
ON THE NUMBER OF MATRICES WITH GIVEN CHARACTERISTIC
POLYNOMIAL

BY

IRVING REINER

1. Introduction
Let K be a finite field with q elements, and let K denote the ring of all

n X n matrices with entries in K. Recently Fine and Herstein proved

The number of nilpotent matrices in K, is q

We shall prove here the following generalizations.

THEOREM 1. Let f x) be an irreducible polynomial in K[x] of degree d >- 1.
Then the number of matrices X e K,d for which f X) is nilpotent is

n2d2_nd (1 q-l)(1 q-2) (1 q--nd)(1) q
(1 q-d)(1 q-2) (1 q-n)

Before stating the second result to be proved here, which includes the
above theorem as a special case, we introduce some notation. Define

(2) F(u, r) (1 u-l)(1 u-Z) (1 U-r),

where F(u, 0) 1. Then we have

THEOREM 2. Let g(x) e K[x] be a polynomial of degree n, and let

(3) g(x) fl(x) fnk(x)
be its factorization in K[x] into powers of distinct irreducible polynomials
f(x), fk(x). Set

di degree of fi(x), 1 <= i <= k.

Then the number of matrices X e K with characteristic polynomial g(x) is

(4) qn2-,. F(q,n)
F(q’, Hi)

The proofs of these theorems do not require a knowledge of the Fine-
Herstein paper, except for the following combinatorial lemma which they
establish and which we state without proof.
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LEMMA 1 (Fine-Herstein).
root of unity. Let {rl
for which

and set

Then

Let u be any complex number which is not a
r,} range over all n-tuples of non-negative integers

rl "- 2r2 + + nr, n,

sj rj nt- rj+l -t-- + rn, l<--j<__n.

(5)
U812.-1-822.-1-.

rl)F(u-1,Irl,...,r} F(u-, r2) F(u-i, r,) E(u-, n)"

2. Automorphisms of modules over local rings

Throughout this section we let R be a commutative local ring with unity
element, and let rR be its unique maximal ideal. Suppose further that r is
nilpotent, say r 0, and let

Then
number of elements in the field R/rR.

R 7rR 7r2R 7rn-R 7mR (0)

is a descending chain of ideals of R in which every ideal occurs, and each
quotient is isomorphic (as R-module) to the field R/rR. Thus R contains

elements, and more generally R/-iR contains elements.
We shall restrict our attention to R-modules which are finitely generated.

Since R is a principal ideal domain, each such R-module V is a direct sum of
eyelie R-modules. Moreover every nonzero eyelie R-module is a homo-
morphie image of R, hence is of the form R/-R for some j, 1 __< j __< n. Set

V R/R, <_ j <= n.

Then V. contains elements, and is indecomposable since it contains a unique
minimal submodule r-V Thus every R-module V is expressible s

(6)
Y W1 () @ Wn,

W V (R) (R) V (r. summands),

and such an expression is unique by the Krull-Schmidt Theorem.

LEMMA 2. Let W be given in (6). The number of R-automorphisms of
W is precisely

trF(t, rj).

Proof. Since r annihilates Wj, we may regard W-as an R’-module,
where

R’= R/R.
The number of R-automorphisms of W. is then the same as the number of
nonsingular r- r. matrices X with entries in R’. Now a matrix X over R’ is
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nonsingular if and only if J is nonsingular, where J is obtained from X by
mapping each entry a of X onto its image a in R’/-R’. Since X has its
entries in the field R’/-R’ R/-R, there are

tri2F(t, rj)

possible choices for X. But. for given a there are -1 choices for a e R’, and
thus the number of nonsingular matrices X over R’ of size r. X r. is

(t-l)ri.trF(t, ri).
This proves the lemma.

LEMMA 3. Let V be given by (6), and set

(7) s.; r- + r-+ + + r, l<=j<=n.

The number of R-automorphisms of V is then

(8) Nv II= tF(t, r).

Proof. For convenience we rewrite (6) as

v .= F- v. .,
where e, is just an indexing mark, say

e.= (0,--.,0,1,0,-..,0)

with the 1 in an appropriate position. Any R-homomorphism is completely
determined by its effect on the {ejg}.

For v V, v 0, define the order of v to be the smallest, integer s for which
r*v 0. Let us say that 0 has order zero. The elements of W- have order
_<_ j, clearly.
Now let 0 be an R-automorphism of V. Then 0 preserves order, so that

for1 <__j <- nwehavc

O(Wj) W + + Wj_ + Wj + TWj+I + + 7rn-JWn
Hence if we set

(ji aji e Wm
then we see that for m > j we have

(10)

Furthermore, fox’ fixed j the mapping
(J)(11) ei ---+ ai l<=i<_ri,

must be an R-automorphism of W-. It is easy to see that conversely if we
define an R-homomorphism 0 by means of (9) and (10), where for each
j (1 <__ j _<_ n) equation (11) gives an R-automorphism of W-, then 0 is
indeed an R-automorphism of V.
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For fixed j, 1 < j < n, the elements a- m < j} may be chosen arbitrarily.
Since there are r- choices to be made, and W1 + + W._I contains

tlrl +2r2 +’’"
elements, this gives

(12) t(r+2

possibilities for the {-(m).a,i m <j, 1 =< i__< r.}.
Next the set of elements aii’l <= i <=

