
SEMIPROJECTIVE COMPLETIONS OF ABSTRACT CURVES

BY

JACK OHM

Introduction

Every embedding of a variety V can be essentially accomplished by adjoin-
ing new representatives to V. When an embedding of V is obtained by ad-
joining representatives of some projective variety, we call such an embedding
semiprojective. In this paper we prove the following result" Given a variety
V and a curve U which is a subvariety of V and has a representative on every
representative of V, V can be semiprojectively embedded in a variety V’ in
such a way that the image of U is complete.
Our notation is that of Well. In addition, we shall call a birational corre-

spondence T between varieties V and V’ pointwise biregular if T is biregular
at every point P of V which corresponds to a point of V’. Also, if T is
correspondence between V and V’ and U corresponds to U under T, we
shall write T( U) Up.

1. The nonbiregular and pseudopoint loci

PROPOSITION 1.1. Let T be a birational correspondence between the varieties
V and Vp. Then there exists a unique closed subset 9r of V such that

every component of 9 corresponds under T-1 to a subvariety of V,
(ii) if PP in V corresponds nonbiregularly under T- to a point P in V,

PP is in 9rp,
(iii) if PP is in 9r and PP corresponds to a point P in V, PP corresponds

nonbiregularly.
Moreover, if V, Vp, and T are defined over k, 9r is It-closed.

Proof. If V, V’, and T are defined over k, by Weil [3], p. 514, Lemma 1,
the set of points of V where T- is not biregular is k-closed. Call this set
?I’, and let 9r’ be the (algebraic) projection of (V X lp) n T on V’. Then
9r’ clearly has the stated properties.

If T is a birational correspondence between V and Vp, the closed subset of
V given by Proposition 1.1 will be called the nonbiregular locus of T on V
and will be denoted by 9rp.
We now make explicit the concept of adjoining representatives to a variety.

DEFINITION 1.1. Let V [V, ft, T,] and V’ [V’; ff’; T’],
1 -< a _-< h, 1 =< /=< l, be varieties, and T a birational correspondence between
V and V having representative T," on V, X V’. We shall say a variety
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V* [V*; 5:*; T,*], 1 <__ <= h + is a T-extension of V and V’ provided
we can renumber the representatives of V* so that

and

Vi*= V, 5:i*= ffi, Tit*= T. for 1 _<_ i,j-<_ h,

Yh+i*-- Vi’, lYh+i*--lYi’, Th+i,h+j*-- Tij’ for 1 <= i, j <- l,

Ti.h+* T" forl-< i=< h, l=<j-< 1.
Moreover, we shall say V* is an extension of V if there exist varieties V’

and T such that V* is a T-extension of V and V’.

It follows immediately that if T is a birational correspondence between
V and V’, there exists a T-extension of V and V’ if and only if T is pointwise
biregular. It is also easy to see (as we have done in [2]) that if V and V’
are defined over k, V’ is k-isomorphic to an extension of V if and only if there
exists a dense k-embedding of V in V’.

In particular, if V, V’, and T are defined over k and T is a bi-
rational correspondence between V and V’, then there exists a T-extension
of V and V’ r’, which is defined over lz and which we shall denote by
(V, V’- ’).
PROPOSITION 1.2. Let T be a correspondence between the varieties V and

V’, and let ]c be a field of definition for T, V, and V’. Then the set of all points
P’ of V’ such that T is not complete over P’ is a It-closed subset of V’.

Proof. Let V,, 1 __< a -< h, be the representatives of V, and let , be that
projective variety whose part at finite distance is V,. Let T* be the graph
of T (considered as a mapping) on I1 X X ?h X V’ V*. If ft, is the
frontier on V,, V, ft, is a k-open subset of ?,, and l, (V, ft,), is a It-closed subset of
k-closed subset of V*, so T* n if* is also k-closed on V*. Then the (algebraic)
projection (’ of T* if* on V’ is ]-closed.

Since V1 X"- X V is complete, the set-projection of T* n if* on V’
coincides with (’; so a point P’ of V’ is in (V if and only if there exists a point
(PI P P’) of T* [ if* lying over P’. But this is equivalent to saying
T is not complete over
The closed subset of V’ given by Proposition 1.2 will be called the pseudo-

point locus of T on V’ and will be denoted by (r’.

