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The n-fold symmetric product C(n) of a curve C is usually the starting
point for the construction of the Jacobian variety J of C. Adopting this
point of view, Mattuck [6] has determined the Chern classes of C(n) regarded,
for n > 2g 2, as a projective fibre bundle over J. This determination led
him to a set of intersection relations among the subvarieties of which he
conjectured should arise from an exact sequence of vector bundles on J.
In order to prove this conjecture, it is convenient to adopt a point of view

exactly opposite to that mentioned above. Namely, we assume the existence,
for a complete nonsingular algebraic curve C, of a Picard variety J satisfying
the general properties used by Lang [5] to define the Picard variety. We then
define certain sheaves on J which we call (following Mattuck [7]) Picard
sheaves, and prove certain properties of exactness and duality which they
satisfy. This is enough to obtain the intersection relations of Mattuck to
which we alluded above. The advantage of this point of view is that it is
not necessary to go over again any of the steps in the construction of the
Jacobian, and hence that some (but not all) of the theory will extend to any
Picard variety.
We shall make considerable use of certain constructions contained in the

lmens of Grothendieck [4], in particular, the construction which associates
with any coherent sheaf a fibred variety P(). It is this construction which
enables us, finally, to reconstruct the symmetric products C(n) from the
Picard sheaves.
We give references to [4] whenever the relevant chapter is already available,

but do not intend to imply that they cannot be found elsewhere. Nor do
we, in giving yet another aspect of the link between Jacobians and symmetric
products, wish to slight the rich literature which already exists on the subiect,
and to which references will be found in [5], [6], [7], [8]. We adopt the follow-
ing notations involving coherent sheaves. If f: Y -- X is a regular map and

is a coherent sheaf on X, we write * Hom(, 9x) and f* (R) 9r.
If is a coherent sheaf on Y, we write f() for the sheaf with presheaf
f() (U) H(f-(U), ). If V is a vector space, we write P(V) for the
projective space whose points correspond to the hyperplanes of V. This
construction is exended in [4, II, 4.1] to an arbitrary coherent sheaf.

1. Algebraic curves

Let C be a complete nonsingular curve of genus g defined over an alge-
braically closed field l, and c e C a fixed base point. For each integer s, define
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the invertible sheaf 58 which corresponds to the divisor sc. There is an exact
sequence of sheaves on C,

() 0 -_ /_ 0

where the sheaf 38/38-1 has support c and restriction to c. The invertible
sheaves on C of degree zero form a group Pic(C). Every invertible sheaf on C
of degree n has the form @ n for some e Pic(C). In particular, the
canonical sheaf on C has the form @ _, for some e Pic(C). The exact
sequence (1) defines an exact cohomology sequence

0 H(C, _) H(C, ) H(C, @ _)

H(C, @ T) O.

Taking first , s n, and second @ *, s 2g 2 n, this
sequence defines homomorphisms

a:H(C, @ ) ,
: H(C, @ * @ -).

The duality theorem states that, under the duality between the vector spaces
H(C, 2 @ %), H (C, @ * @ 5__), the homomorphism a corresponds
to the element (1). The Riemann-Roch theorem for C states that

dim H(C, 2 @ ) dim H(C, @ ) n g 1.

2. Picrd sheaves

Let (J, ) be Picard variety for C, as defined in [5, IV, 4]. In other
words, J is an abelian variety defined over . is an invertible sheaf on the
product variety J X C. There are mapsp:J X C J, q:J X C C,
i:J J X C, j:C J X C, defined by p(x,y) x, q(x, y) y,
i(x) j(y) (x, y). The rule (x) j2 defines an isomorphism
:J Pic(C). To make sure that (J, ) is defined uniquely [5, IV, 4],
let x0 be the zero of J, and demand that i2 :, 30 Oc.

DEFINITION. The sheaves

E po( q*), F p( q*)

are called Picard sheaves on J.

PROPOSITION 1. For each n there is an exact sequence

The exact sequence (1) induces on J X C an exact sequence

0-- 2 (R) q’3_1-- 2 (R) q*5 -- O,
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where M has support J X c and restriction 9j to J X c. The exact cohomol-
ogy sequence for sheaves now gives the sequence

(2) 0--* 8_ -- 8 --+ 0j--* ff_ --* ff --* 0.

