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1. Introduction

i.I. This paper has grown from an attempt to study relations between the
periodic structure of a soluble group and its commutator structure. The dis-
cussion will centre primarily around the upper central series and the four
Engel radicals that we introduced in an earlier paper in this iournal. (This
paper is listed as [EE] in the references at the end.) We recall the definition
of these radicals. If x is an element in a group G such that Gp{x}, the sub-
group generated by x, can be linked to G by a series (i.e., a well-ordered
ascending normal system), then x is called a serial element in G (we write
x oo <3 G), and the set of all such elements forms a subgroup z(G), whatever
the nature of G. If Gp{x} can be linked to G by a finite series, x is called
finitely-serial (we write x <3 <3 G), and the set of these also forms a subgroup,
(G). Further, if p(G) denotes the set of all a G such that x o0<3 a for
every x, where a is the subgroup generated by x and all conjugates of a, then
p(G) is a subgroup of G; while if (G) is the set of all a with the property that
x <3 <3 a for every x, and where the length of the series can be taken inde-
pendent of x, then (G) also is a subgroup. These four characteristic sub-
groups satisfy the inclusion relations

() <= (a) -<_ () -<_ ,(a);
() () _-< (),

where a(G) and a(G), are the final and 0t terms, respectively, of the upper
central series of G, and v(G) is the unique maximal locally nilpotent normal
subgroup of G. (The group (G) was denoted by e(G) in [EE] and called
there the Fitting radical of G. However, it seems preferable to reserve the
symbol e for the Frattini subgroup, and the term Fitting radical for the union
in G of all nilpotent normal subgroups. The group (G) might be called the
Hirsch-Plotkin radical, after Hirsch and Plotkin who discovered its existence.
It should be remarked that, with the exception of the switch from e(G) to
(G), all the notation and terminology introduced in [EE] will continue to be
used in the present paper.)

It was shown in [EE] that there exist countably generated metabelian groups
in which no two of the six subgroups determined by , e, p, , a, a coincide.
Our example had the form U X V X W, where U and W were periodic (in
fact, finite and of exponent 4, respectively), but V was not: V was an extension
of an abelian group A of type 2 by an infinite cyclic group with generator b,
where b-ab aforaeA. If we let Vbethe split extension ofA bya
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cyclic group of order 2 whose generator bl aCtS on A according to b-flab1 a-1,
then V1 is easily seen to have precisely the same Engel structure as V, but is,
of course, a 2-group. Hence U X V1 X W is a periodic metabelian group in
which no two of our six subgroups coincide.
We may ask what happens if we insist either that the given group be

p-group (where p is a prime number), or else, at the other extreme, that it
be a torsion-free group. The answer, except in one particular, is not en-
couraging:

THEOREM 1..1. (i) Given any prime number p, there exists a countable recta-
belian p-group G in which no two of the following five subgroups coincide: r(G)
(a), (), (), (), (a).

(ii) There exists a countable torsion-free metabelian group G in which no two

of the following five subgroups coincide: z(G), p(G), a(G), ((G), (G)

The assertion that (G) p(G) in case (i) is, of course, a trivial conse-
quence of the fact that G is locally nilpotent (since it is a soluble p-group)
coupled with Theorem 4 [EE]. On the other hand, the equality (G) a(G)
in case (ii) is the one encouraging feature: this result is not trivial, and it
leads, as we shall see later, to a considerably more general theorem.

1.2. Apart from the p-groups, there is another important class of periodic
groups: this is the class of groups that satisfy the minimal condition on sub-
groups. Soluble groups of this type are much better behaved, and it turns
out that their Engel structure can be well described. As a matter of fact, the
relevant results will apply to a rather wider class of groups, and before stating
them it will be convenient to introduce some further notation.
We shall denote classes of groups by German capitals and shall, in particular,

employ the following alphabet (cf. P. Hall [7], 1.2):

l is the class of all abelian groups;
the class of all finite groups;

(R) the class of all finitely generated groups;
9 the class of all nilpotent groups;
(R) the class of all soluble groups;

the class of all polycyclic groups.

A few further classes will be introduced later. Moreover, if , ) are any two
classes, then we write ) for the class of all groups G having a normal sub-
group N such that N e and GIN . This multiplication of classes is not
associative, but it happens that in all the cases that we shall need, brackets
can be omitted without cusing ambiguity.
The trivial group belongs to every class of groups considered in this pper,

and hence we Mwys hve u ) -_< . Note Mso, s examples, the formulae:
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Further, it will be convenient to use the following abbreviations:

Min for the phrase "the minimal condition on subgroups"; and
Max for "the maximal condition on subgroups".

The following theorem contains our information concerning soluble groups
with Min, because it is well known that such groups are of type 9.I. Recall
also that a group G is hypercentral (is a ZA-group) if, and only if, a(G) G.

(i)
(ii)
(iii)

finally,
(iv)

WHEOREM 1.2. If G , then
(i) a(G) is the unique maximal hypercentral normal subgroup;
(ii) (G) is the unique maximal nilpotent normal subgroup;
(iii) p(G) ac+k(G) for some finite k and where c is the class of any nilpo-

tent normal subgroup of G with factor group in ? and, finally,
(iv) (G) a(G).
These conclusions concerning the Engel radicals also hold in another class

of groups among which we again find the soluble groups with Min. To define
these groups we first recall that the spectrum of an abelian group A consists,
by definition, of all the prime numbers p such that a - a is not an auto-
morphism of A (see [8], p. 39). If A is a torsion group, then p is in the
spectrum if, and only if, the Sylow p-subgroup of A is nontrivial. By the
torsion spectrum of an arbitrary abelian group we shall mean the spectrum of
its torsion subgroup. Further, an abelian group has finite ranlc if there exists
an integer n such that every finite subset lies in a subgroup generated by at
most n elements. We add the following symbol to our alphabet of classes"

is the class of all abelian groups of finite rank and finite torsion spectrum.

Every finitely generated abelian group is, of course, in .l; and so also is
every abelian group with Min. Indeed, it is a result of Cernikov that the
soluble groups with Min form precisely the class of all the torsion groups in
[( o ) ([9], p. 191).
Suppose the group H is poly-. This means, by definition, that there

exists a finite series linking 1 to H in which the factors of successive terms are
in [. We shall be interested in the number of these factors which are not
finitely generated, and we define n(H) to be the smallest of these numbers,
for all possible choices of -series in H. We shall find (Lemma 5.2) that
n(H) can always be obtained from a characteristic /-series.

THEOREM 1.3. If G is any group such that (G) is poly-l, then
a(G) 7(G) is the unique maximal hypercentral normal subgroup;
(G) is the unique maximal nilpotent normal subgroup;
p(G) an,+k(G) for some finite k and where n n((G)); and,

(a) (a).

An example of a group in (l n ) will show that the subgroups deter-
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mined by z, 3, o, may be all distinct (Proposition 6.1). Of course, if (G)
is actually polyeyelie (i.e., n(n(G)) 0), then n(G) a(G) (G) and
p(G) (G) ak(G). This occurs, in particular, if G is a group satisfying
Max (Baer [2]).
Another special ease of Theorem 1.3 arises when n(G) satisfies Min" for

n(G) is then a locally nilpotent group with Min and thus is soluble by a
theorem of Cernikov ([9], p. 230), whence n(G) has type ?l( n ). So here
n(n(G) 1. The assertions concerning n and e are known in this ease (i.e.,
when n(G) has Min)" the hypereentrality of n(G) follows from the work of
Cernikov ([9], p. 230), and the nilpotenee of e(G) from a result of Baer ([1],
p. 432). But Baer’s result can now be improved in another direction thanks
to recent work of V. G. Vilyaeer [11], who has shown that an Engel group satis-
fying Min is locally nilpotent. We assert"

If G is a group with Min in which every element is bounded left Engel, then G
is nilpotent.

For, by Vilycer’s theorem, G is locally nilpotent, whence G is soluble by
the theorem of Cernikov quoted above, and thus (G) G by Theorem 4 (ii)
of [EE], so that, finally, G is nilpotent by Theorem 1.3 (ii) (or the result of
Baer mentioned above).

1.3. The reader may have noticed that, while we assert the equality
(G) n(G) in Theorem 1.3, we did not do the same in Theorem 1.2. This
was not because it is false, but because its truth in the context of Theorem 1.2
is a consequence of a more general fact.

