and only a finite number of the x are nonzero.
Clearly is a dense right ideal of A. Let x {x} be an element of
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where x 0, n > N. If we set x* {x*}, we can readily obtain (yx, z)
(y, zx*) for all y, z e A. We must show then existence of a constant K > 0
such that yx <-- K lY I, for all y e A. For each n there exists a number
t(n) > 0suchthat Ilzxll <= t(n)lzl,, z eA. Lety {y} eA. We
have the following inequalities, where in each case Max is to be taken over
the set 1, 2, ..., N.

[Max(nt(n)M)][ y .
Consider next A, the/-sum of the algebras A. Here we define

Then [(x,y)l [[x][ (y[ and [x []x. We proceed as in the B
case and define in the same way. Using the same notation, for
x {x} e,x. 0, n > N, wehave

2.7. Example. We give n example of n IP-Mgebr A where x x*
is everywhere defined but x x s not defined on ll of A. The Mgebr A
will be the B sum of lgebrs A. which we now describe.

Let A, be the set of M1 infinite complex mtrices a a(i,j), i,j 1, 2, ...,
such that a(i, j)] < . We define the norm in A by

Under the usual rules for mtrix addition and multiplication we obtain
Bnch Mgebr [1, p. 367]. We define the inner product for A by the rule

(a,

where() for 1, ...,nnd(k) lfor > n. Set ]a].
(a, a). Here a <= n a . nd ]a]. =< a e A,. Routine
computations show that if one defines, for a e A., the mtrices a* nd a’
by the rules

a*(i, j) (j,i), a’(i, j) a(j, i)(j)/(i),

then (ba, c), (b, ca*) nd (ab, c) (b, a’c) for ll b, c e A.
Now let A be ’the B( sum of the lgebrs A.. This gives us n IP-

lgebr, by Lemm 2.6, under a suitable choice of the inner product. Since
here we hve, for a a} e A, a n/]] a ], we my choose the inner
product s

(a, b)

For a {a.} we set a* a} nd note that {a} lies in the B( sum
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since a*]]. a, I]-. It is easy to verify that a* is the right ad]oint in
Aofa.

It is readily seen that any a {a,} e A with only a finite number of non-
zero components has a left adjoint a’ {a,}. Yet we show that not every
a e A has a left adjoint. Suppose otherwise. It follows from Theorem 3.2
shown below that there exists a constant K > 0 such that a’ <- K a
for all a e A. Now, for each m 1, 2, ., we consider an element f(m) eA
all of whose components except the mth are zero and whose mth component is
the matrix a(i, j) where a(m, 1) 1 and all other entries are zero. Note
llf(m) 1. Observe that (f())’ has all its components except the m*h

zero and that the m*h component is the matrix b(i,j) where b(1, m) m and
all other b(i, j) 0; observe that (f())’ m. Since m is an arbitrary
integer, this is a contradiction.
The phenomenon that x --+ x* is discontinuous on Ah may be observed

(in spite of the fact that the mapping is continuous and defined everywhere
on A). For we have, in the above notation, [f()l/](f(m))* m.

2.8. Example. We give an example of an IP-algebra where neither of
x -- x* and x -- x is everywhere defined. Let A1 be an IP-algebra, given
by 2.7, where x -- x* is everywhere defined and x -- x is not. By inter-
changing left and right in the development of Example 2.7, we can obtain
an IP-algebra A2 in which x -- x s everywhere defined but x -- x* is not.
As the desired example take the direct sum of At and A2.

We now list definitions for some items used in the analysis below. Let B
be a topological algebra. For any subset S of B we denote the left [right]
annihilator of S in B by (S) [9(S)]. As in [2] we call B an annihilator
algebra if (B) 9(B) (0) and if (I) (0) [9(I) (0)] for each
proper closed right [left] ideal I of B. As in [5] we call B a dual algebra if
9(I) I for every closed right ideal and 9(I) I for every closed left
ideal.

