SEMIPROJECTIVE COMPLETIONS OF ABSTRACT CURVES¹

BY

Јаск Онм

Introduction

Every embedding of a variety V can be essentially accomplished by adjoining new representatives to V. When an embedding of V is obtained by adjoining representatives of some projective variety, we call such an embedding semiprojective. In this paper we prove the following result: Given a variety V and a curve U which is a subvariety of V and has a representative on every representative of V, V can be semiprojectively embedded in a variety V' in such a way that the image of U is complete.

Our notation is that of Weil. In addition, we shall call a birational correspondence T between varieties V and V' pointwise biregular if T is biregular at every point P of V which corresponds to a point of V'. Also, if T is a correspondence between V and V' and U corresponds to U' under T, we shall write T(U) = U'.

1. The nonbiregular and pseudopoint loci

PROPOSITION 1.1. Let T be a birational correspondence between the varieties V and V'. Then there exists a unique closed subset $\mathfrak{N}_{T'}$ of V' such that

- (i) every component of $\mathfrak{N}_{T'}$ corresponds under T^{-1} to a subvariety of V,
- (ii) if P' in V' corresponds nonbiregularly under T^{-1} to a point P in V, P' is in \mathfrak{N}_T' ,
- (iii) if P' is in $\mathfrak{N}_{\mathbf{T}}'$ and P' corresponds to a point P in V, P' corresponds nonbiregularly.

Moreover, if V, V', and T are defined over k, \mathfrak{N}_{T}' is k-closed.

Proof. If V, V', and T are defined over k, by Weil [3], p. 514, Lemma 1, the set of points of V' where T^{-1} is not biregular is k-closed. Call this set \mathfrak{A}' , and let \mathfrak{A}_{T}' be the (algebraic) projection of $(V \times \mathfrak{A}') \cap T$ on V'. Then \mathfrak{A}_{T}' clearly has the stated properties.

If T is a birational correspondence between V and V', the closed subset of V' given by Proposition 1.1 will be called the *nonbiregular locus* of T on V' and will be denoted by \mathfrak{N}_T' .

We now make explicit the concept of adjoining representatives to a variety.

DEFINITION 1.1. Let $V = [V_{\alpha}; \mathfrak{F}_{\alpha}; T_{\beta\alpha}]$ and $V' = [V_{\gamma}'; \mathfrak{F}_{\gamma}'; T_{\delta\gamma}']$, $1 \leq \alpha \leq h, 1 \leq \gamma \leq l$, be varieties, and T a birational correspondence between V and V' having representative $T_{\alpha\gamma}''$ on $V_{\alpha} \times V_{\gamma}'$. We shall say a variety

Received August 18, 1960.

¹ This paper is essentially an extract from the author's 1959 doctoral dissertation at the University of California, Berkeley.

 $V^* = [V_{\mathfrak{f}}^*; \mathfrak{F}_{\mathfrak{f}}^*; T_{\mathfrak{K}}^*], 1 \leq \zeta \leq h + l$ is a *T*-extension of V and V' provided we can renumber the representatives of V^* so that

$$V_i^* = V_i, \quad \mathfrak{F}_i^* = \mathfrak{F}_i, \quad T_{ij}^* = T_{ij} \quad \text{for } 1 \leq i, j \leq h,$$
$$V_{h+i}^* = V_i', \quad \mathfrak{F}_{h+i}^* = \mathfrak{F}_i', \quad T_{h+i,h+j}^* = T_{ij}' \quad \text{for } 1 \leq i, j \leq l,$$
$$T_{i,h+i}^* = T_{ij}'' \quad \text{for } 1 \leq i \leq h, \quad 1 \leq i \leq l.$$

and

Moreover, we shall say V^* is an *extension* of V if there exist varieties V' and T such that V^* is a T-extension of V and V'.