If G is an arbitrary group, let us denote by L(G), L(G), R(G), [(G), re-
spectively, the sets of all left, bounded left, right, and bounded right, Engel
elements in G. The reader will recall from [EEl that these are the sets of all
elements g e G satisfying, respectively, the conditions G e g, G e g, g e G, g el G.
(If A, B are subsets of G, then A e B means

[a, kb] [a, b, b] 1
k

for each a e A, b B and some tc k(a, b). If/ can be taken independent
of a in A, we write A le B, and if independent of b in B, then A el B. Of
course, A el B then means that there exists a fixed integer k such that

[a, b] 1

for all a A, b B. We shall frequently find it convenient to write, in this
case, A l’kl B.)

It is always, and trivially, true that

r(G) <- L(G), (r(a) <- [,(G), p(G) <= R(G), () __< /().
For a given group G one is naturally interested in knowing which, if any, of
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these inequalities are in fact equalities. In general, this seems to be a very
difScult problem.

Let us denote by the class of all groups for which each of the above in-
equalities is an equality. Since in any group, v(G) <= L(G) (trivially) and
z(G) -<_ v(G) (by Theorem 2 [EE]), it follows that for every G e , z(G)
(a).
Baer has proved (in [2]) that contains all groups with Max, and Theorem 4

of [EE] asserted that also contains all soluble groups: (R) =< . Both these
results can be incorporated in the following:

If G has a soluble normal subgroup N such that GIN has Max, then
In particular, <= .

This is an immediate consequence of the results concerning soluble groups
and groups with Max and the following theorem.

THEOREM 1.4. If G has a soluble normal subgroup N such that (G/N) is
soluble and GIN e , then G e .
The major step in the proof of Baer’s theorem was to show that a group

with Max, which is generated by Engel elements, is necessarily nilpotent.
The next theorem shows why this step was really the crucial one for his proof.

THEOREM 1.5. f G is a group such that Gp/L(G) u R(G)} is soluble and
locally nilpotent, then G e .

If it could be established that a group with Min, generated by a finite num-
ber of (right or left) Engel elements, is nilpotent, then Theorem 1.5 would
imply that any group with Min lies in . (For then Gp/L(G) u R(G)} would
be locally nilpotent, and since it has Min, it would be soluble.)
The above two theorems depend on a fact which was essentially proved in

[EEl, but was not stated there in the general form that we shall require here.

THEOREM 1.6. If G is any group and a is a bounded right Engel element,
whose normal closure aa i?z G i8 soluble, then aa I1G and a e (G).

The following remarks will suffice as proof. Lemma 16 [EE] remains true
if G is arbitrary but a, b lie in a soluble and locally nilpotent normal subgroup
K of G provided one uses t(K) instead of t(G). Then Lemma 17 [EE] is valid
if one takes a K: for aa iS soluble by hypothesis and hence is also locally
nilpotent since it is generated by (bounded) right Engel elements (Theorem 4
[EE]). Finally, the implication aa lel G a (G) follows exactly as in
Lemma 18 [EE].

Observe that, in any group G, if a e (G), it follows immediately from the
definition of , that aa 11 G. But whether aa need be soluble remains an open
question.

1.4. We mentioned, in connexion with Theorem 1.1 (ii), that the functions
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, a always hve the same value when applied to a torsion-free metabelian
group. This fact is contained, as a special case, in the following result.

THEOREM 1.7. Let G , let P be the torsion group of (G), and C the
centralizer of P in G. If there exists a nilpotent normal subgroup N of G such
that G/NC is finitely generated, then (G) a(G).

When P 1, C G, and then the condition on G/NC is trivially satisfied.
Thus (G) a(G) whenever (G) is torsion-free and G e. Again, if
G e gt((R) n (R)) and we choose for N a nilpotent normal subgroup of G with
factor group in (@ n (R)), then NC >= N, and so G/NC e (@ n (R)), whence
G/NC is finitely generated. Hence if G ?R(@ n (R)), then (G)
This includes, of course, the relevant part of Theorem 1.2. We stress that all
finitely generated soluble groups are also covered by this special case of
Theorem 1.7. I have been unable to decide whether p(G) is necessarily equal
to a(G) for finitely generated soluble groups. This is certainly not the case
for torsion-free soluble groups, since one of our examples in connexion with
Theorem 1.1 (ii) has p(G) G and a(G) 1.
Theorem 1.7 is a simple consequence of the following two "hypercentrality

criteria", which are our main results in this paper.

THEOREM 1.8. Let H be a soluble normal subgroup of a group G, and let the
image of G in the automorphism group of H be of type . If H I:n[ G, then
there exists an integer t such that [H, kG] has finite exponent equal to an
number.

THEOREM 1.9. Let T be a soluble group of finite exponent and normal in a
group G, and let Ci be the centralizer in G of the ith derised factor of T. If G
contains a nilpotent normal subgroup N such that each G/NCi e @ n , then
T I G implies that IT, G] I for some finite s; i.e., T <= as(G).

We stop to prove Theorem 1.7 since we can do so now without further
trouble. Let G , and choose a (G). Then aa is a locally nilpotent
group in and hence is soluble; also aa I1 G. By Theorem 1.8, we can find
/ such that T [aa, kG] has finite exponent. Consequently T P, the
torsion group of (G). Now C Ci, the centralizer of the ih derived factor
of T, and since G/NC is given to be finitely generated, therefore the same holds
for each G/NC. Because G (R), we have G/NC @ (R) for each i, and
consequently Theorem 1.9 can be applied and shows aa <-__ as(G). Thus
(G) a(G), as required.
The special case of Theorem 1.8 when G itself is soluble is worth noting.

We shall, indeed, have to establish this special case as a step in the proof of
the theorem; and we may observe that it tells us, in particular, that if G I’nl G

If m is a positive integer, then another positive integer r is called an m number if
r divides some power of m.
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and G is n !-free, then G is nilpotent. However, this last fact can be improved
by resorting to a little trick, and we shall actually prove

THEOREM 1.10. If G is soluble of derived length and G I’nl G with n >-_ 2,
then /k(G) (the lch term of the lower central series of G) has exponent e e (n, t),
where e is an (n 1)!-number and where

1 lc(n, t) 1 3- (1/2n-){(1 q-2-2) t- 1}.

That (n 1)! cannot be replaced by (n 2)!is shown by the example of
a metabelian p-group W, with trivial centre, in which W I:pq-ll W ([EE],
p. 166 and the footnote there). At any rate, we are able to add the torsion-
free soluble groups to the (still very short) list of groups for which an Engel
identity implies nilpotence.

1.5. In the situation of Theorem 1.8, if the group of automorphisms of H
induced by G happens to be actually finite, then we can. apply Theorem 1.9 to
T [H, kG] (with lc chosen in accordance with Theorem 1.8) and we deduce
H _<_ +().

It will be convenient to restate the special case of this when H is abelian in
the language of module theory. If G is a given group and A is a G-module,
then let us write as al(A’G) the set of all the G-invariant elements of A (i.e.,
all a A such that ag a for every g G). We may then define, in the ob-
vious manner, the upper G-series of A,

0 oo(A’G) < oI(A.’G) <... < a.r(A’G)= oe.+(A’G)= a(A’G),

where, of course, r may be transfinite. If is the image of G in the auto-
morphism group of A and we let K be the subgroup of the holomorph of A
generated by A and , then ax(A :G) is nothing but ax(K) n A. The result
stated in the last paragraph (but with H abelian) may now be rewritten thus:

If A is a module over the finite group G such that A I G, then A a(A :G) for
some finite s.

This same result is also fundamental for the proof of Theorem 1..2; and a
close relative of it is needed for Theorem 1.3. This latter is worth stating
explicitly as

PROPOSITION 1.1. Let G be a given group and A a G-module.
(i) If A, as additive group, has finite ranlc and finite torsion spectrum, then

A I G implies A a(A :G) for some finite ]c; while
(ii) if A, as additive group, has finite rank, then A c G implies

A a+(A G) for some finite lc.