DEFINITION 1.2. Given varieties U, V, and V’ with U a subvariety of V,
we shall say U can be completed (k-completed) by embedding V in V pro-

We are identifying T with the naturally induced correspondence between V and
V 97T’, where here V 97,T’ is the abstract variety defined by Weil on p. 179 of [4].
Where no confusion can result, we shall use the notation V’ 9T’ also to denote the set-
comolement of 9"(,T’ in V’.
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vided there exists an embedding (/c-embedding) T of V in V’ such that U
corresponds under T to a complete subvariety of V’. We shall refer to V’
as a completion (k-completion) of U under T, and to T as a completing
completing) of U in V’.

THEOREM 1.1. Let V be a variety defined over a field lc, and let U be a sub-
variety of V. U can be k-completed by embedding V if (and only if) there exist
a variety V’ defined over tc and a birational correspondence T between V and V
and defined over/C such that U corresponds biregularly to a complete subvariety
U’ of V’ under T and 9r n 5)r n U’ . Moreover, when there exist such a
V’ and T, the injection map of V into (V, V’ r’) is a k-completing of U.

Proof. Suppose T and V’ are defined over/C, where T is a bimtional corre-
spondence between V and V’ with U corresponding biregularly to u complete
subvariety U’ of V’ and 9r (r’ U’ . If I is the iniection map of V
into (V, V’ r’) and I’ the iniection map of V’ 9r’ into (V, V’
we have I(U) I’(U’) U*. Therefore, if K is a field, of definition for
U*, U, U’ containing k, and if P is a generic point of U over K and P’ corre-
sponding generic loint of U’ over K, then there exists a generic point P* of
U* over K such that I(P) I’(P’) P*. P* then has the property that
it agrees with P on any representative of U and with P’ on any representative
of U’. Moreover, P X P’ is a generic point over K of the birational corre-
spondence T* between U and U’ obtained by restricting T. U* is complete.

For if not, there exists a specialization P* K_. Q. where Q* is the pseudopoint

of U*. But associated with this there is a specialization (P, P’) K_ (Q, Q,)
where Q* agrees with Q on any representative of V and with Q’ on any repre-
sentative of V’. Hence Q is the pseudopoint of U; and since U is complete,
QP must be in 9"T n Up. But then T’is not complete over Q, so QPis
in (PT.P;and therefore QPisin (Pr. n rP U’. But 6r, 6)r Up, so
QP is in (9r’ r’ Up. This is a contradiction to the hypothesis that
(PTP n rP U 0. Thus, U* is complete.

2. Semiprojective completions

We shall say a variety V is a semiprojective Yariety provided there exists
projective variety which is isomorphic to an extension of V. An extension
V* of V will be called a semiprojective extension provided V* is an extension
of the form (V, Vp- 9.p) where V is semiprojective. If a subvariety U
of a variety V can be completed (/c-completed) by embedding V in a semi-
projective extension V*, we shall say U can be semiprojectively completed
(semiprojectively /c-completed) by embedding V in V*.
Any embedding, then, of a variety V in a variety (V, r), where

is the projective join of the projectively embedded representatives of V, is
a semiprojective embedding. In particular, it is easily seen that any surface
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with only a finite number of singularities can be semiprojectively completed
by such an embedding.
We now prove our main theorem.

THEOREM 2.1. Let U be a subvariety of a variety V, let lc be a field of defini-
tion for U and V, let V be the projective join of the projectively embedded repre-
sentatives of V, and let T be the natural correspondence between V and V. If U
corresponds biregularly under to a subvariety f of , then there exist a semi-
projective variety V’ and a birational correspondence T between V and V such that

(i) both T and V
(ii) U corresponds biregularly under T to a variety U which is k-iso-

morphic to the projective variety U,
(iii) 9r n 6) U is either empty or has dimension <- r 2.