It follows immediately that if T is a birational correspondence between V and V', there exists a T-extension of V and V' if and only if T is pointwise biregular. It is also easy to see (as we have done in [2]) that if V and V' are defined over k, V' is k-isomorphic to an extension of V if and only if there exists a dense k-embedding of V in V'.

In particular, if V, V', and T are defined over k and T is a birational correspondence between V and V', then there exists a T-extension of V and $V' - \mathfrak{N}_T'$, which is defined over k and which we shall denote by $(V, V' - \mathfrak{N}_T')$.²

PROPOSITION 1.2. Let T be a correspondence between the varieties V and V', and let k be a field of definition for T, V, and V'. Then the set of all points P' of V' such that T is not complete over P' is a k-closed subset of V'.

Proof. Let V_{α} , $1 \leq \alpha \leq h$, be the representatives of V, and let \tilde{V}_{α} be that projective variety whose part at finite distance is V_{α} . Let T^* be the graph of T (considered as a mapping) on $\tilde{V}_1 \times \cdots \times \tilde{V}_h \times V' = V^*$. If \mathfrak{F}_{α} is the frontier on V_{α} , $V_{\alpha} - \mathfrak{F}_{\alpha}$ is a k-open subset of \tilde{V}_{α} , and $\tilde{V}_{\alpha} - (V_{\alpha} - \mathfrak{F}_{\alpha}) =$ $\tilde{\mathfrak{F}}_{\alpha}$ is a k-closed subset of \tilde{V}_{α} . Then $\tilde{\mathfrak{F}}_1 \times \cdots \times \tilde{\mathfrak{F}}_h \times V' = \mathfrak{F}^*$ is a k-closed subset of V^* , so $T^* \cap \mathfrak{F}^*$ is also k-closed on V^* . Then the (algebraic) projection \mathfrak{O}' of $T^* \cap \mathfrak{F}^*$ on V' is k-closed.

Since $\bar{V}_1 \times \cdots \times \bar{V}_h$ is complete, the set-projection of $T^* \cap \mathfrak{F}^*$ on V' coincides with \mathcal{O}' ; so a point P' of V' is in \mathcal{O}' if and only if there exists a point (P_1, \cdots, P_h, P') of $T^* \cap \mathfrak{F}^*$ lying over P'. But this is equivalent to saying T is not complete over P'.

The closed subset of V' given by Proposition 1.2 will be called the pseudopoint locus of T on V' and will be denoted by \mathcal{O}_{T}' .

DEFINITION 1.2. Given varieties U, V, and V' with U a subvariety of V, we shall say U can be *completed* (k-completed) by embedding V in V' pro-

346

² We are identifying T with the naturally induced correspondence between V and $V' - \mathfrak{N}_{T'}$, where here $V' - \mathfrak{N}_{T'}$ is the abstract variety defined by Weil on p. 179 of [4]. Where no confusion can result, we shall use the notation $V' - \mathfrak{N}_{T'}$ also to denote the set-complement of $\mathfrak{N}_{T'}$ in V'.

vided there exists an embedding (k-embedding) T of V in V' such that U corresponds under T to a complete subvariety of V'. We shall refer to V' as a *completion* (k-completion) of U under T, and to T as a *completing* (k-completing) of U in V'.

THEOREM 1.1. Let V be a variety defined over a field k, and let U be a subvariety of V. U can be k-completed by embedding V if (and only if) there exist a variety V' defined over k and a birational correspondence T between V and V' and defined over k such that U corresponds biregularly to a complete subvariety U' of V' under T and $\mathfrak{N}_{T'} \cap \mathfrak{O}_{T'} \cap U' = \emptyset$. Moreover, when there exist such a V' and T, the injection map of V into $(V, V' - \mathfrak{N}_{T'})$ is a k-completing of U.