We shall use the following result of Grothendieck ([4, III]; see also [1, 7,
Satz 7] and [3, 5]). Let f: Y -- X be a proper map, ff an X-flat sheaf on Y,
and suppose that H (f-(x), :) 0. Thenf(if) is zero in a neighborhood of
x, and the natural homomorphism f_(ff) Hr-l(f-(x), ,) is surjective.
The cases which we shall use will have X J, f p, ff locally free. Then
certainly ff is J-flat, and we have

(a) p(ff) 0 for r > 1,
(b) the natural homomorphism p(ff) H (p-(x), ff) is an epimor-

phism,
(c) if H(p-X(x’), ff 0, there is a neighborhood of x’ in which px(Y)

is zero and p0(Y) is free,
(d) if H(p-(x’), ,,) O, there is a neighborhood of x’ in which p0(ff)

is zero and p(ff) is free,
(e) if dim Hl(p-(x), Y,) is constant in a neighborhood of x’, there is

another neighborhood of x’ in which p(ff) is free.
Statements (a) and (b) follow from the fact that H"(p-l(x), ff) 0 for

r > 1. The proofs of (c), (d), and (e) are similar, so we shall prove (d).
Since H(p-l(x’), 5:,) 0, there is a neighborhood U’ of x’ in which p0(ff)
is zero and in which (by the Riemann-Roch theorem) dim H (p-(x), ff) is
constant. Choose a basis for H(p-(x), ). Since the homomorphism
p(F) -- H (p-(x), Y) is an epimorphism for x U’, the elements of this
basis extend in a neighborhood U" of x to sections of p(ff) which (by con-
tinuity) remain linearly independent. The sheaf p(ff) is therefore free in U".

PROPOSITION 2. 8 is torsion-free for all n, zero for n < O, locally free of
rank n g-4- l for n > 2g 2.

PROPOSITION 3. ff is zero for n > 2g 2, locally free of rank g n 1
forn <0.

Proof. The fact that 8 is torsion-free is a special case of [4, I, 7.4.5].
The other statements follow by (c) and (d) from the fact that

H(p-I(x), j* 2 (R) 5n) 0

for n < 0 and th,e duality theorem.

PROPOSITION 4. For r > 2g 2 and s < 0 there is an exact sequence

0 Er -- E ----> O,

where E is a successive extension of (r s) copies of
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Proof. The exact sequence (1) gives an exact sequence of sheaves on J )< C

0-- (R) *q 38-+ a3 (R) q*Sr-+ 91Z-+ 0,

where 91Z has support J )< c and restriction to J X c a successive extension
of copies of (9. The hypotheses imply that

p0(2" (R) q’58) p1(2" (R) q*Sr) 0,

and the exact cohomology sequence for sheaves then gives the result.
We remark that, in view of Corollary 2 of Proposition 6, this proposition

is actually true whenever s < g.
The automorphism 0 of Pic(C) for which 0(2") : (R) 2"* induces auto-

morphisms, stiI1 denoted by 0, of J and J >< C. The definition of 0 then im-
plies

LEMMA 1. O*S, po(O*2" (R) * 2.*q 5n) p0(a (R) (R) q*Sn), and

0*ff p1(0"2" (R) q*5) pl( (R) 2"* (R) q*5).

In particular we observe that the exact sequence (2) remains exact when 0"
is applied to each term. There is a duality between the sheaves S., ft, which
is made explicit in Theorem 1 below. We shall first give an example to illus-
trate two points raised by this duality: that the sheaves fin carry more infor-
mation than the sheaves S, and that results true in the locally free case
(such as S S*,*) are not true in general.
The sheaf S0 is clearly zero on J x0 and is torsion-free (Proposition 2).