3. Right IP-algebras

We begin with some minor details useful for the ensuing proofs. Given
right IP-algebra A there exists, by Lemma 2.2, a constant M > 0 such that

xl <- MIIxlI, x eA. Consider the operatorRz,Rz(x) xz, forz
There exists a constant a > 0 such that R,(x)II <- a lx [, x A. Let
a(z) denote the least such constant. Since Rz(x)l <- Ma(z)l x I, x A,
the operator R is a bounded operator on Ah, and its norm R, as an opera-
tor on Ah satisfies the relation

(3.1)

Let H be the Hilbert space completion of A. Since A is complete, R,
can be extended, for z e , by continuity to a bounded operator Sz of H
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into A where S(u)ll <= a(z)l u I, u H (see [14, p. 99]). Since S(u)l <=
Ma(z)] u i, S also defines a bounded linear operator of H into Ah.
Forasubset S A we let S" {x eA I(x, S) 01. Let I be a right

ideal of A. For any x e I, y e I, and z e r we have (x, yz) (xz*, y) O.
Thus I’8r I’. Since !13r is dense in A and I" is closed in A by (a) of
Definition 2.1, we see that I" is a right ideal of A.

3.1. IbEMMA. Let I be a right ideal of a right IP-algebra A.
closed right ideal of A, K c I, and let K" I n K’. Then

Proof. Let f I and d inflf u ]2 as u ranges over K.
asequence {h} in K such that d dwhered If- h]2.
as in [7, pp. 57-58] we see that

(3.2) I(v, f h)] -< (d d)l/2 v

Let K be a

There exists
Reasoning

But ug* e K, and therefore, by (3.2), this limit is zero.
As in [10, p. 70] we say that a Banach algebra B has a unique norm topology

if any two Banach-algebra norms for B are equivalent.

(a)
(b)
(c)

of A.
(d)

3.2. THEOREM. Let A be a right IP-algebra. Then
A is semisimple.
j # (0) for each modular maximal right ideal of A

Each nonzero right [left] ideal of A contains a minimal right [left] ideal

A has a unique norm-topology.

Proof. Letze!lB. Since Ilxz21 <= llxzll Ilz!Iforallx eA, weseethat

(3.3) a(z2) <= a(z)l z ]], z e !tB.
This is the case n 0 of the following relation which can be shown, by an
easy induction using (3.3), to hold for all positive integers n.

(3.4) a(z+) <- z2 a(z) li z

For convenience set F(n) R+ where f z In view of (3.1) we have

(3.5) F(n) <= Ma(z2n).

Next suppose that z e !lB satisfies the relation z z*. Then right multi-
plication by powers of z are bounded self-adjoint operators on A (or on

I(u, fg- h)l lim I(u, fg- h, g)l lim ](ug*,f- h,)].

for all v e K and that {h,} is a Cauchy sequence in A. Let g e !8. Then
there exists h eA such that l]h h,g]] --0. Clearlyh eK. We write

KP"fg h + (fg h) and show thatfg h e Letu eK. By (a) and
(c) of the definition of a right IP-algebra, we have
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the Hilbert space H). Therefore, for any such z, we obtain F(n -q- 1)
[F(n) ]2. Moreover F(n) I(Rz)2 From (3.4) and (3.5) we then obtain

(3.6) ](Rz)2- [2- [F(n -- 1)]2- z2 []2-’[Ma(z)]2-’ z ]](-2-).
Suppose that, in addition z e Rad(A), the radical of A. Since A is a Banach
algebra, z2 - 0, so that from (3.6) we see I(Rz)2 [- -+0. Bythe
theory of self-adjoint operators on a Hilbert space, R 0. But then z 0.
In summary, if z z* and z e r n Rad(A), then z 0.
Now consider any element u e Rad(A) and any v e 3r. The preceding

guarantees that (vu)(vu)* O. But then vu 0 or 3ru 0. Since
is dense, we have Au 0 or u 0. Therefore A is semisimple.
Let Y be a modular maximal right ideal of A. We show that g2" (0).

For suppose otherwise. Then an application of Lemma 3.1 to the case
I A and K 9Jr. gives A c . This implies that 3 is contained in
the primitive ideal (g2:A). Since 3 is dense and since primitive ideals of
A are closed, this is impossible. Whereas J is maximal and Y is a right
ideal, we can now state

Let j be a left identity for A modulo gYt where we write j u + v in the
decomposition of (3.7). From (1 -j)A 92it we obtain (1 v)A
For x !gt" !gt"(1 v)x n (0). Thereforevx xforallx
Consequently g)" vA where v v. We can rewrite (3.7) as A @ vA.
By the Peirce decomposition, A (1 v)A vA. Recall that
(1 v)A g2. It follows that (1 v)A J from which we deduce
that (g2) Av (0).