Proof. Suppose T and V' are defined over k, where T is a birational correspondence between V and V' with U corresponding biregularly to a complete subvariety U' of V' and $\mathfrak{N}_T' \cap \mathfrak{G}_T' \cap U' = \emptyset$. If I is the injection map of V into $(V, V' - \mathfrak{N}_{r'})$ and I' the injection map of $V' - \mathfrak{N}_{r'}$ into $(V, V' - \mathfrak{N}_{r'})$, we have $I(U) = I'(U') = U^*$. Therefore, if K is a field of definition for U^* , U, U' containing k, and if P is a generic point of U over K and P' a corresponding generic point of U' over K, then there exists a generic point P^* of U^* over K such that $I(P) = I'(P') = P^*$. P^* then has the property that it agrees with P on any representative of U and with P' on any representative of U'. Moreover, $P \times P'$ is a generic point over K of the birational correspondence T^* between U and U' obtained by restricting T. U* is complete. For if not, there exists a specialization $P^* \xrightarrow{K} Q^*$ where Q^* is the pseudopoint of U^{*}. But associated with this there is a specialization $(P, P') \xrightarrow{K} (Q, Q')$ where Q^* agrees with Q on any representative of V and with Q' on any representative of V'. Hence Q is the pseudopoint of U; and since U' is complete, Q' must be in $\mathfrak{N}_{T'} \cap U'$. But then T^* is not complete over Q', so Q' is in \mathfrak{P}_{T^*} ; and therefore Q' is in $\mathfrak{P}_{T^*} \cap \mathfrak{N}_T' \cap U'$. But $\mathfrak{P}_{T^*} \subseteq \mathfrak{P}_T' \cap U'$, so Q' is in $\mathfrak{O}_{T'} \cap \mathfrak{N}_{T'} \cap U'$. This is a contradiction to the hypothesis that $\mathfrak{P}_T \cap \mathfrak{N}_T \cap U' = \emptyset$. Thus, U^* is complete.

2. Semiprojective completions

We shall say a variety V is a semiprojective variety provided there exists a projective variety which is isomorphic to an extension of V. An extension V^* of V will be called a semiprojective extension provided V^* is an extension of the form $(V, V' - \mathfrak{N}_T)$ where V' is semiprojective. If a subvariety U of a variety V can be completed (k-completed) by embedding V in a semiprojective extension V^* , we shall say U can be semiprojectively completed (semiprojectively k-completed) by embedding V in V*.

Any embedding, then, of a variety V in a variety $(V, \bar{V} - \bar{\pi}_r)$, where \bar{V} is the projective join of the projectively embedded representatives of V, is a semiprojective embedding. In particular, it is easily seen that any surface

with only a finite number of singularities can be semiprojectively completed by such an embedding.³

We now prove our main theorem.

THEOREM 2.1. Let U' be a subvariety of a variety V, let k be a field of definition for U and V, let \overline{V} be the projective join of the projectively embedded representatives of V, and let \overline{T} be the natural correspondence between V and \overline{V} . If Ucorresponds biregularly under \overline{T} to a subvariety \overline{U} of \overline{V} , then there exist a semiprojective variety V' and a birational correspondence T between V and V' such that (i) both T and V' are defined over h

- (i) both T and V' are defined over k,
- (ii) U corresponds biregularly under T to a variety U' which is k-isomorphic to the projective variety \overline{U} ,
- (iii) $\mathfrak{N}_{r'} \cap \mathfrak{O}_{r'} \cap U'$ is either empty or has dimension $\leq r-2$.