This proposition generalizes a number of known hypercentrality criteria,
notably one due to Vilyacer [11], who showed, in the situation (ii), that
(A:G) 0.
The meaning of the statement A]e G in the additive notation for modules

is, of course, that, for each g G, the element g 1 of the integral group alge-
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bra of G acts on A as a nilpotent endomorphism: i.e., A (g 1)n 0 for a
suitable n; and A G is the same as saying that each g 1 acts as a locally
nilpotent endomorphism: i.e., a(g 1) 0 for each a e A and n n(a).
If I is the additive subgroup, of the group ring of G, spanned by all g 1,
for g G, then P is actually an ideal, the "difference ideal", or "augmentation
ideal" of G. Now A, being a G-module, is also a F-module and A ak(A :G)
is equivalent to A pk 0. Thus our basic problem is to prove that, if A is a
F-module, where F is given to be spanned by elements with nilpotent action
on A, then, under certain circumstances, F itself has nilpotent action on A.
This problem is no longer one of group theory but is purely a ring-theoretical

one. Our main result in this direction is Theorem 1.11; and from this Propo-
sition 1.1 will follow, as well as the result on modules over finite groups
mentioned above.

THEOUEM 1.11. If A is an additive group of finite ranlc and finite torsion
spectrum, and A is a ring of endomorphisms of A, additively spanned by nilpotent
elements, then A is a nilpotent ring.

The basic fact needed for the proof of this theorem is an old result of
Wedderburn [12], that a finite-dimensional algebra over a field is nilpotent if
it possesses a basis of nilpotent elements. Theorem 1.11, as it stands, is not
a generalization of this theorem of Wedderburn since the ring of scalars in our
theorem (namely, the integers) cannot be specialized to a field. It so hap-
pens however, that our proof of Theorem 1.11 applies, with almost no change,
when the scalars form a Dedekind domain, and in this form Theorem 1.11 does
represent a genuine generalization of Wedderburn’s theorem.

1.6. The paper is arranged so that the proofs of the theorems stated in
this introduction come in almost precisely the reverse order to that of the
theorems. Thus, 2 deals with the results discussed in 1.5; in 3 we prove
Theorem 1.9 and also another hypercentrality criterion (Theorem 3.1) needed
later; 4 is primarily devoted to the proof of Theorem 1.8 but contains also
the proof of Theorem 1.10; 5 deals with the results on Engel structure stated
in 1.2 and 1.3; and, finally, in 6, we present the various examples needed
for Theorem 1.1.

1.7. For the convenience of the reader we add here an index of the most
frequently used (nonstandard) symbols and terms.

ax(G) is the Xu term of the upper central series of G, and
/x(G) is the Xth term of its lower central series;
a(G) (the hypercentre) is the limit of the upper central series, and
G is hypercentral if a(G) G;
ax(A :G) is the Xh term of the upper G-series of the G-module A: definition

at the beginning of 1.5 (p. 442); and
a(A:G) is the limit of the upper G-series of A;
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v(G) is the unique maximal locally nilpotent normal subgroup (the Hirseh-
Plotkin radical);

Gp{ S} is the subgroup generated by the set S;
series means a well-ordered ascending normal system ([9], p. 171), and
finite series a series of finite length;
H <:1 G (H is serial in G) means that there exists a series from H to G, and
H <:I <:1 G (H is finitely-serial in G) that there is a finite series from H to G;
x <1 G is the same as Gp{x} <:l G (x is a serial element), and
x <l <3 G as Gp{ x} <:1 <:l G (x is a finitely-serial element);
(G), e(G), p(G), (G) are the four Engel radicals" definitions in 1.1;

is used for the Engel relation between two subsets of a group" the notation
is explained at the beginning of 1.3 (p. 439);

L(G), L(G), R(G), (G) are the sets of the four types of Engel elements in G
(p. 439);

German capitals denote classes of groups;
G is in poly- means that there exists a finite series linking 1 to G with factors

of successive terms in ;
l, , @, 9l, , are defined at the beginning of 1.2;
[ is the class of abelian groups of finite rank and finite torsion spectrum

(p. 438);
is the class of groups G in which a(G) L(G), e(G) L(G), p(G)

(G), (G) (G);
n(H), for H e poly-[, is a numerical invariant defined immediately before the

statement of Theorem 1.3 (p. 438);
the integer r is an m-number means that r divides some power of m.

2. Nilpotent rings
9..1. Our first task is to prove Theorem 1.11. Throughout this section we

shall write Z for the ring of rational integers, and we shall speak of Z-modules
and Z-algebras instead of additive groups and rings, respectively. We do
this in order to ease the task of any reader who may wish to translate our
proof to the case where Z is replaced by a Dedekind domain. We shall,
anyway, insert remarks concerning the transition to the Dedekind case when-
ever necessary.

Perhaps we should begin with one such remark and explain what "finite
rank" and "finite torsion spectrum" mean for a module A over a Dedekind
domain. If T denotes the torsion submodule of A, then the requirement of

finite rank shall mean that A/T has finite rank (in the sense usual for torsion-
free modules over an integral domain) and that every finite subset of T is
contained in a submodule of T having a set of at most n generators, where n
is a fixed integer. Concerning the torsion spectrum of A, we recall that torsion
modules over Dedekind domains are always direct sums of l-primary modules,
where runs through the prime ideals in the Dedekind domain. We may
thus say that A has finite torsion spectrum if T has only a finite number of
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nonzero -primary components. It is however nicer to employ a generaliza-
tion of the definition of spectrum given in 1.2. So, let R be an arbitrary
commutative ring with identity, let A be an R-module, and let o(a) denote
the order ideal of the element a in A. We define the spectrum of A to be the
set consisting of all the prime ideals of R that do not satisfy the following
condition" for each a e A, we have a AI when o(a) 0, while o(a) -t- R
when o(a) O. This definition reduces to the usual one when R is a principal
ideal domain, while if R is a Dedekind domain and A is a torsion module, one
can prove that is in the spectrum if, and only if, the l-component of A is
nontrivial.
Our plan is to reduce the proof of Theorem 1.11 to a consideration of three

cases, in each of which the Z-module A has a particularly simple form.
So let A be a Z-module in the class [, and T its torsion submodule. Then

T T @ @ T,

where T is p-primry nnd the primes p,---, pr are distinct. Suppose
further that A is A-module for given Z-algebra A, and that A is Z-generated
by set S whose elements hve nilpotent ction on A. Since each T is fully
invariant in A, so ech T is A-invrint. Hence T, Tr and also A/T
are A-modules, and the elements of S have nilpotent action on ech of these
modules. If we can prove that A itself hs nilpotent action on each of A/T,
T, T, then it will clearly also hve nilpotent action on A. It is there-
fore sufScient to prove Theorem 1.11 for Z-modules A thut are either torsion-
free of finite rank or p-primary of finite rank.
The second cse can be reduced still further. For if A is p-primary of finite

rank, then there exists smallest integer n >= 0 such that Ap Ap’+ and

A > Ap > > Ap’= Ao
is series of fully invariant Z-submodules. Moreover, A0 is a direct sum of a
finite number of modules of type p, und ench Ap/Ap+ is finitely Z-gener-
ated (see, e.g., [4], Chapter 7, 4, Exercise 22). Thus to prove our Z-algebra
A hs nilpotent action on A, it suffices to show it has this on each Ap/Ap+1
(i 0, ,n 1) and onA0. In other words, instead of having to con-
sider arbitrary p-primary modules of finite rnk, we may confine attention to
the divisible ones (like A0 above) and to those annihilated by p (the ele-
mentary p-groups).
(When Z is replnced by n Dedekind domnin, we hnve the sume reduction

to the torsion-free nd 0-primary cases. To deal with the latter one goes to
the local situation, where the theory of principal ideal domains is available
and where one may apply M1 the following arguments on p-groups.)
The three cases to be discussed are then the following"

A is torsion-free and of finite rnk (Lemm 2.2);
A is a finite elementary p-group (Lemm 2.3 (i)); and
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A is a direct sum of a finite number of groups each of type p (Lemma 2.3
(ii)).

The discussion of each of these cases depends on the following result.

LEMMA 2.1. Let C be a Z-module such that End C, the ring of Z-endomor-
phisms of C, is an integral domain, and suppose A C (R) (R) C where
each C C. If A is a Z-subalgebra of End A which is Z-generated by nilpotent
elements, then A is nilpotent.

Proof. Write E End C, and let F be the quotient field of E. Clearly,
End A is isomorphic (as Z-algebra) to E, the Z-algebra of all n X n matrices
with coefficients in E. If we make A into an E-module in the natural way,
i.e., by defining

(c + + c)e ce + + ce,

for c C and e E, then the image of E in End A corresponds, in End A -- En,to the set of all multiples of the unit matrix. Hence End A is actually an
E-algebru, and the isomorphism with E is n isomorphism of E-algebras.
Since E is E-torsion-free, so therefore is End A. Hence the E-algebr
homomorphism

EndA--EndA (R)F F

given by 0 -- 0 (R) I is ctually an injection (see, e.g., [4], Chapter 3, 3, No. 4)
and, of course, F is an n%dimensional lgebra over the field F. If the image
of A generates the F-subalgebra A’ of F, then A’ is a finite-dimensional algebra
and has basis of nilpotent elements. By Wedderburn’s theorem [12], h’ is
nilpotent, and consequently so also is A.
(We remark thut Lemma 2.1 remuins true if Z is replaced by any commuta-

rive ring with unit. In this form, Lemma 2.1 formally includes the theorem
of Wedderburn.)