Therefore S0 0. Similarly, the sheaf 0*ff2g_ is zero on J x0. Since the
sheaf 0*ffg_l 0 (Proposition 3), the sequence (2) implies that 0"ff.-2,o has
rank at most one. On the other hand, there is an epimorphism

and so 0*ff-.0 has rank at least one. Thus 0*ff.g_ is a torsion sheaf with
0 ff2- O.support Zo and restriction O o o. In particular, * *

We shall define homomorphisms

0*if*n n "--->, 2g--2--n

and we have just seen that X0 must be an isomorphism and 0 an epimorphism
(since both map onto zero sheaves). This is the general situation. It is
convenient for the sequel to state the duality in a slightly more general form
than we need for Theorem 1. A map h:X --+ J defines a diagram of maps

XXC )JXC

X h ,1.
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Define on X the sheaves

o(* (R) q*), * (** (R) q*,).

Note that /g is not in general isomorphic to h* this is however true if
n > 2g 2, for then f. and , are both locally free.

Proof. Let U be an open set of X, and write

H *’*V H(U X C, * q*5) V. (C, 3 @ q*5"),

w. H(C, *j:* q*__.).

The duality theorem defines an isomorphism

: V. Hom(W.,

und there are restriction homomorphisms

:V V., :Hom(W., ) Hom(W, ).

The set of composite homomorphisms

a,p,: V Hom(W, k)

for x e U defines a homomorphism

(U) V Hom(W, F( U, 0v))

which is compatible with inclusions of open sets. It defines

x: (*__)*.

For n > 2g 2, is an isomorphism since the sheves involved are locally
free. Consider the diagram, obtained analogously to (2),

o (0"__.)* (0"5,,_,_.)* o
where is the identity homomorphism. The bottom line is exact because

)* is left exuet. The first squre commutes by the definition of ,, the
second by the statement of the duality theorem in 1. If . is an isomorphism,
then the diagram implies that ,_ is n isomorphism. By downward indue-
tion, , is n isomorphism for 11 n. This proves Proposition 4.

TOEM 1. For all n there is an isomorphism ,’, 0"*o--n and an
epimorphism "0"__ 8. is an isomorphism if n > 2g 2.
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Proof. Define }, by Proposition 5, taking h to be the identity map. There
is an isomorphism (dual to ) h*" 0"** *

__
-o . which, combined with the

epimorphism 0"$2_2_ -- ._2_, defines anepimorphism t" 0*5%__ -o 8*.
The latter is an isomorphism whenever 0"_ 0"**2g--2--n
COROLLARY. For r > 2g 2, s > 2g 2, there is an exact sequence

0--. 8r-- 9 ---. 0 88 --->0,

where 9 is a successive extension of (r s 2g 2) copies of
Proof. Combine Proposition 4 and Theorem 1.

3. Varieties associated to Picard sheaves

In this section we shall use a construction due to Grothendieck, referring
to the appropriate paragraph of [4] for its detailed properties. A coherent
sheaf 8 on a variety J defines a J-variety P P(8) called the proiective
fibred variety associated to 8 and an invertible sheaf 0p(1) called the funda-
mental sheaf on P [4, II, 4.1.1].

LEMMA 2. If h:X J is a map, then P(h*8) P(8) Xj X.

For the proof, see [4, II, 4.1.3].

LEMMA 3. An epimorphism u’8 induces a closed immersion

q: P() --,

and q* e,(1) ee(1).

For the proof, see [4, II, 4.1.2].

LEMMA 4. If u’8 is an epimorphism wih ker u 0,, then the im-
mersion q:P() -- 1)(8) is represented by the sheaf of ideals 0e(-1) dual to

Proof. Let S(8) be the symmetric 9j-algebra of 8 [4, II, 1.7.1]. S(8) is
graded; we denote by S(3) the set of linear combinations of k elements, and
write S(8)(n) for the graded Oj-algebra S with S S+(E). An exact
sequence

0---* O.r -- 8 -* ff --- 0defines an exact sequence

0- S’- S() - S(V) - 0

in which S’ S_(8), so that S’ S(8)(-1). Now [4, II, 3.6.2] and the
definition of (%(- 1) [4, II, 2.5.10] give the required result.
We write C for P(0*ff_._), ’C -o J for the proiection map, %(1) for

the fundamental sheaf on C, and %(- 1) for its dual. By Lemma 3, there
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are closed immersions qn’Cn-i -----> Cn such that q*(%(1) (%-1(1) and
7’n qn 7rn--1.

PROPOSITION 6. For n < O, C is empty; for n O, dim C n; for
n > 2g 2, C is a projective fibre bundle over J with fibre P_.