Proof. Let $\overline{\mathfrak{N}}$ be the nonbiregular locus of \overline{T} on \overline{V} , and let $f_1(x), \dots, f_p(x)$ be a basis of forms for $\mathfrak{g}(\overline{U})$ in $k[x_0, \dots, x_n]$. There exists a form $\mathfrak{g}(x)$ in $\mathfrak{g}(\overline{\mathfrak{N}})$ and not in $\mathfrak{g}(\overline{U})$ in $k[x_0, \dots, x_n]$; for if not, $\mathfrak{g}(\overline{\mathfrak{N}}) \subseteq \mathfrak{g}(\overline{U})$, and $\overline{U} \subseteq \overline{\mathfrak{N}}$. But this means U corresponds nonbiregularly to \overline{U} under \overline{T} , a contradiction. If now $r_i(x) = f_i{}^{\rho}/g^{\gamma}$, where $\rho = \gamma \delta/\gamma_i$ and $\gamma_i = \deg f_i, \gamma = \operatorname{l.c.m.} \gamma_i$, and $\delta = \deg g$, then the r_i are quotients of homogeneous polynomials of the same degree. Since $\mathfrak{g}(x)$ is not in $\mathfrak{g}(\overline{U}) \supseteq \mathfrak{g}(\overline{V})$, if \overline{P} is a generic point of \overline{V} over $k, \mathfrak{g}(\overline{P}) \neq 0$; so $r_i(\overline{P})$ is a function on \overline{V} . Then $r(\overline{P}) = (r_1(\overline{P}), \dots, r_p(\overline{P}))$ is a point of the affine space S^p ; so $(\overline{P}, r(\overline{P}))$ has a locus V' over k in $\overline{V} \times S^p$. If $\overline{S^p}$ is the projective variety having S^p as its part at finite distance, $\overline{V} \times \overline{S^p}$ is an extension of $\overline{V} \times S^p$; and $\overline{V} \times \overline{S^p}$ is isomorphic to the projective join of \overline{V} and $\overline{S^p}$. Hence $\overline{V} \times S^p$ is semiprojective, and therefore V' is semiprojective too.

Let now P be a generic point of V over k, and \overline{P} the corresponding generic point of \overline{V} , so that (P, \overline{P}) is a generic point of \overline{T} over k. There is a natural birational correspondence between V and V', namely the locus T of $(P, \overline{P}, r(\overline{P}))$ over k. If Q is a generic point of U over k and \overline{Q} the generic point of \overline{U} over k corresponding to Q under $\overline{T}, r_i(\overline{Q}) = 0$ since $f_i(\overline{Q}) = 0$ and $g(\overline{Q}) \neq 0$. Therefore U corresponds under T to the subvariety U' of V'having generic point $(\overline{Q}, 0)$ over k. Then the projection of U' on \overline{U} is clearly a k-isomorphism, so U' is k-isomorphic to the projective variety \overline{U} .

Suppose N' is a component of the nonbiregular locus $\mathfrak{N}_{r'}$ on V', and let (\bar{P}_1, r) be a generic point of N' over \bar{k} . By definition of $\mathfrak{N}_{r'}$ there exists a point P_1 in V such that (P_1, \bar{P}_1, r) is in T. Assume that $g(\bar{P}_1) \neq 0$. Then \bar{P}_1 is not in $\bar{\mathfrak{N}}$, so P_1 corresponds biregularly to \bar{P}_1 under \bar{T} . But also each $r_i(\bar{P})$ is in the specialization ring of \bar{P}_1 in $k(\bar{P})$ when $g(\bar{P}_1) \neq 0$, so each of

³ For, if V is a surface with no singular curves, every component of $\overline{\mathfrak{N}}_T$ contracts to a point of V under T^{-1} . But then every point of $\overline{\mathfrak{N}}_T$ corresponds to a point of V, and hence T is complete over every point of $\overline{\mathfrak{N}}_T$. Therefore, $\overline{\mathfrak{N}}_T \cap \overline{\mathfrak{O}}_T = \emptyset$. In [1] Nagata has made this observation for the case that V is normal.

the functions $r_i(\bar{P})$ is defined at \bar{P}_1 and $r_i = r_i(\bar{P}_1)$. Since P_1 corresponds biregularly to \bar{P}_1 and each $r_i(\bar{P})$ is in the specialization ring of \bar{P}_1 in $k(\bar{P})$, P_1 also corresponds biregularly to (\bar{P}_1, r) under T; but this means N' corresponds biregularly under T, a contradiction. Therefore, $g(\bar{P}_1) = 0$. Then $f_i(\bar{P}_1) = 0$ for $i = 1, \dots, p$ also; for otherwise, if $r = (r_1, \dots, r_p)$ and $f_i(\bar{P}_1) \neq 0$, $r_i = r_i(\bar{P}_1) = \infty$ and (\bar{P}_1, r) would not be a point. Hence, \bar{P}_1 is in \bar{U} , and $(\bar{P}_1, 0)$ is in U'.