It follows from (3.7) that g2" vA is a minimal right ideal of A. If we
start with a minimal right ideal eA of A, e e, then from the Peirce de-
composition A (1 e)A @ eA we see that (1 e)A is a modular maximal
right ideal. Thus the modular maximal right ideals are precisely the ideals
of the form (1 e)A where e e and eA is minimal. Let S be the socle
[4, p. 64] of A. This two-sided ideal is the algebraic sum of the minimal
right [left] ideals of A. As A is semisimple, (S) 9(S) ([2, p. 159] or
[15, p. 354]). Suppose y e 9(S). Then for each minimal left ideal Ae,
e e, wehaveye(1- e)A. From this and(a) weseethaty 0. That
(c) holds follows from [15, Lemma 4.1]. That (d) holds follows.from a
result of Rickart [10, Theorem 2.5.7].

3.3. COROLLARY. Let A be a right IP-algebra where, for each x e A, x lies
in the closure of xA. Then any closed right ideal R of A is the closure of the
algebraic sum K of the minimal right ideals of A contained in R.

Proof. If K" n R (0), it contains, by Theorem 3.2, a minimal right
ideal of A which must then be also in K. This is impossible. Lemma 3.1
now asserts that R3r [. The closure hypothesis then shows that R .
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We take a closer look at a minimal left ideal.

3.4. LEMMA. Let I be a minimal left ideal in a right IP-algebra. The two
norms xl and x are equivalent on I, and I is a Hilbert space in the norm

Proof. Let I Ae, e e. By the Gelfand-Mazur theorem,

eAe le complex}.

Thus er e eAe, and there exists w e ![gr such that ewe e. Set f we.
Clearly f2 f and Ae Af where f e ![9 (a right ideal). By Lemma 2.2,
there existsM > 0suchthatlxl -<- M[Ixll, xeA. Lety yfeI. Then
Yl <= M Y <= Ma(f)ly 1. Thus the two norms are equivalent on I.
Now I is closed in the topology of the norm x and is a Banach space in
that topology. Therefore it is complete in the topology of Ah.

For the notions of direct sum and topological direct sum of ideals in a
Banach algebra see [10, p. 46].

3.5. THEOREM. Let A be a right IP-algebra where A is dense in A. Then
the socle of A is dense in A, and A is the direct topological sum of its minimal
closed two-sided ideals.

Proof. Let I denote the closure of the socle S of A. For a modular maxi-
mal right ideal !F we can, by the proof of Theorem 3.2, write A !F @ vA
where v v, !F (1 v)A and vA )’. Since is a maximal right
ideal, (vA) ff. Therefore I, and, as A is semisimple, I" (0).
It follows from Lemma 3.1 that A: c I. Our hypothesis on A makes S
dense in A.

Let Q be the right ideal of A which is the algebraic sum of the ideals vA
where v is any idempotent as described in the preceding paragraph. The
argument using these shows that Q is dense in A. We shall show that each
element of Q possesses a left adjoint. First we consider v. For any x, y e A
we can write x xl x., y yl y2 where xl, y e 9)" and x, y2 e ).
A computation in [11, p. 50] gives (vx, y) (x, y) (x, vy). Therefore
v is its own left adjoint. Next let a vA. The argument here is a modifica-
tion of that of Saworotnow in [12, Theorem 1]. Clearly va a. To see
that a exists we may assume that av O, for otherwise we consider b a - v
where by O. Now since vA is minimal and A is semisimple, vAv is a di-
vision algebra. By the Gelfand-Mazur theorem, there is a scalar such that
av ray v. Note 0. Buta vava pa. Then# a fisan
idempotent. Since vA is minimal, vA fA. The Peirce decomposition
A (1 f)A @ fA makes (1 f)A a modular maximal right ideal
of A. As in the proof of Theorem 3.2, A @ ’, and we can write

v A. By the above,f z + vl, z e 9, v e obtaining v v with 9

SincevA Mx, (1- v)A M and vx 0, wehave vx vx x and (vx, y)
(x, y) (x, y) (x, y) (x, vy).
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v v. We may argue as in [12, p. 57] to see that f is a nonzero scalar
multiple of vv. Therefore f, and consequently a, possesses a left adjoint.
We now show that K is a left ideal for any left ideal K of A. For let

x e K, y e K, and z e Q. Then 0 (zx, y) (x, zy). Therefore QK K’.
Since Q is dense in A and K is closed, we see that K is a left ideal.
Now let A0 be the topological sum of the minimal closed two-sided ideals

of A. We now can assert that A is two-sided ideal of A and wish to
show AS (0). Suppose otherwise. Then by Theorem 3.2, A contains
a minimal right ideal I of A. The arguments of [2, Theorem 5] show that
AS contains a minimal closed two-sided ideal of A, which is impossible as
A0 A0 (0). From this, Lemma 3.1 yields A: A0, so that we have
A0 A. From the semisimplicity of A and the fact that the two-sided
ideals in question are minimal closed ideals it is readily shown that we have
a direct toplogical sum [10, Theorem 2.8.15], [2, Theorem 6].