Proof. C, is empty for n < 0 and a projective fibre bundle for n > 2g 2
by Proposition 3. The example which follows Proposition 4 shows that C0
consists of a single point, mapped by m onto x0. Therefore, for n 0 and
n > 2g 2, C is irreducible of dimension n.
Now consider the sequence

(3) h* h*O*__ h*0*_i 0,

where h’X J is the inclusion map of a subvariety of J. If dim C > n,
let X be the support of an irreducible component of C of maximum dimension.
If is a monomorphism, dim C_ > n 1. If is not a monomorphism,
dim C_ > n. Either way we may continue the argument to prove ulti-
mately that dim C0 > 0, which is a contradiction. Therefore dim Cn n.
On the other hand, dim C_ 2g 1, and so the same argument shows that
every component of C is of dimension at least n. We conclude that
dim Cn n.

Cogogv 1. If X supp 0*g__, then is a monomorphism.

Proof. Otherwise, C_ would have a component of dimension n.

Coov 2. If n < g, O.

Proof. Otherwise, since is torsion-free, Theorem 1 would imply

supp 0*ff__ J and dim C g.

THEOREM 2. The closed immersion qn" Cn-1 Cn i8 associated to the sheaf of
Aideals ( 1) If e C) is the element of the ring of rational equivalence

of C which represents C_ then Ae (C) represents the subvariety C_.

Proof. Corollary 1 of Proposition 6 shows that the hypotheses of Lemma
4 are satisfied, and therefore that q" Cn- C is associated to the sheaf of

Aideals ( i) Since q( i) _( i) the element q e (C_)
represents the subvriety C_ of C_. The theorem now follows by induc-
tion. . Chem classes

Following Mtuck, [6], ite

W (C), U O(W)

for 0 n g, nd denote the clsses in the ring of rtionl equivalence of J
which correspond to U_, W_ by u, w respectively. For n > 2g 2,
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C. is the dual projective bundle of 0*ff29_2_. The formal properties of the
dual projective bundle [2] imply that, if ci is the (total) Chern class of
0"5:2g_2_, then, by Theorem 2

On the other hand, Theorem 1 implies that, for n > 2g 2,

c(E,) (-1)’c,,
and therefore, by the corollary of Theorem 1,

c(o**) c(s)- Z: ,.
We conclude that

c(8) (-1)u for n > 2g- 2,

c(5:.) w for n < g,

and that there is in A (J) a relation

(E (--1)’u,)( w,) 1.

This relation and the above values of the Chern classes are due to Mattuck,
who also coniectured the corollary of Theorem 1 [6].

5. Further properties of the Picard sheaves
We return to the situation of Proposition 5, in which a map h"X --, J de-

fined a diagram of maps
XXC -- JXChX

and sheaves/;8, i0(* (R) ’5,),/;0*Y, 5t(*0" (R) *:5,). Alghough
in general the sheaves/g, and h*& are unequal, there is an isomorphism

," h*O*, -+ 0",

for all n. To eonsgruet u we resorg to the device used in [4, II,
1.15.2]. Namely, consider the canonical homomorphism [4, 0, 4.4.]

o" 0*s (R) q*%) --, ;0 ;*0*e (R) *).
Applying h*p gives a homomorphism

h*po’h*O*, h*pt o(*0" (R) q*n) --’h*ha,O*.
Finally, composing h*p o with the canonical homomorphism [4, 0, 4.4.g]

" h*ho fO*, 0",,
we obtain a homomorphism , h*O*, -+

which is an isomorphism in the locally free ease (n < 0).
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PROPOSITION 7. For all n, u, is an isomorphism.

Just as in Proposition 5, consider the diagram

cox - h 0 ff-i -- h*0*. --. 0

O -- O*n--1 --- 0", 0

where is the identity homomorphism. The top line is exact because h*( )
is right exact, and the squares commute by the definition of us. By upward
induction, us is an isomorphism for all n.