If N^* is the locus of $(\bar{P}_1, 0)$ over \bar{k}, N^* is a proper subvariety of U' since its projection on \bar{U} is different from \bar{U} due to the fact $g(\bar{P}_1) = 0$. Moreover, since P_1 corresponds to \bar{P}_1 under \bar{T} , the projection from \bar{T} to \bar{V} is regular at \bar{P}_1 . But then the specialization $\bar{P} \xrightarrow{k} \bar{P}_1$ extends only to the specialization $(P, \bar{P}) \xrightarrow{k} (P_1, \bar{P}_1)$, so a fortiori the specialization $(\bar{P}, r(\bar{P})) \xrightarrow{k} (\bar{P}_1, 0)$ extends only to the specialization $(P, \bar{P}, r(\bar{P})) \xrightarrow{k} (P_1, \bar{P}_1, 0)$; so N^* corresponds under T^{-1} to a subvariety of V (namely the locus of P_1 over \bar{k}), and T is complete over N^* .

Finally, observe that $N' \cap U' \subseteq N^*$. Let then \mathfrak{N}^* be the union of all such N^* obtained from components of \mathfrak{N}_T' . Then $\mathfrak{N}_T' \cap U' \subseteq \mathfrak{N}^*$, and since \mathfrak{N}^* is a proper closed subset of U' and therefore has dimension at most r-1, any (r-1)-dimensional component of $\mathfrak{N}_T' \cap U'$ must also be a component of \mathfrak{N}^* . But we have seen T is complete over every component of \mathfrak{N}^* , so no component of \mathfrak{N}^* is $\subseteq \mathfrak{O}_T'$, and therefore no (r-1)-dimensional component of $\mathfrak{N}_T' \cap U'$ is $\subseteq \mathfrak{O}_T'$. Thus, $(\mathfrak{N}_T' \cap U') \cap \mathfrak{O}_T'$ has dimension at most r-2.

COROLLARY 2.1. Let U be a curve which is a subvariety of a variety V and has a representative on every representative of V, and suppose U and V are defined over a field k. Then there exist a semiprojective variety V' and a birational correspondence T between V and V' such that the injection map of V is a k-completing of U in $(V, V' - \mathfrak{N}_T')$.

Proof. Apply Theorems 2.1 and 1.1.

Remarks. (i) The requirement that U have a representative on every representative of V in Corollary 2.1 may be removed if U is a normal curve on a surface V, since then U corresponds biregularly to \overline{U} on \overline{V} and Theorem 2.1 applies. Question: Is the "fully represented" condition necessary when V is, for instance, a nonsingular variety of dimension > 2?

(ii) In Theorem 2.1 the properties of \bar{V} that are used are that \bar{V} is projective, and that the projection from \bar{T} to \bar{V} is regular at every point of \bar{V} which corresponds to a point of V. We could therefore have replaced \bar{V} by any other variety with these properties.

References

1. M. NAGATA, On the imbeddings of abstract surfaces in projective varieties, Mem. Coll. Sci. Univ. Kyoto, Ser. A, Math., vol. 30 (1957), pp. 231–235.

- 2. J. OHM, The embedding of an abstract variety in a complete variety, Doctoral Dissertation, University of California, Berkeley, 1959.
- 3. A. WEIL, The field of definition of a variety, Amer. J. Math., vol. 78 (1956), pp. 509-524.
- 4. ——, Foundations of algebraic geometry, Amer. Math. Soc. Colloquium Publications, vol. 29, 1946.
 - THE UNIVERSITY OF WISCONSIN MADISON, WISCONSIN