4. On IP-algebras
We relate here IP-algebras to the more fmiliar nnihilator algebras and

dual algebras. Our key hypothesis is (as in Theorem 3.5) that A is dense
in A. Any IP-algebru with this property is an nnihilator algebra (Theorem
4.4).

4.1. THEOREM. Let A be an IP-algebra where A is dense in A. Then
there exists a dense two-sided ideal I such that each x I possesses both a left
and right adjoint.

Proof. In the course of the proof of Theorem 3.5, it was shown that there
exists a dense right ideal Q such that each x e Q possesses a left adioint.
Consider the two-sided ideal I1 !8 Q. Clearly I1 is dense in A, and each
element of I possesses a left adjoint. Likewise there exists a dense two-
sided ideal I2 such that each element of Is possesses a right adjoint. Set
I I1 I. to obtain the desired ideal.

4.2. LEMMA. Let A be a right IP-algebra where A!8* is dense in Ah Then
(1) x lies in the closure of xA in A for each x e A, and (2) the closure in Ah

of any right ideal I is I".

Proof. For a given x e A let M be the closure of xA in the Hilbert space
completion H of A, and let N be the orthogonal complement of M in H.
We write x u -}- vwhere u eM and v eN. To establish (1) we must
show that v 0.

Let z e !St. Now Rz(xA) c xA, and, as noted above, Sz is a continuous
mapping of H into Ah. Therefore S(M) c M. Let {Vn} be a sequence in

4Sinceva= a then vf f. Also 0 (z, vlA)= (vl z, A ), so vlz 0 and vlf
vl. Then 0 v v f vvf, so that v v 0. Thus vv (vl v)’ O. Also
vv vvf vv vf kf where h 0.
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A where ls sl-+0. For eachw eA,

(xw, S,(s)) lim (xw, Sn Z) lim (xwz*, s) (xwz*, s) O.

By the continuity of the inner product in H we have Sz(V) N. But S,(v)
xz- S(u). ThusS(v) eMnN (0). Consequentlylim (vz,w) 0
for all w e A which shows that (v, wz*) O. Therefore v is orthogonal to
A*. By hypothesis the latter set is dense in H so that v 0.
We now show (2). Let K denote the closure in Ah of the right ideal

I. Clearly K is closed in A by Lemma 2.2, and I" D K. Since
K* n I" (0) we learn from Lemma 3.1 that K D I"r. For each
x e I", Xr is dense in xA in the topology of Ah by Lemma 2.2. Therefore
KD I".

4.3. THEOREM. Let A be an IP-algebra where A is dense in A.
the closure in A of any right or left ideal I is I. Then

Proof. In order to utilize Lemma 4.2 we examine A*. First we show
that (A*) (0). Forif (z, xw) 0forallx eA, w e!*,then (zv, A) 0
for all v e r, so that Zr (0), and therefore z 0. Now A!,* is a left
ideal of A; let K denote its closure in A. By Lemma 3.1, A c K K.
Inasmuch as K" (0) and A is dense, we see that K A. It follows from
Lemma 2.2 that Ar* is dense in A. Therefore, by Lemma 4.2, the closure
in A of any right ideal I is I’. By the interchange of left and right, the
conclusion is also true for left ideals.

4.4. THEOREM. Let A be an IP-algebra. Then A is an annihilator algebra
if and only if A is dense in A.

Proof. It is readily seen that the condition on A is necessary for A to
be an annihilator algebra. Assume A dense.
We use the one-sided ideals and of Definition 2.1; each x e r []

has a right [left] adjoint x* [xr]. Let K be a closed right ideal, K A. We
observe that K (0); for otherwise K D Ar by Lemma 3.1 which would
make K A by our density hypothesis. Next we show that K n , (0).
For otherwise, as K is a right ideal, K, (0) which, since , is dense,
implies that K (0). Let x 0, x e, K. Consider an arbitrary
zeKandanyyer. Note that(xy, z) (x, zy*) =0. Thus0= (y, xrz).
Since is dense, we see that x’K (0). Then 9(K) (0). Likewise
9(I) (0) for a closed right ideal I A. Inasmuch as A is semisimple
(Theorem 3.2), (A.) (A) (0).
We know no example of an IP-algebra where A is not dense in A and have

been unable to show A is dense. In that direction we offer the following.