LnMMA 2.2. IfA is a torsion-free Z-module offinite rantc, and A is a Z-algebra
of endomorphisms of A which is Z-generated by locally nilpotent endomorphisms,
then A is nilpotent.

Proof. We write Q for the field of rational numbers and put

A() A (R)Q.

Then a - a (R) 1 is a Z-monomorphism of A in A(), and this yields a Z-algebra
monomorphism ’:

End A -- Endo A()

given by
O: a (R) r--->aO (R) r,

where 0 e End A, a e A, and r e Q. If now a, a is a maximal linearly
independent set in A and X is a locally nilpotent endomorphism of A, we
can find m re(X) such that a X 0 for each i. Consequently
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(a.i (R) 1)(h’)m 0 for each i, and since al (g) 1,---, an (R) 1 form a Q-ba-
sis of A (), so A () (’) 0, i.e., h" is a nilpotent linear transformation of
A(). Thus A" is Z-generated by nilpotent elements. The result now fol-
lows by applying Lemma 2.1, with C, A, A replaced by Q, A(), A’, respec-
tively.
(Lemma 2.2 remains true when Z is replaced by an arbitrary integral

domain.)

LEMMA 2.3. Let A be a p-primary Z-module of finite rant such that either
(i) Ap O, or (ii) Ap A. If A is a Z-algebra of endomorphisms of A
which is Z-generated by nilpotent elements, then A is nilpotent.

Proof. Both parts of this lemma are immediate consequences of Lemma
2.1. In case (i), we take the C of Lemma 2.1 to be the integers modulo p
(so that End C is a field of p elements), and in case (ii), C is a group of type
p (whence End C is isomorphic to the ring of p-adic integers).

The proof of Theorem 1.11 is now complete.
the theorem is stated in

An important special case of

PROPOSITION 2.1. If A is a Z-algebra which can be Z-generated by a finite
number of nilpotent elements, then A is nilpotent.

For let us regard h as a (right) A-module by using the multiplication in A.
Then Theorem 1.11 can be applied with A A, since a finitely Z-generated
module is certainly of finite Z-rank and finite Z-torsion spectrum.

(Proposition 2.1 is also true if Z is replaced by a Dedekind domain R. For
if A is a finitely generated module over R, then A satisfies the maximal condi-
tion on R-submodules, in view of the fact that R is a Noetherian ring, and
thus the torsion module of A is also finitely generated. Hence A has finite
rank and finite torsion spectrum. But, as a matter of fact, Proposition 2.1,
even with R in the place of Z, is still a special case of a more general result.)

2.2. We turn now to the group-theoretical applications of Theorem 1.11.
First we shall prove Proposition 1.1. Since part (i) is an immediate conse-
quence of Theorem 1.11, we shall confine attention to part (ii).
Thus A is a G-module, of finite Z-rank, and such that A e G. The difference

ideal 1 of G is spanned by the elements g 1, all of which have locally nilpo-
tent action on A. Hence, by Lemma 2.2, there exists/ >__ 1 such that A’
A F is contained in the torsion submodule of A. It remains to prove that
A’ a,(A" G). Take any a e A’, and let M be the G-submodule generated
by a. Because A’ has finite Z-rank, therefore a lies in a finite characteristic
Z-submodule, whence M is finite, and consequently M e G. Now applying
Theorem 1.11 with A, A replaced by M, F, respectively, we conclude MP 0
and thus a a,(A" G)

In Proposition 1.1 the given group is arbitrary, but the module has re-
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strictions on its additive structure. In the next result the situation is
reversed" the module is unrestricted but the group must be finite.

PROPOSITION 2.2. Let G be a finite group, and A a G-module.
(i) If A le G, then A ak(A’G) for some finite It; while
(ii) if A e G, then A a,(A’G).

Proof. We first prove (i). Let F be the difference ideal of G, and K the
kernel of the representation of F on A. Then some power of each g 1 is
contained in K, and thus F/K is additively spanned by the (finite number of)
nilpotent elements (g 1) -4- K, g e G. By Proposition 2.1, F/K is nilpotent,
say Fk -_< K, and thus AF 0, i.e., A ak(A’G).
Now part (ii) follows simply. Take any a A, and let M be the G-sub-

module generated by a. Then M is finitely Z-generated, and hence M e G
implies M leG. By part (i), M o(M’G) for some finite lc. Thus
a a(A’G), and so A oo,(A’G).
We shall show later (Theorem 3.1) that Proposition 2.2 remains true when

G is in the class .
3. Hypercentrality criteria

3.1. Theorem 1.9 is essentially a consequence of Proposition 2.2 (i), since
we shll find that our hypotheses force each of the groups G/NC to be finite.

LEMMA_ 3.1. If A is a G-module of finite additive exponent and such that
A e G, then G induces on A a periodic group of automorphisms.

Proof. If G induces periodic group of automorphisms on each Sylow
p-subgroup of A, then G does likewise on A itself. We my therefore assume,
without loss of generality, that A is p-group, sy of exponent p.

Suppose first that n 1. If x lies in the image of G in EndA,
then (x 1) 0 for some m re(x), and hence (x 1) 0 for a
suitable s s(x). But the additive group of End A is itself of exponent p,
and consequently

(x- 1) ’= x- 1,

whence x 1. Thus the action of G on A is periodic.
We now use induction on n to prove the result in general.

assume there exists m re(g) such that, for all a A,
If g e G, we

ag ----a (modB),

where B is the characteristic subgroup of A consisting of all the elements of
order p. Thus

ag a - b,
where b e B, and hence

ag’n a -4- b(1 + g’ + -4-
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for any lc ->- 1. By the ease n 1, we know that g’ has finite order, say s,
in its action on B. If we set

then
ag" a

a - pbn

a.

Consequently g has finite order in its action on A, and the induction is com-
plete.

LEMMA 3.2. Let A be abelian of finite exponent and normal in a group G, and
let C be the centralizer of A in G. If N is a nilpotent normal subgroup of G such
that G/NC @ (R), then A

Proof. By Lemma 3.1, G/NC is periodic and hence is finite (since a finitely
generated, periodic, soluble group is finite). Consequently in the case when
N 1, the lemma reduces to Proposition 2.2 (i). An obvious induction on
the class of N then yields our result in general.

Proof of Theorem 1.9. By an induction on the derived length of T, we may
suppose

[T, IG]-<_ A,
where A is the last nontrivial term of the derived series of T. Then

[A, 2G] 1,

by Lemma 3.2, whence T -<_ al+2(G).

3.2. For our proof of Theorem 1.2 (in 5) we shall need a hypercentrality
criterion which generalizes Proposition 2.2.

THEOREM 3.1. Let H be a normal subgroup of a group G, contained in a nil-
potent normal subgroup N of G and such that G/NC e , where C is the central-
izer of H in G. Then

(i) H ]e G implies H <= as(G) for some finite s; while
(ii) H e G implies H <- ac(G), where c is the class of N.
LEMMA 3.3. If G e 3 and A is a G-module such that Ale G, then A

ak(A" G), for some finite

Proof. Let
1 Po < P < < P+ P < G,

where each term is normal in the next, G/P is finite, and P+/P is eyelie
(i O,...,s). If weeanprove

(1) A o.(A’P),
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then, since each aj+I(A:P)/a(A:P) is a G/P-module, our result will follow
by an easy induction on m and an application of Proposition 2.2 (i).

It remains to prove (1), and we do this by an induction on s. So we sup-
pose

A an(A:Ps),

and we have to show that, for each j, the P/Ps-module

satisfies
Bj ai+I(A’P)/a(A’P)

Bi or(Bj:P/P,)

for some r r(j). But this is obvious because P/P is cyclic.

LEMMA 3.4.
A (A’G).

If G e and A is a G-module such that A cG, then

Proof. We use the same notation for G as in Lemma 3.3, and our first aim
is to prove

(2) A a(A’G).