(13) tir2F(t,
ways, by Lemma 2. Finally, since for m > j there are exactly irm elements
ill 7rm-3Wm, there are

(14) jri(ri+l+’’’+rn)

choices for the elements {_(m).aji m > j, 1 <-- i <= rj}. The number of R-auto-
morphisms of V is therefore

Nv IIs= {tF(t, r.)},
where for each j,

uj ,= mr, rj + .?rj,=.+ r,.

If we define the symbols {sl by (7), t routine calculation establishes (8).
(The above generalizes the formula for Nv obtuined by Fine-Herstein in

pp. 500-502, loc. cit., where N. is referred to as in their paper.)
Now let V range over a full set of non-isomorphic R-modules having exactly
elements, so that r, r,} range over all n-tuples of non-negative in-

tcgers for which

n rl + 2r + + nr,.

LEMA 4. A s V ranges over the aboe-mentioned R-modules, we have

(15) 1/N 1/tnF(t, n).

Proof. Use the formula (8) for Nr, and then apply Lemma 1 with u -.
3. Nilpotent matrix polynomials

Let K be a field with q elements, f(x) K[x] an irreducible polynomial of
degree d => 1, and let n be a fixed integer. We wish to determine the number
of matrices X e Ke for which f(X) is nilpotent. We remark that f(X) is
nilpotent if and only if if(X) 0, since f(X) is nilpotent if and only if the
characteristic polynomial of X is if(x).

Define the ring R by
R K[x]/(ff (x)),

and for each polynomial g(x) K[x] let g(x) denote its image in R. Then
R is a commutative ring of the type discussed in the preceding section, with
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maximal ideal R, where . f(x). We have r 0, and the number of
elements in the field R/-R is given by

(6) ,
since R/’R --- K[x]/ (f x ).

If V is ny R-module of K-dimension nd, then V contains elements.
Furthermore V gives rise to representation of R by mtrices in K, and
the mtrix X corresponding to stisfies f’(X) 0. Conversely ech such
mtrix X is obtainable in this wy from some R-module with elements.
For the rest of the proof we restrict ourselves to R-modules V th ele-

ments. Ech V gives rise to set of equivalent mtrix representations, and
hence gives not only one matrix X corresponding to , but system of matrices

p-1xp"P eK P nonsingulr}.

The number of distinct mtrices in this system is just the numberqF(q, nd)
of nonsingulr mtrices in Kna, divided by the number of nonsingulr matrices
P eK stisfying

P-XP X.

But since generates the ring R, ny such P yields n R-utomorphism of V,
nd so there are N such nonsingulr P’s, where N is given by (8) with

On the other hnd it is clear that non-isomorphic R-modules V, V* give
rise to mtrices X, X* which re not connected by any relation

X* P-XP, P e Knd P nonsingulr.

The bove discussion shows therefore that the number of mtrices X K
for which f(X) is nilpotent is precisely

qF(q, nd)/N,
where V rnges over full set of non-isomorphic R-modules hving ele-
ments. By using (15), the bove is just

qF(q, nd)/q’F(q, n),
that is,

n2d2_nd (1 q-l)(1 q-2) (1 q-nd)
q ( -)(1 -) (1 -)

This completes the proof of Theorem 1.

4. Matrices with given characteristic polynomial
We are now ready to prove Theorem 2. Let g(x) be given by (3), and let

S K[x]/(g(x)) R @... @ Rk,
where

Ri K[x]/(f’(x)), 1 <__ i <= k.
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Any S-module V can be decomposed into a direct sum

V V V,
in which V is a left R-module, 1 __< i _-< /c. We obtain all matrices X e K.
with characteristic polynomial g(x) by letting V range over a full set of
non-isomorphic S-modules of dimension n over K, chosen in such a way that

(VI"K) nldl, ..., (V’K) nd,

and then for each such module V taking the set of matrices which correspond
to 2 e S (the image of x e K[x]). Thus the number of matrices X e K with
characteristic polynomial g(x) is just

_,vqF(q,n)/N..
It follows readily from the fact that the {fi(x)} are pairwise relatively prime

that any S-automorphism of V maps each V onto itself, and thus is composed
of a set of k automorphisms {0’I __< i -< k}, where 0" Vi -- Vi. Therefore

N= N...N.
Furthermore, a full set of non-isomorphic S-modules V of the type described
above is obtained by letting each V range independently over a full set of
non-isomorphic R-modules with (V’K) n d, for i 1,... k. Thus
the number of matrices X K, with characteristic polynomial g(x) is

qF(q, n). II--1 q"F(q’, n,)t -1.

Using the relation n d n, we obtain formula (4). This completes
the proof of Theorem 2.
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