It is readily shown that A is dense if A is complete. For then A andA are equiva-
lent topologically, and (A, w) 0 implies that (A, Wr) 0 and w 0.
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4.5. LEMMA. I? any right IP-algebra, A is dense in A2.

Proof. Let B0 denote the closure of A in the Hilbert space completion
H of Ah. Let B be the orthogonal complement of B0 in H. Take any
z e r. We show first that Sz(B) (0). For let v e B where v w. -- 0with each w. e A. For any x e A we have

(x, Sz(v)) lim (x, w,,z) lim (xz*, w) (xz*, ) 0

as xz* Bo. By the continuity of the inner product in H, S(v) O.
For any x e A write x u v where u e B0 and v e B. By the preceding

paragraph, xz S(u) for each z e r. Let/u/ be a sequence in A where
u u -- 0. As noted in 3, S is a continuous mapping of H into A.

Therefore xz u z --* O. Since r is dense and u e A, any element
of A is the limit of elements in A3.

4.6. THEOREM. Let A be a right IP-algebra, and B the closure of A. Then
B is a right IP-algebra, and B is dense in B. If A is an IP-algebra, then B
is an annihilator algebra.

Proof. By Lemma 4.5, A is dense in A from which one can deduce that
A is dense in A2. This implies that B is dense in B. We wish to show that
B is a right IP-algebra. Let x e B. If Bx O, then Ax 0 and, conse-
quently, x 0. Clearly i is a dense right ideal of B. Moreover, for each
y e , R is a continuous mapping of B (in the norm Ix I) into B (in the
norm II x II). Furthermore each y e i has a right adioint clearly in A c B.
The last sentence now follows from Theorem 4.4.
As in [10, p. 101] we call A topologically simple if the only closed two-sided

ideals of A are A and (0). The above shows that any topologically simple
IP-algebra is an annihilator algebra.

4.7. THEOREM. Let A be an IP-algebra where, for each x e A, x lies in the
closure of xA and in the closure of Ax. Then any closed two-sided ideal of A
is an annihilator IP-algebra, and A is the topological direct sum of topologically
simple annihilator IP-algebras.

Proof. Let I be a closed right ideal of A. Suppose that x x -- 0
where each x e I. For each y e r we have x y xy 0, so that [ x.
Our hypotheses show that x I so that I is lso closed in Ah. Therefore
the closed left nd right ideals in A re identical with those in A. In prticu-
lr, by Theorem 4.3, I I" for ny such ideal I.

Let K be closed two-sided ideal of A. Note that K is lso two-sided
ideal of A. Let x e K, nd suppose that x possesses right dioint x* in A.
For echy eK’we hveyx O. Hence0 (yx, z) (y, zx*) for 11
z e A. Therefore Ax* K K, nd consequently x* e K (this rgument
is tken from [1, Lemm 2.5]).
We verify that K is right IP-lgebr. Observe that K is dense right
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ideal of K and can be used to satisfy (c) of Definition 2.1. That K is a semi-
simple annihilator algebra follows from Theorem 4.4 and [10, Theorem 2.8.12].
The final conclusion is a consequence of the structure theory of [2].

It is natural to consider the topologically simple case next. For this we
adopt the following notation. Given a Hilbert space E let (E) [(E)] be
the algebra of all finite-dimensional [completely continuous] bounded linear
operations on E.