Since every G-image of A satisfies the same condition as A, we obtain (2) if
we show a(A" G) 0.

Suppose we already know that o(A’P) O, with i s. Take any
a 0 in a(A’P) and a generator x of P+ modulo P. If is the least
integer such that a’ [a, ,x] 0, then a’ a(A’Pi+). Hence by an induc-
tion on i, we conclude m(A’P) 0, whence a(A’G) 0 by Proposition
2.2 (ii).

Finally, we assert (2) implies our required result, because G is finitely
generated. For let G Gp{gi, g}, and choose a a,+t(A’G). Then
for each i, [a, g] a(A’G) for some finite lc, and hence we can find such
that each [a, g] oo(A’G). But then a a+I(A’G), and thus oo+(A’G)
a(A "G).

Proof of Theorem 3.1. Let Hi ai(N) n H, so that

1 Ho < H H H,

where r c. Suppose we already know

and
H <= a,(G) in case (i)

H -< a,: (G) in case (ii),

where 0 <= i < r. Now H+,/H is a G/NC-module, whence

H+/H <= a(G/H) in ease (i), by Lemma 3.3,

H+,/H, <= c(G/H) in case (ii), by Lemma 3.4.
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Consequently,
H+I -<: c,+k(G) in case (i),

and
H+I -< a(+l)(G) in case (ii).

The theorem now follows by an induction on i.

4. Proof of Theorem 1.8
4.1. Theorem 1.8 is proved by a series of inductions, all of which rest

ultimately on the following lemma.

LEMMA 4.1. Let B be an abelian group, and let A be a B-module such that
A le:n B. Then

n*[A, 2-1B] O,

where 1"

A. Then we are given that (x 1)n 0 for every x BO.
Suppose for the moment that n m q- 1, and choose any x, y BO.

1 and, when n > 1,

n* n(n- 1)2(n- 2) 25 22"-.
Let 0 be the homomorphism of B into the utomorphism group of

0 (xy 1)

{(x- 1)(y- 1) q- (x- 1) if- (y-- 1)} "+

r(i,j)(x- 1)(y 1) ’.
i+j" >__m+l
i,jm

Then

Since i-kj >_- m+ 1 and j <= m, therefore i> 0 (and similarly j > 0).
Now

0 (y- )m+(X- )-’
r(i,j)(x- 1)m+-l(y- 1) ,

and in the sum on the right-hand side all terms vanish except those for which
mq-i- 1 _<_ m,i.e.,i 1. Hence j must equal m, andwehave

0 r(1, m)(x- 1)m(y- 1) .
But clearly r(1, m) m -t- 1, and consequently

(:) (m + ) (z )(y ) 0.

We shall prove the lemma by an induction on n. When n 1, it is, of
course, trivially true. So let us assume it for n m nnd consider the case
n m + 1. Then we know by the argument in the last paragraph that
the relation (3) holds for all x, y in B0.

Let A be the additive subgroup of A generated by all

(m -t-- 1)a(x 1)’,
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for a A, x B0. Then A1 is B-invariant, and we have A1 e’ml B, by (3).
Hence, by the induction hypothesis,

m*[A 2m-lB] O,
and consequently

(4) m*(m -- 1)a(y 1) (y2.- 1)(x 1)’ O,

for allaeAandally,xeB0. If we set

A (m nt- 1)m*[A, m-B],

then (4) asserts that A= le:m B, and now, again by the induction hypothesis,

m*[A 2m-B] O.
So, finally,

(m -t- 1)(m*)[A, (2,-+2,-)B] 0,

and we have established the result for n m-t-1, since (m + 1)*=
(m -t- 1 (m*).
We may now rapidly dispose of Theorem 1.10. The next lemma embodies

the trick referred to immediately before the statement of Theorem 1.10.

LEMM 4.2. If A is an abelian normal subgroup of a group G and A is con-
tained in the centralizer of G’= /(G) (the commutator group of G), then
G e’nl G with n >-_ 2 implies

[A, (+2-2)G](n-)* 1.

Proof. For any a e A and any x, y, e G,
1 Ix, nya] Ix, ya, (n-1)Y] [Ix, a][x, y], (,_)y]

--1Ix, a, (n-1)Y] [a, x, (-I)Y]

If now A1 [A, G], then the centralizer of A contains G’, whence A, is
G/G’-module, and we have A1 ]e:n-11G. Hence, by Lemma 4.1, with A,
B, n replaced by A1, G/G’, n 1, respectively, we have

[A1,2-2G](n-)* 1,
as required.

LMMA 4.3. If Y is normal in a given group X and is such that [Y, X] 1
then [Y, X]and [Y X] 1, 1.

Proof. If we set Y [Y, X], then [Y, X] 1 for all i because Y <1 X.
Now

[Y(, X] Y+I" (mod Y+)

for each i >= 0, and hence

Y- means the subgroup generated by all elements y’*, for y Y.
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for each i _>_ 0, whence

Y+lm _<_ Y+.
<- Yc 1, as required.

LEMMA 4.4
implies mr(G)

If G’ "2(G) is nilpotent of class c, then G [e:n G with n >- 2
1, where

and
r r(n,c) 2-- c(1 +2"-2),

s s(n,c) l(n-- 1)*}c’,
1 1c’-1+(c--1)! 1-1+.+.+...-- (c 2) if"

Proof. We shall use an induction on c and note that the result for c 1
is precisely Lemma 4.2 with A G’.

Suppose then that the class of G’ is c - 1 and that

(a)" <= (a’),

where r r(n,c), s s(n,c). Now by Lemma 4.3, taking X G’,
Y /r(G), and noting that Y _-< X because r >= 2, we have

(5) [,(G), G’]’ 1.

If we set C [(G), G’], then r(G)/C lies in the centre of G’/C; hence by
Lemma 4.2,

[r(G), (1+2-.)G] (’-1)* _-< C,
and thus, by (5),

But

and

{r+1+2- (G) (-)*c 1.

n--2r(n, c- 1) r(n, c) -- 1 - 2

s(n, c - 1) (n 1)*s(n, c),

and so the induction is complete.

Proof of Theorem 1.10. We use an induction on t, the derived length of
our group G, and observe that by definition/(n, 1) 2, so that the result
is certainly true when 1.
Assume therefore that the result holds for the commutator group G of G:

i.e.,
,(G’) 1,

where / t(n, t- 1) and e e(n, t- 1) is an (n- 1)!-number. Now
G/(G’) has its commutator group nilpotent of class _-< ]c 1, and hence,
by Lemma 4.4,

(G) =< (G’),
wherer r(n,- 1),s s(n, lc- 1). We deduce that
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where
r 2 q- (It 1)(1 q- 2n-2) 1 q- (1/2n-2){(1 -+- 2n-) t- 1},

by using the induction hypothesis on k(n, 1); and

se s(n, ]c- l)e(n, t- 1)

depends on n and only, and it is an (n 1)!-number since, on the one
hand, s is such a number by Lemma 4.4 and, on the other, e is an (n 1)-
number by the induction hypothesis.

This concludes the proof of Theorem 1.10.

4.2. We return to our main task which is to prove Theorem 1.8. The
next lemma occupies a place in the proof of Proposition 4.1 analogous to that
taken by Lemma 4.4 in the proof of Theorem 1.10.

LEMMA 4.5. G is a soluble group, and H is a normal subgroup contained in
the commutator group G’. If H e’n G with n 2, and [H, G’] 1, then

where

and

[H, rG] ],

r r(n,c) 2-1c,

s s(n, c) (n*) ’,
with n* as in Lemma 4.1 and c’ as in Lemma 4.4.

Proof. When c 1, the result reduces to Lemma 4.1. We use an induc-
tion on c and may assume, therefore, that

[H, .G] __< [H, (-1)’],

wherer r(n, c 1), s s(n, c 1).
Now [H, (c-1)G’] lies in the centre of G’, and hence, by Lemma 4.3 (with

X G’, Y [H, rG], and m s),

[H, rG, G’]8c-1 1.

If C [H, ,.G, G’], then [H, ,.G]/C lies in the centre of G’/C, and thus, by
Lemma 4.1,

[H, O, .-,]* -<_ C.
It follows that

and because
[H, (rq-2n--1)G] n*sc-1 1,

r(n, c) r(n, c 1) -+- 2"-1

s(n, c) n*s(n, c 1)-,
the induction is complete.
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PROPOSITION 4.1. Let G be a soluble group of derived length t, and let H be
a normal subgroup such that H I" n] G, with n >= 2. Then [H, kG] has exponent
e e(n, t), where e is an n!-number, and

k It(n, t) (2(-l)t 1)/(2-1- 1).