Several properties of the fibred varieties associated to Picard sheaves are
consequences of Propositions 5 and 7. Consider the fibred variety

If r’Cn --* J is the projection map, and h’X --o J is the injection map of a
subvariety of J, Proposition 7 and Lemma 2 imply

PROeOSITION 8. r(X) P(l0*ff.g-2-), and the closed immersion
r-(X) r- (X) is induced by the epimorphism ]O*ff29-2- -* ]0*2a__..

--1In particular, if x e J, -, (x) is isomorphic to the projective space associated to
-1 (x) to the subspace corresponding to sections zero at c.H(C, j*J3 (R) 5); r-I

It is now possible to give partial answers to the two classical questions"
--1 --1For which X is rn (X) a proiective fibre bundle? For which X is rn (X) ob-

tained from X by dilatations?
-l(x), and define U c X byWrite d(X) influx dim rn

U lx e X; d,(x) d(X)}.

Proposition 7 and the methods of 2 imply that U is open in X and/0*ff_._.
--1is locally free over U. Therefore, by Proposition 8, rn (U) is a proiective

fibre bundle over U.
Let X be an irreducible subvariety of J for which ]0*ff_:_ is torsion-free.

Then r(X) is irreducible [4, II, 3.1.14]. If in addition O:2g--2_n has rank
one, it is an 9x-submodule of (X), the sheaf of rational functions on X
[4, I, 7.4.3]. Then r(X) is the variety obtained by blowing up X along
the sheaf ]0*ff2g_:_ ([4, II, 8.1.4] and [4, III, 2.3.8]).

Consider the fibred variety Bn P(n). Again let r:B --. J be the pro.
iection map, and 0n(1) the fundamental sheaf on B. The definition of ;.
implies that the’re is a canonical homomorphism " p*gn 2 @ q*Sn. If
is an epimorphism, there is a map r’J X C B such that

r’c%(1) (R) q*5
--1[4, II, 4.2.3]. Then, for each x e J, the map rj’C -- r (x) defines

3 (R) % as a proiectively induced sheaf. Standard arguments show that, for



266 It. L. Eo SCHWAItZENBEItGEIt

n > 2g 1, is always an epimorphism, and that for n > 2g the map rj,
--1is always an embedding (in these cases r (x) P(H(C, j* (R) 3)) by

Proposition 2).

THEOREM 3. For n > 2g 2, Bn is a projective fibre bundle over J, , O(x
being the projective space associated to the vector space Hi(C, j*2 (R)
For n > 2g 1, there is a map r’J X C B, such that r* 0,(1) 2 (R) q*3.
For n > 2g, r is an embedding.

Theorem 3 has two (actually related) applications to variation of algebraic
structure which will be studied in detail elsewhere" (i) invariants of projective
embeddings of C, (ii) reducible vector bundles with base C. In each case,
Bn is used in a natural manner to construct an algebraic parameter variety.

6. Symmetric products
This section establishes the relation between Picard sheaves and symmetric

products, under the assumption of 1" that C is a complete nonsingular curve
of genus g with a fixed base point c e C. I wish to thank the referee for point-
ing out a mistake in the original version of this section.

Let C(n) be the n-fold symmetric product of C. A point of C(n) is an (un-
ordered) set yl + - y of points y e C. There are maps

f:C(n 1) X C -- C(n)

defined by f(y + y,_, y,) y y and

f"C(n ) x c --, C(n) x C

defined by f’(yl -t- -t- y-l, yn) (y + + y, y). Now define"

X1 image of C(n- 1) X cunderf,

Xr image of C(n 1) X C under f’.
These are partly the notations of [6, Part II]. Both subvarieties are of codi-
mension one, and each therefore defines a divisor and a torsion-free sheaf of
rank one.
The map h" C(n) - J, defined by

h(y -+- + y,) y -+- + y nc e Pic (C),

gives a diagram of maps
c()xc JXC

C(n) J.

Let ., :r be the sheaves on C(n), C(n) X C defined by the divisors
X, X, and let 2 (R) q*5 be the sheaf on J X C defined in 2.
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PROPOSITION 9.