4.8. THEOREM. Let A be a topologically simple IP-algebra. Then there
exist a Hilbert space E and a continuous isomorphism T of A onto a dense
subset q (E) where T(A) (E), and, whenever x’ exists, T(x’) is the
adjoint operator of T x

Proof. As already observed, A is an annihilator algebra. By Lemma 3.4
a minimal left ideal E Ae, e e, of A is a Hilbert space in the norm Ix I.
A continuous isomorphism T of A onto a dense set of 0 (E) containing (E)
is set up, according to [2, Theorems 9 and 10], by defining T(b)(xe) bxe.
Suppose that b’ exists. Then (T(b)(xe), ye) (xe, T(b’)(ye)) in terms of
the inner product of E.
Every semisimple dual Banach algebra is an annihilator algebra [2]. So

far as we know it is an open problem to decide whether or not the converse
holds for semisimple Banach algebras. In order to obtain A as a dual alge-
bra we have been compelled by our methods to assume that either the left
or right adioint exists for all elements of A. In all the work to this point
the adioint operations need only be defined for suitable dense sets. But all
the hypotheses here are fulfilled by AP(G), for example.

4.9. THEOREM. Let A be a right IP-algebra where, for each x A, the closure
of xA contains x and x has a left adjoint x’. Then A is a dual algebra.

Proof. Consider a left ideal K. We have (see [5, p. 697]) that

Kx 0 (A, Kx) 0 (K’A,x) 0,

while the last is equivalent to (Kp, x) 0 since K lies in the closure of KA.
Therefore (K) (K’)’. Now let I be a right ideal. Since I’ is a left
ideal, we have (I) [9 (I’) ]’ (I’)’. But 9 (I) is itself a left ideal so
that (I) I’. Suppose that I is closed. It follows readily from
Lemma 3.1 that I"r c I. This implies here that I" I, and so
I (I).

It follows from Theorem 3.2 (d) that x --+ x’ is bicontinuous on A. Let
K be a closed left ideal. Then K’ is a closed right ideal, so that 9(K)
[(K’)]’ K, and A is a dual algebra.

5. 0, A, nomed ai9ebra
We shall assume that Ah is a normed algebra and, under suitable conditions,

compare the ideals in Ah with those of its completion H.
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The specific assumptions on a right IP-algebra A which will be assumed in
5 (after the axiomatic investigation of Theorem 5.1) are

(1) A is a normed algebra in the norm Ix [.
(2) Each element of A has a right ad]oint.
(3) A2is dense inAh.
(4) The mapping x --+ x* is continuous on Ah.

5.1. THEOREM. Let A be a right IP-algebra satisfying (2) and (3). Sup-
A x* Then (4) is valid, andpose that each x e has a left adjoint and x’

x’ x* for all x e A.

Proof. Let x, y, w, v A. It is easy to see that (xy, uv) (uv)*, (xy)*).
By linearity we see that (x, y) (y*, x*) for all x, y e A4. Note that A
is dense in A by Lemma 4.5, and therefore A is dense in A. On A4 we
have, in particular, ix x* I. We shall show that Ix x*l for all x.
If A were complete, this would be immediately clear; since it is not, in
general, we must rely on a more complicated argument.

Let x cA, and choose a sequence xn/ eAwith Ix xl -+0. Then
x/ is a Cauchy sequence in A, and

l(z,x*) (z,x*)l -<- Izl Ix,-- xnl--0 as n,m---+ .
Therefore f(z) lim (z, x) exists, and If(z)l <- xl z I, so that f(z) is
continuous on A. Also note that If(z) (z, x*) <-_ z x x, I.
Since[x x]--0, thenlxy xyl--->Oforally e!r. If we choose

y e !3r then we also know that [y*x* * *y x - 0 and that y’ exists and
is equal to y*. Then, for such y and any z e A,

(yz, x*) (z, * * (yz, ).y x,) ---+ (z, y’x* x*
Therefore f(w) (w, x*) for all w e !3 A. But !a A is dense in A and
therefore in Ah. Since f(w) and (w, x*) are both continuous functionals
on A f w w, x* for all w. Then

I(I x* [ x* I)1 -<__ If(x*) (x*, x*)l + If(x:) (x*,

Thus x*l lim x*l lim Ix, x I.
Now that we know (x, x) (x*, a*) for all x, we see easily that also

(x, y) (y*, x*) for all x, y e A. Then, for any x, y, z e A we have (xy, z)
y*,x* y*(z*, (z’x, (y, x’z). This shows that x’ exists for all x and is

equal to x*.

5.2. LEMMA. H is a right H*-algebra.

Proof. For this notion see [13]. The given involution of assumption
(2) may, by (4), be extended to be an involution (which we also denote by
x -- x*) on H. The only verification which is at all necessary is to show
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that, for u H, Hu 0 implies u 0. Suppose that Hu 0, and let {Un}
be a sequence in A, u u,I 0. We have u* u*] --+0. For all
g, h e A, (u* g, h) -- (u’g, h) O. But then (u*, hg*) ---. 0 which makes
u* orthogonal to A2. Therefore, by (3), u 0. From this it follows, in
particular, that H is semisimple.