Proof. When t-- 1, k 1, and so the proposition is certainly true in
this case. If we write K [H, G], then K <= G’ and thus, using induction
on t, we suppose

[K, kG’] 1,

where k k(n, 1) and e e(n, 1) is an n!-number,
4.5,

[K, rG] =< [K, ’],

By Lemma

where r r(n, t), s s(n, tc). Thus

[H, (l+r)G] 1

1 --r I --2-k(n, t- 1) lc(n, t),

while se depends only on n, and is an n !-number.

LEMMA 4.6. Let H be a soluble normal subgroup of a group G such that G/C
is also soluble, where C is the centralizer of H in G. If H I:n G, then there
exists an integer tc such that [H, G] has finite exponent equal to an n !-number.

Proof. Since H is soluble and H l:nl H, therefore ,m(H) 1, for a
suitable m and where is an n !-number (by Proposition 4.1 or Theorem 1.10).
The required result will follow if we can establish that

[H, (i)G](i) =< ,i(H)

for each i ->_ 1 and where e(i) is an n!-number. We do this by an induction
on i. So let us write K [H, (i)G] and assume K() _<_ i(H). Then

whence

by Lemma 4.3.

[K(), H] 1 (mod ’i+I(H) ),

[K, H] 1 (mod ,+(H)),

[K, HI()- -<_ /i+(H),

If we now write X for a subgroup X taken modulo [K, H], then D, the
centralizer of/ in (, contains/, whence (//) is soluble. If B is the image
of in the automorphism group of /, then /B is a soluble subgroup of
the holomorph of/, and / I" nl implies/ [" nI/B because/ is an abel-
ian normal subgroup of B. Hence we may apply Proposition 4.1 to con-
clude

[K, kG] --<_ [K, H],
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for k k(n, t([B)) and e an n!-number. Hence

[H, (()+)G]()- -<_ +(H)

and e.e(i) -1 is an n !-number.

Proof of Theorem 1.8. Let C be the centralizer of H in G and C _-< D -<_ G,
where D <3 G, G/D is finite, and D/C is soluble. By Lemma 4.6, there
exists lcl such that [H a D, klD] has exponent an n!-number.
Now H/H a D is a finite soluble normal subgroup of G/H a D, and hence

its centralizer has finite index in G/H a D. By an induction on the derived
length of H/H a D and the use of Proposition 2.2 (i), we see that for some
finite k,

[H,kG] H <_- HaD.

Hence IN1 klD] has exponent an n !-number.
We shall have finished if we can show that

(6) [H, (>G] _-< [H1, D]

for each i >= 0; we naturally do this by an induction on i. Set
H= [H,, ()G], so that, by (6), H= lies in the centre of D, modulo [H, (+,)D].
In other words, H is a G/D-module, modulo [H,, (+)D], and thus, by Propo-
sition 2.2 (i),

[H2, aG] [H1,

from which we conclude that r(i -- 1) exists and can be taken to be r(i) -t- ka.

5. Engel structure

5.1. Proof of Theorem 1.5. Since Gp{L(G)uR(G)} is normal in G, it
must equal n(G). Thus L(G) n(G), and moreover n(G) is soluble,
whence n(G) n(G) by Theorem 4 (i) [EEl. But an(G) z(G) (Theo-
rem 2 [EE]) and consequently a(G) L(G). Further,

L(G) L(G) (G), by Theorem 4 (ii) [EE],
().

For any a R(G), and any x G,

at Gplx and g-lag for all g G}

is soluble, because aa <= (G). Moreover, R(G) <= (G) implies that R(G)
is a subgroup (Lemma 14 [EEl), and thus a, G. In particular aa , whence
a x and so x < at by Theorem 4 (i) [EE]. We conclude R(G) p(G).

Finally, if a e/(G), a is soluble (because a (G)), and hence a (G)
by Theorem 1.6. Thus/(G) (G).

Proof of Theorem 1.4. The argument depends heavily on Theorem 4 [EEl,
and we shall use this result without further explicit mention.

If GCa, then aN <3G/N, and therefore Gp[a,N/ M <3 G. Now
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M is soluble, and so Mea implies a <:1M, whence a <:1 G. On the
other hand, when G e a, then M Gp{a, N} <1<1 G and a <1<1 M, from
which we conclude a <:1 <3 G.
Now suppose a e G. Then aN p(G/N) <-_ r(G/N), and thus G/N aN.

So for any x e G, we can find n such that x’ [x, ha] e N. But M Gp{ a, N}
is soluble and aeM, whence Mea, and [x’,ma] 1 for some m. Hence
G ea, and consequently R(G)<= L(G)= (,(G). But this implies that
R(G) is a subgroup (Lemma 14 [EE]), so that aa <= R(G). For any x G,
aaex, and so also axex. Further, xN <1 axN/N (since G/N ), and
hence

H Gp{x, N} n a, <:1 a,.

As Gp{x, N} is soluble and axe x, so x is a left Engel element in the soluble
group H, and thus x <:1 H. We conclude x <1 ax, and as this works for
any x, a e p(G).

Finally, take a e/(G). Then aa N/N is soluble because aN (G/N)
(note that this is the first and only use of the hypothesis that (G/N) is
soluble), and consequently aa itself is soluble. But then a (G) by Theo-
rem 1.6.

5.2. In order to prove Theorem 1.3, we must show that any given finite
series from 1 to r(G) with factors in yields the existence of a similar se-
ries in which all the terms are normal in G. This we do in Lemma 5.2,
which also implies, incidentally, that powers of [ may be written without the
need of brackets. First, however, we establish a very simple fact.

LEMMA 5.1. If G is poly-l with series of length and n factors that are not
finitely generated, then every subgroup H is also poly-l with corresponding
integers l’, n’ satisfying l’ <= l, n’ <= n.

Proof. Let
1 Go < G < < G G

be a series in which factors of successive terms are in A. Setting H G n H,
we obtain the series

1 Ho -< H <= -<_ H H,
where

(7) Hi+l/Hi

__
(Gi+I H)G/Gi

for each i 0,-.., 1. The right-hand side of (7) is a subgroup of
G+/G and, as such, is in [.a Hence H is poly- with l’ <= 1. if Gi+/G
is finitely generated, so is every subgroup, and hence Hi+I/H is finitely gen-
erated. Thus also n’ _< n.

While the class l is (clearly) closed with respect to the operation of tking sub-
groups, it is unfortunately not closed with respect to homomorphic images. For ex-
ample, the additive group of the rational numbers is in I’, but not so the rationals mod-
ulo one.
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LEMMA 5.2. If G has a series

1 Go < G1 < < Gz- G,

where, for each i, Gi+I/G e and exactly n of these factors are not finitely gen-
erated, then G possesses a characteristic series (i.e., a series of characteristic sub-
groups)

1 Co < C < < Cz, G,

where l’ <- l, each C+/C e 1 and at most n of these factors are not finitely
generated.

Proof. We shall prove the lemma by an induction on 1. So let s -[- 1
and set

C,= VIG",
where the intersection is taken over all automorphisms of G. Then C8 is
characteristic in G, and, as a subgroup of Gs, it is poly-.l with series of
length -<_ s and the number of nonfinitely generated factors at most equal
to that between 1 and G (Lemma 5.1). By the induction hypothesis, and
because characteristic subgroups of C8 are characteristic in G, we shall have
completed the proof of the lemma if we can verify that G/C8 1 and that
G/C e (R) whenever G/G @.

Suppose x e C, but that xp C for some prime p. Then there exists a

such that x e G" and hence p is in the torsion spectrum of G/G But
G/G G/G, and thus p is in the torsion spectrum of G/G. This last is
finite, and consequently so also is the torsion spectrum of G/C.
To show that G/C has finite rank, in view of the fact that C8 contains G’,

the commutator group of G, it will be sufficient to show G/G has finite rank.
To do this, we set A G G’ so that

G’ A0 =< A < < A+ G.

By the Zassenhaus Lemma,

A+I/A G+/(G+ n G’)G,

and the right-hand side, being a homomorphic image of G+/G, has finite
rank. Thus each A+I/A has finite rank, and thus G/G’ also has finite rank.
We conclude that G/C e 1.