Proof. Consider the sheafS: @ p @ nqo. It is defined by a
divisor with restriction y W y nc to p-(y W W y) and re-
striction zero to f-(x, y) for x e J, y e C. Therefore

where is a sheaf on J X C with the properties claimed in 2.
PROPOSITION 10. There is an epimorphism h*O*._._ --Proof. It is sufficient to construct a section of (R) (h*0*i.a_2_n)* which

never determines the germ of a zero-valued function. Consider the subvariety
X of C(n) X C. Its local equations define, by Proposition 9, a section of the
sheaf i5"9n (R) f*( (R) q*hn). This section determines germs of zero-valued
functions only along Xtl. The corresponding section of the sheaf

p0(p* (R) *( (R) q*)) (R) tT
determines the germ of a zero-valued function at z C(n) if and only if X
contains 15-1(z). (Here we are using [4, 0, 5.4.10].) By Propositions 5 and 7,

(R) ], (R) (h*0*5:s__)*, which completes the proof.

PROPOSITION 11.
r’C%(1) 9n.

There is a map r:C(n) ----> C, such that , r h and

Proof. Recall that C I)(0*ff2__). According to [4, II, 4.2.3] the re-
sult of Proposition 10 is precisely the sufficient condition for the existence of a
map r with r h and r* (0N (1) i). It is easy to trace through Proposi-
tions 9, 10, 11 the effect of r on a fibre h-(x), x J, by using the diagram

h-(x) C x C

h-(z) x

and Propositions 7 and 8. Let P be the projective space associated to the
space H(C, j* (R) ).
One obtains the following description of r. Identify P with l(x) by the

isomorphism of Proposition 8, and let yl + + y be a point of h-(x).
Then r(y + + y) is defined by the section s e H(C, j* (R) .) with
zeros precisely at y, y (s is determined uniquely up to scalar multiples).

It follows at once that r is surjective, and that (again using Proposition 8)
r maps the subvariety X of C(n) on to C._. Therefore r commutes with
the closed immersions C(n 1) -- C(n), C_ -o C.
We have not proved that C is nonsingular or even irreducible. This is

however clear for n > 2g 2, when Cn and C(n) are both projective
fibre bundles over J [7]. Therefore, rn r lC(n) is an isomorphism for
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n > 2g 2. Now suppose that r is an isomorphism. Then r_l maps
C(n 1) onto C_1, and is a surjective closed immersion. To prove r_l

an isomorphism, it remains to show that it induces an isomorphism of local
rings.

Proposition 11 implies that r* %(- 1) * [4, 0, 5.4.5]. Since r induces
an isomorphism of local rings, it induces an isomorphism 9*, -- 9n(- 1).
But *, % 1 are the sheaves of ideals defining C(n 1 ), Cn_1, and there-
fore r C(n 1) r,_l" C(n 1) ---> C,,_1 is an isomorphism [4, I, 4.1.3].
We have proved, by downward induction,

THEOREM 4. The fibred variety C, is isomorphic to the n-fold symmetric
product C n

REFERENCES

1. H. GRAUERT, Ein Theorem der analytischen Garbentheorie und die Modulraiime kom-
plexer Strukturen, Publications Mathmatiques de l’Institut des Hautes
]tudes Scientifiques, Paris, No. 5, 1960.

2. /_. GROTHENDIECK, La thOorie des classes de Chern, Bull. Soc. Math. France, vol. 86
(1958), pp. 137-154.

3. ------, Gomtrie formelle et gomOtrie algObrique, Sdminaire Bourbaki, vol. 11 (1958-
1959), expos 182.

4. /k. GROTHENDIECK AND J. DIEUDONN, tlOments de gOom.trie algObrique, Publications
Mathdmatiques de l’Institut des Hautes ]tudes Scientifiques, Paris, (Chap.
I) No. 4, 1960; (Chap. II) No. 8, 1961; (Chap. III) No. 11, 1962.

5. S. LANG, Abelian varieties, New York, Interscience Publishers, 1959.
6. /. MATTUCK, Symmetric products and Jacobians, Amer. J. Math., vol. 83 (1961), pp.

189-206.
7. ., Picard bundles, Illinois J. Math., vol. 5 (1961), pp. 550-564.
8. J-P. SRRE, Groupes algbriques et corps de classes, Paris, Hermann, 1959.

INSTITUTE FOR ADVANCED STUDY
PRNCETON NEW JERSEY

UNIVERSITY OF LIVERPOOL
LIVERPOOL ENGLAND