5.3. THEOREM. If Ah is topologically simple, then so is H.

Proof. Let I be a closed two-sided ideal of H, I (0). If we show that
InA (0),thenInA AandI H.
SupposeI nA (0). Letx eI andy e!r. There exists a sequence

x/ in A such that Ix Xn --+ 0. The sequence Xn y converges in both
norms, hence to an element of A. But xy x Y -- O. Therefore
xy eIaA (0). This shows thatIr (0). Inasmuch asrisdense
in Ah, we see that IH (0). Since H is a right H*-algebra, this yields
I (0), which is impossible.
Now the nature of topologically simple right H*-algebras is described in

[13]. Thus A can be realized as a suitable matrix algebra.

5.4. THEOREM. Suppose that, for each x e A, the operator Rx is a completely
continuous operator on A. Then the minimal right, left, and two-sided ideals
of A are the same as those of H.

Proof. It is not difficult to show that, for each x A, the operator L,
is also completely continuous on At. For let T denote the involution x -- x*;
note that T is continuous on A and that Lx TRy. T. For each x e A,
R, can be extended by continuity from A to H. It is readily seen that,
so extended, it is completely continuous. Next let y e H. The operation
Ry of right multiplication by y is completely continuous as an operator on H
being the uniform limit of such operators.

Recall that A is semisimple (Theorem 3.2). It follows from the Riesz
theory (see [5, p. 698]) that the minimal right and left ideals are finite-
dimensional. Let eA, e e, be a minimal right ideal of A. Inasmuch as
eA is finite-dimensional, eA ell. Moreover H is semisimple by Theorem
3.2 or [13]. Thus the minimal one-sided ideals of A are minimal one-sided
ideals of H. In this vein we mention that any right [left] ideal I of A which
is finite-dimensional is automatically a right [left] ideal of H.

Consider now any minimal right ideal I of A. Let [I] be the intersection
of all two-sided ideals of A containing I. By the reasoning of the proof of
[2, Theorem 5], [I]. is a minimal two-sided ideal of A. Moreover, by Theorem
3.2, every two-sided ideal contains a minimal right ideal, so that all minimal
two-sided ideals of A are of this form. Given the minimal right ideal I eA,
e e, we note that AeA is [5, p. 698] a finite-dimensional two-sided ideal
containing I. It follows that all minimal two-sided ideals of A are finite-
dimensional and are minimal two-sided ideals of H.

Recall that H is semisimple. Then the reasoning which we have employed
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shows that the minimal right, left, and two-sided ideals of H are finite-di-
mensional. Our task is to show that these ideals are all already in A.
To this end we examine first the socle S of A (see the proof of Theorem

3.2). We show that S" (0). Let y e S’, and let I be a minimal right
ideal of A. Inasmuch as xx* 0 implies x 0, a lemma of Rickart [10,
Lemma 4.10.1] shows that we can write I eA where e e e*. Since
Ae c S, we have (x, ye) (xe, y) O for allx eA. Thus yI (0),
so that y (S). But, as noted in the proof of Theorem 3.2, (S) (0).
Here (S) is the left annihilator of S in A. We wish to consider also

the left annihilator :(S) of S in H. We show that (S) (0). It follows
from Theorem 3.2 (d) that x --+ x* is bicontinuous on A. Therefore !* is
dense in A, so that A* is dense in A in the topology of the norm x
and therefore a fortiori in Ah But by hypothesis, A is dense in Ah. Lemma
4.2 then applies to show that the closure of S in A is S’. Since S" (0),
S is dense in A and therefore in H. Let w (S). The semisimplicity
of H now gives w 0.

Let M be a minimal two-sided ideal of H. We know that M n A is a
finite-dimensional ideal of A, thus an ideal of H. Therefore M n A M
or M a A (0). We rule out the latter possibility. Suppose that
M A (0). Let Ae be a minimal left ideal of A e e. SinceAeisa
left ideal of H, MAe= (0). Then M c :(S) (0), which is impossible.
Now we haveMaA MorA M.

Consider next a minimal right ideal I of H. We have shown that the
intersection K of all the two-sided ideals of H containing I is a minimal two-
sided ideal of H. As just established, K A. Thus I A.
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