Suppose, finally, that G/G is finitely generated, and let S/G be the torsion
group of G/G. Clearly T/C is the torsion group of G/C,, where T Cl S.
If e is the exponent of the (finite) group S/G, then T/C has exponent at
most e. But T/C has finite rank, and thus T/C, is finite. Hence to prove
that G/C, is finitely generated, it only remains to show this of GT.
Now G/T, as a torsion-free group of finite rank, has a countable group of

automorphisms, and hence the family (G/S) is countable. But each group
in this family is a direct product of the same finite number of infinite cyclic
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groups, and hence their cartesian product P is the cartesian product of a
countable number of infinite cyclic groups. On the other hand, G/T is
countable and is isomorphic to a subgroup of P, whence G/T is free abelian
by a theorem of Specker [10]. The fact that G/T also has finite rank now
ensures that G/T is finitely generated.

The reader will note that the proofs of both Lemmas 5.1 and 5.2 work
equally well if, instead of , one uses the class of all abelian groups of finite
rank. We state this as

LMMA 5.3. The statements of Lemma 5.1 and ii Lemma 5.2 remain
true when is replaced by the class of all abelian groups of finite ranl.

We are now in a position to prove Theorem 1.3. It turns out that parts
(i), (iii) and (ii), (iv) go naturally together; and the first of these pairs is
contained in the following more general result.

PIOOSTON 5.1. If G is any group such that n(G) is poly-"abelian of
finite ranl", then o-(G) (G) is the unique maximal hypercentral normal
subgroup, and p(G) o,+(G), where 1 is finite and n is the number of non-

finitely generated factors in any given series for (G).

Proof. Suppose we have already proved that p(G)= an,+(G). If
Y n(G), then Y 7(Y), and thus we may apply the fact concerning p

to Y itself to obtain p(Y) a(Y). But as Y is soluble, every right Engel
element is in p(Y) (by Theorem 4 (iii) [EEl), and thus, as Y is locally nil-
potent, p(Y) Y. Consequently Y a(Y), i.e., Y is hypercentral. That
every other hypercentral normal subgroup of G is contained in Y follows
from the simple fact that every element in such a normal subgroup is serial
inG. Moreover, z(Y) Yandz(Y) z(G), so thatz(G) Y.

Let H p(G) and observe that, by Lemma 5.3 (i), H is also poly-"abelian
of finite rank" and has a series with at most n factors that are not finitely
generated. By Lemma 5.3 (ii) we can find a series of characteristic sub-
groups of H,

1 H0 H < H H,

such that each H+/H is abelian of finite rank and at most n are not finitely
generated.
Now, H <1 G and H e G together imply H1 a+(G) by Proposition 1.1

(ii). But if, in fact, H (R) , then H e G yields H le ( (for [ab, x]
[a, r][b, r] whenever a, b H, since H is an belian normal subgroup of
G); and then H =< a(G), by Proposition 1.1 (i). An easy induction on s
now shows that H =< a+(G), whence actually H an,+k(G), because,
anyway, a (G) <_- H.

Parts (ii), (iv) of Theorem 1.3 depend on the following result.

LEMMA 5.4. If M is a subgroup of a gien group X and it contains a series
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1 Mo < MI < < M. M

of subgroups normal in X, such that each M+I/M l and M le X, then
M <_ a(X).

The proof is by an induction on m and the use of Proposition 1.1 (i).

Proof of Theorem 1.3, parts (ii), (iv). By Lemma 5.1, e(G) is poly-,
and hence, by Lemma 5.2, e(G) can be linked to 1 by a finite characteristic
series with factors of successive terms in . Further, e(G) ]e e(G), and thus
we may apply Lemma 5.4 with both M and X replaced by e(G). We con-
elude e(G) <= ak#r(G), i.e., e(G) is nilpotent. To complete part (ii) of
Theorem 1.3, we note that, naturally, every nilpotent normal subgroup of G
must lie in e (G).

Finally, choose a e (G). Then aa le G, and Lemmas 5.1, 5.2 show that
we may apply Lemma 5.4 with aa, G taking the places of M, X, respectively.
Hence aa <= ak(G), whence (G) _-< a(G), as required.

5.3. We turn now to the proof of Theorem 1.2. The first two parts of
that theorem will be proved in a somewhat more general setting as follows.

PROPOSITION 5.2. If G has a nilpotent normal subgroup N such that GIN
has Max, then r(G) is hypercentral, and (r(G) is nilpotent.

Proof. If Y o(G), then N n Y is a nilpotent normal subgroup of Y and
Y/N Y @ ?R, because Y is locally nilpotent. Hence there exists lc such
that

"v(Y) H =< Nn Y.

Since H e Y, we have H __< a(Y) by Theorem 3.1 (ii) (where c is the class
ofNn Y). Thus Y a+(Y).
The proof that e(G) is nilpotent is exactly similar, but uses part (i) of

Theorem 3.1 instead of part (ii).

Let us now prove the remaining two parts of Theorem 1.2.
Suppose N is a nilpotent normal subgroup of our group G and such that

G/N e ?. Since G/N has Max, Theorem 1.3 (iii) shows O(G/N) ak(G/N)
for some finite k. Then

H [o(G), G] =< N,
and thus Theorem 3.1 (ii) yields part (iii) of our present theorem.
For the last part, take a (G), and observe that a N/N <= a(G/N),

whence
H [aa, kG] <= N.

Now aa le ( and thus Theorem 3.1 (i) applied with H [a, G] yields
a e a+(G), whence (G) ao(G), as required.

Of course, part (iv) of Theorem 1.2 is already implied by Theorem 1.7,
but the virtue of the present proof is that it bypasses Theorem 1.8.
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To conclude this section we shall show what happens when one confines
attention to the finitely generated groups in 9.
THEOREM 5.1. If G (R) n 9l, then o-( G) 3(G) and p(G) (G)

In any finitely generated group, a and a have the same value (of. the last
paragraph of the proof of Lemma 3.4), and hence the equality p(G) (G)
is an immediate corollary of Theorem 1.2. The first part of the theorem is a
consequence of the following more general result, which was effectively found
by Philip Hall in connexion with his investigation [7]. The proof that we
give is also due to him.

PROPOSITION 5.3. If G is finitely generated and has a nilpotent normal sub-
group N such that GIN has Max and is finitely related, then n(G) is nilpotent.

The reader will recall that a finitely related group is one that can be de-
fined by a finite number of generators subject to a finite number of relations.
The property of being finitely related is a poly property, whence all groups in

are finitely related. (See [5], Lemma 1.)

Proof of Proposition 5.3. We shall use an induction on c, the class of N
and, for the moment, shall assume the result true when c 1.

Let us write Y s(G) and note that Y__> N. We assume c > 1 and,
by the induction hypothesis, (G/’c(N)) is nilpotent. Hence Y/c(N) is
nilpotent, from which we conclude Y/’y2(N) is nilpotent (because c => 2).
But then Y is nilpotent by a result of P. Hall ([6], Theorem 7).

This leaves the case c 1. As G is finitely generated and GIN is finitely
related, therefore N is finitely generated as a normal subgroup of G, say by
xl,-", x. Since GIN has Max, Y/N is finitely generated, and thus
Y GpIN, yl, "", Yn}, for suitable y.’s. The local nilpotence of Y ira-
plies that the groups Gplx, yl, y} are nilpotent, for each i 1, m.
If r is the maximal among their classes, then

(8) [Xi, gl, "’", gr] 1

for alli 1, ...,mandallgje Y. (Recall that nowNisabelian!) Be-
cause every element in N is a word in conjugates of the x’s and as Y is nor-
mal in G, we may replace (8) by the stronger assertion that

(9) IX, gl gr] 1

for all x N and all g. e Y. But (9) is equivalent to saying that N _-< at(Y).
Since Y/N is nilpotent, we may conclude that Y itself is nilpotent.

6. Examples

6.1. The two groups, whose existence will establish Theorem 1.1, are to
be constructed on the same plan as the counterexample in [EEl. Thus, each
of the groups will be a direct product of three groups whose Engel structures
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intertwine in the required manner. Of course, this leaves open the problem
of the existence of indecomposable soluble groups of the prescribed types.
We shall construct, below, two countable metabelian p-groups, called U

and V, with the following Engel structures:

(u) =(u) u,

(v) =(v) v,

a(U) a(U) (U) 1;

3(V) (V) o(V) D,

where D is a nontrivial normal subgroup strictly smaller than V. Further,
let W be the group F/(F’)F’’, where F is the free product of a countable
number of cyclic groups, each of order p. We showed in [EE] (pp. 166-167)
that

(W) (W) (W) W,
and

(w) (w) .
(As a matter of fact, we only proved the equalities when p 2, but, as we
remarked in the footnote on p. 166, essentially the same proof works for
arbitrary p.)