Proof. Let be the nonbiregular locus of P on if, and letfl(x), ,fp(x)
be a basis of forms for () in ][x0, ..., Xn]. There exists a form g(x) in
() and not in

But this means U corresponds nonbiregularly to 5? under P, a contradiction.
f/g where p ,/, and , degf, , 1.c.m. , andIf now r(x)

i deg g, then the r are quotients of homogeneous polynomials of the same
degree. Since g(x) is not in ()

_
t(ff), if/5 is u generic point of ff over, g(D) 0; so r(P) is a function on ?. Then r(D) (r(D), r,(D)

is a point of the affine space SP; so (/5, r(/5) has a locus V over k in I X S".
If S-- is the projective variety having S as its part at finite distance, X -is an extension of X S; and X is isomorphic to the projective join of

and S--. Hence l X S is semiprojective, and therefore V is semipro-
jective too.

Let now P be a generic point of V over k, and P the corresponding generic
point of if, so that (P,/5) is a generic point of P over/. There is a natural
birational correspondence between V and V’, namely the locus T of
(p,/5, r(/5)) over k. If Q is a generic point of U over/ and O the generic
point of over/ corresponding to Q under , r(O) 0 since fi(O) 0
and g(O) O. Therefore U corresponds under T to the subvariety U of V
having generic point (O, 0) over k. Then the projection of U’ on is clearly
a k-isomorphism, so U’ is k-isomorphic to the projective variety 5?.

Suppose N’ is a component of the nonbiregular locus 9r’ on W, and let
(/5, r) be a generic point of N’ over . By definition of 9r’ there exists a
point P1 in V such that (P, t5, r) is in T. Assume that g(/5) 0. Then
/5 is not in , so P corresponds biregularly to t5 under . But also each
r(/5) is in the specialization ring of/ in/(/5) when g(/5) 0, so each of

For, if V is a surface with no singular curves, every component of 9T contracts to
a point of V under T-. But then every point of corresponds to a point of V, and
hence T is complete over every point of T Therefore, T f (T 0. In [1] Nagata
has made this observation for the case that V is normal.
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the functions r(/5) is defined at Pl and ri r(Pl). Since P1 corresponds
biregularly to Pl and each ri(/5) is in the specialization ring of/51 in k(/5),
also corresponds biregularly to (/51, r) under T; but this means N corresponds
biregularlyunder T, a contradiction. Therefore, g(/l) 0. Then fi(/51) 0
fori 1,..., palso;for otherwise, ifr (rl,.-., rp) andfi(Pl) 0,
ri r(Pl) and (Pl, r) would not be a point. Hence, Pl is in , and
(/51,0) is in Ur.

If N* is the locus of (P1,0) over k, N* is a proper subvariety of U since
its projection on is different from due to the fact g(/51) 0. Moreover,
since P1 corresponds to/51 under , the proiection from to is regular at

/51. But then the specialization/5 k_/51 extends only to the specialization

(p,/5) k_ (p1, Pl), so afortiori the specialization (/5, r(/5) k_+ (pl, 0) ex-

tends only to the specialization (P,/5, r(/5) k_. (P1, Pl, 0) ;so N* corresponds
under T- to a subvariety of V (namely the locus of P1 over ), and T is com-
plete over N*.

Finally, observe that N n U

_
N*. Let then * be the union of all such

N* obtained from components of rp. Then r n U 9*, and since
is a proper closed subset of U and therefore has dimension at most r 1,
any (r 1)-dimensional component of 9r U must also be a component of
*. But we have seen T is complete over every component of 9*, so no
component of 9* is (prr, and therefore no (r 1)-dimensional component
of 9r U is

_
(err. Thus, (9 Ur) (Pr has dimension at most r 2.

COOLLAnY 2.1. Let U be a curve which is a subvariety of a variety V and
has a representative on every representative of V, and suppose U and V are de-
fined over a field l. Then there exist a semiprojective variety V and a birational
correspondence T between V and V such that the injection map of V is a k-com-
pleting of U in V, V’ 9r’).

Proof. Apply Theorems 2.1 and 1.1.
Remarks. (i) The requirement that U have a representative on every

representative of V in Corollary 2.1 may be removed if U is a normal curve on
a surface V, since then U corresponds biregularly to on ]2 and Theorem 2.1
applies. Question" Is the "fully represented" condition necessary when V is,
for instance, a nonsingular variety of dimension > 2?

(ii) In Theorem 2.1 the properties of that are used are that ]2 is pro-
jective, and that the projection from P to is regular at every point of
which corresponds to a point of V. We could therefore have replaced by
any other variety with these properties.
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