If we set G U X V X W, then G is a countable metabelian p-group and,
by Proposition 5 [EE], we have

(a) uxvv,
(G) U X D X W,
(G) 1 XD X W,

(a) vx,
a(G) 1 X D X 1.

Thus G satisfies all the conditions required in Theorem 1.1 (i).

6.2. The groups U, V are both constructed from an abelian group A of
type p and a cyclic group B of order p.

Let r be the difference ideal of the group algebra of A over a field F of
characteristic p. Then (a 1) a" 1, and hence, as every element in
A has order a power of p, r is spanned (over F) by nilpotent elements. But
r is commutative and thus is actually a nil-algebra. However, P P()
where r() is the F-subspace spanned by all (a- 1) , with a e A: for if
a’ A, then there exists a e A such that a’ a".
Now take any P-module M. The fact that r is nil implies M e A, and

the equality P r() shows that if x in M satisfies x el A, then x e al(M:A):
for then z(a 1) 8 0 for all a e A and some fixed s, whence x(a’ 1) 0
for all a’ A.

Suppose U is a group containing a p-elementary abelian normal subgroup
M with U/M A. Then U is a metabelian p-group so that

(u) =(u) u.
As M is a P-module (with F the field of the integers modulo p), M e U and
hence U e U, i.e., 3(U) U. Moreover, if u (U), then for any u’ U,
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[u, u’] M n 5(U), i.e., [u, u’] e A, whence, by the remarks above,
[u, u’] al( U). If U has trivial centre, then [u, u’] 1, from which we con-
clude u al(U), i.e., 5(U) cl(U) 1.
A group of the required type is provided by the wreath product of B by

A, and we define U to be this group. The diagonal group of U is the direct
product of a countable number of copies of B and thus has all the properties
of the subgroup M above. The fact that U has trivial centre is a corollary
of a result of Baumslag ([3], Corollary 3.2).

Finally, we define V to be the wreath product of A by B. Then V is
another locally nilpotent metabelian p-group, so that (V) o(V) V.
But V satisfies Min, whence, by Theorem 1.2 or Theorem 1..3, o(V) c(V),
5(V) a(V), and 3(V) is nilpotent. Further, if D is the diagonal group
of V, D V implies D __< c(V) by Proposition 2.2 (ii), and, since D is a
maximal subgroup of V, we shall have

D c(V) 5(V) 3(V)

provided only that we arc able to check V is not nilpotent. This, however,
follows from a theorem of Baumslag [3] to the effect that the wreath product
of a group X by a group Y is nilpotent if, and only if, Y is a finite p-group and
X is a nilpotcnt p-group of finite exponent.

Aside from its use in Theorem 1.1 (i), the group V has another part to
play. If S denotes the symmetric group on three symbols and C is its normal
subgroup of order 3, then

o-(,sxv) =cx v, -(,sxv) =CXD,
p(S X V) 1 X V, (S X V) 1 X D.

Since S X V has Min, we have established

PROPOSITION 6.1. There exists a countable metabelian group with Min in
which the subgroups determined by o-, p, 3, are all distinct.

6.3. We turn now to torsion-free groups. Our example for Theorem 1.1

(ii) has the form L X M X N, where_
o(L) < (L) (L) < L;

< (M) 3(M) < c+l(M) M;
and

(N) < 3(N) p(N) N.

The fact tha( , o, a, 3, really do determine five distinct subgroups of
L X M N follows, as usual, from Proposition 5 [EE]. Thus Theorem 1.1
will be completely proved once we have determined the groups L, M, N.

The first group, L, is the extension of Q, the additive group of the rational
numbers, by an infinite cyclic group on x defined by 1. r, where
r {--1, O, 1}. For any integer lc - 0 and any positive integer m, we
have
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[1, ,x] (r/c 1)
so that x/c ca(L). But a(L)>__ Q, and hence a(L)= a(L)= Q. If
yeal(L), then yea(L), i.e., yeQ. Then y yX yr implies y 0,
whence al(L) 1. As (L) is of type [, we know c(L) p(L) from
Theorem 1.3, and thus p(L) 1.

The second group, M, is the extension of a group C, free abelian on a count-
able set c, c, by an infinite cyclic group on y defined by

Ci
y

Ci Ci--1

for alli >- and where co 1. We assert

(10) a(M) Gplcl, c}.

If cy/c thenoq(M),

I IcY C2]--1 [C2, y/C] C1[C2, y/C--l] C1

mS
so that k 0 and c ot(M). But then c cTM c whence

I [c,y] c’’’
and consequently m m 0, i.e., c e Gp{c}. This has established
(10) when r I. Assume it for r s, and let g--+ 0 be the epimorphism
M M/a(M). Then

1 M/ols(M) Gp{+}

by the case r l, and hence +I(M) Gp{c, c+1}, thus completing
the induction argument. We conclude from equation (10) that a(M) C,
and thus a+(M) M.
Suppose y/c a(M). Then [c, ,,y/c] l for all c C and some fixed n. By

(o),
IOn+l, yk] [Cn+l y]k Cn

k (mod a,_a(m)),
whence

and consequently

[cn+ ny/c] [Cnk Y, (n--1)Yk]
[Cn, (n--1)y/c],

kI [Cn+I, nY/c] Cl

with v e ,,_,(M)

Thus Gp{y} n e(M) l, and as e(M) >= C, we must have e(M) C.
Finally, we define the third group, 5f. Let S be the set of all sequences of

integers s (s) (s, s., ...), with 0 <= s. -<_ i for each i >= 1, but with
s. 0 for all but a finite number of i’s. Purely in order to prevent possible
confusion later, we exclude the zero sequence from S. We set X to be the
free (additively written) abelian group on S.

If s (s) e S and j, n are any positive integers, then we define s(j’n) to
be

(i) the zero element of X when s. + n > j; and
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(ii) the element (ti) of S, when sj-n _<_j, where t. s.-l-n and
ti si if i # j.

For each positive integer i, the mapping

s’--s-k s(i" 1)

extends to an endomorphism of X, say c. We assert that ci is actually an
automorphism. For if s S, then

s (s s(i’l_) + s(i’2) )c,

where the series must terminate as s(i’n) 0 when sr + n > i, and thus
Xci X. Further, if

s" )c 0,(ml -t- + mk

mk arc nonzero integers and s s distinct elements ofwhere rnl,

S, then . rn. -- i m. s’(i’l) 0.

Supposing s to be one of those among s s with smallest it’ coordinate,
then s si(i’l) for any j, whence ml 0. This is a contradiction, and
consequently ci is one-one.
We show next that the subgroup C, of the automorphism group of X,

generated by c, c., is the free abelian group on these elements. That C
is abelian is obvious. Consider next an clement

C Clml Crmr

By an induction on mi -- -- mr I, one may prove quite easilyof C.
that

mrsc Cr S -- m s(l’l) -t- -t- m s r 1) -t- x,

where x is 0 or is a sum of basis elements for which t >= s always and t > s
at least twice or t > s -t- 1 at least once. If c is the identity automorphism,
then

_.,i rn s(j" -t- x O,

and, as no basis element in the expression x is the same as any of
s(l:l), ..., s(r:l), we must have, for each j, mj 0 or s(j:l) O, i.e.,
mi 0 or si =j. If we choose s such that s. <j for allj 1, ...,r,
then sc s implies m mr 0. Itenec c, c, form a basis
of C.
We define our group N to be XC, regarded as a subgroup of the holomorph

of X. Clearly, N is torsion-free metabelian group.
If x e a(N), then x e X since a.(N) -<_ X. Suppose

x rns + + ms,
and choose any positive integer r such that (s) 0 for each i. Then
s(r:l) 0, and
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IX, (r]-- X(Cr- 1) misi(r’l) 0

unless ml mk -0. We conclude al(N) I. But, by Theorem
1.7, a(N) (N), and hence

a(N) (N) 1.

It remains to check that (N) N. Since C _-< (N) anyway, we need
only prove each c,:e(N). Now for any xceN (where xeX, ceC),
[xc, c] [x, rC.] and thus, to show N ] c, it is sucient to prove X I c,
while this, in turn, follows from S I c. But this last fact has been built into
the definition of S" [s, (,:+)c] s(i’i - 1) 0 always. We conclude that

-(N) p(N) N,
as was required.
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