ON THE NUMBER OF MATRICES WITH GIVEN CHARACTERISTIC POLYNOMIAL

BY
Irving Reiner ${ }^{1}$

1. Introduction

Let K be a finite field with q elements, and let K_{n} denote the ring of all $n \times n$ matrices with entries in K. Recently Fine and Herstein proved ${ }^{2}$

The number of nilpotent matrices in K_{n} is $q^{n^{2-n}}$.
We shall prove here the following generalizations.
Theorem 1. Let $f(x)$ be an irreducible polynomial in $K[x]$ of degree $d \geqq 1$. Then the number of matrices $X \in K_{n d}$ for which $f(X)$ is nilpotent is

$$
\begin{equation*}
q^{n^{2} d^{2}-n d} \cdot \frac{\left(1-q^{-1}\right)\left(1-q^{-2}\right) \cdots\left(1-q^{-n d}\right)}{\left(1-q^{-d}\right)\left(1-q^{-2 d}\right) \cdots\left(1-q^{-n d}\right)} \tag{1}
\end{equation*}
$$

Before stating the second result to be proved here, which includes the above theorem as a special case, we introduce some notation. Define

$$
\begin{equation*}
F(u, r)=\left(1-u^{-1}\right)\left(1-u^{-2}\right) \cdots\left(1-u^{-r}\right) \tag{2}
\end{equation*}
$$

where $F(u, 0)=1$. Then we have ${ }^{3}$
Theorem 2. Let $g(x) \in K[x]$ be a polynomial of degree n, and let

$$
\begin{equation*}
g(x)={f_{1}}^{n_{1}}(x) \cdots f_{k}^{n_{k}}(x) \tag{3}
\end{equation*}
$$

be its factorization in $K[x]$ into powers of distinct irreducible polynomials $f_{1}(x), \cdots, f_{k}(x)$. Set

$$
d_{i}=\text { degree of } f_{i}(x), \quad 1 \leqq i \leqq k
$$

Then the number of matrices $X \in K_{n}$ with characteristic polynomial $g(x)$ is

$$
\begin{equation*}
q^{n^{2}-n} \cdot \frac{F(q, n)}{\prod_{i=1}^{k} F\left(q^{d_{i}}, n_{i}\right)} . \tag{4}
\end{equation*}
$$

The proofs of these theorems do not require a knowledge of the FineHerstein paper, except for the following combinatorial lemma which they establish and which we state without proof.

[^0]Lemma 1 (Fine-Herstein). Let u be any complex number which is not a root of unity. Let $\left\{r_{1}, \cdots, r_{n}\right\}$ range over all n-tuples of non-negative integers for which

$$
r_{1}+2 r_{2}+\cdots+n r_{n}=n
$$

and set

$$
s_{j}=r_{j}+r_{j+1}+\cdots+r_{n}, \quad 1 \leqq j \leqq n
$$

Then

$$
\begin{equation*}
\sum_{\left\{r_{1}, \cdots, r_{n}\right\}} \frac{u^{s_{1}{ }^{2}+s_{2}{ }^{2}+\cdots+s_{n} 2}}{F\left(u^{-1}, r_{1}\right) F\left(u^{-1}, r_{2}\right) \cdots F\left(u^{-1}, r_{n}\right)}=\frac{u^{n}}{F\left(u^{-1}, n\right)} . \tag{5}
\end{equation*}
$$

2. Automorphisms of modules over local rings

Throughout this section we let R be a commutative local ring with unity element, and let πR be its unique maximal ideal. Suppose further that π is nilpotent, say $\pi^{n}=0$, and let

$$
t=\text { number of elements in the field } R / \pi R
$$

Then

$$
R \supset \pi R \supset \pi^{2} R \supset \cdots \supset \pi^{n-1} R \supset \pi^{n} R=(0)
$$

is a descending chain of ideals of R in which every ideal occurs, and each quotient is isomorphic (as R-module) to the field $R / \pi R$. Thus R contains t^{n} elements, and more generally $R / \pi^{j} R$ contains t^{j} elements.

We shall restrict our attention to R-modules which are finitely generated. Since R is a principal ideal domain, each such R-module V is a direct sum of cyclic R-modules. Moreover every nonzero cyclic R-module is a homomorphic image of R, hence is of the form $R / \pi^{j} R$ for some $j, 1 \leqq j \leqq n$. Set

$$
V_{j}=R / \pi^{j} R, \quad 1 \leqq j \leqq n
$$

Then V_{j} contains t^{j} elements, and is indecomposable since it contains a unique minimal submodule $\pi^{j-1} V_{j}$. Thus every R-module V is expressible as

$$
\begin{align*}
V & =W_{1} \oplus \cdots \oplus W_{n} \\
W_{j} & =V_{j} \oplus \cdots \oplus V_{j} \quad \quad\left(r_{j} \text { summands }\right) \tag{6}
\end{align*}
$$

and such an expression is unique by the Krull-Schmidt Theorem.
Lemma 2. Let W_{j} be given in (6). The number of R-automorphisms of W_{j} is precisely

$$
t^{r_{j}{ }^{2}} F\left(t, r_{j}\right) .
$$

Proof. Since π^{j} annihilates W_{j}, we may regard W_{j} as an R^{\prime}-module, where

$$
R^{\prime}=R / \pi^{j} R
$$

The number of R-automorphisms of W_{j} is then the same as the number of nonsingular $r_{j} \times r_{j}$ matrices X with entries in R^{\prime}. Now a matrix X over R^{\prime} is
nonsingular if and only if \bar{X} is nonsingular, where \bar{X} is obtained from X by mapping each entry α of X onto its image $\bar{\alpha}$ in $R^{\prime} / \pi R^{\prime}$. Since \bar{X} has its entries in the field $R^{\prime} / \pi R^{\prime} \cong R / \pi R$, there are

$$
t^{r^{2}} F\left(t, r_{j}\right)
$$

possible choices for \bar{X}. But for given $\bar{\alpha}$ there are t^{j-1} choices for $\alpha \in R^{\prime}$, and thus the number of nonsingular matrices X over R^{\prime} of size $r_{j} \times r_{j}$ is

$$
\left(t^{j-1}\right)^{r_{j}^{2}} \cdot t^{r_{j}^{2}} F\left(t, r_{j}\right)
$$

This proves the lemma.
Lemma 3. Let V be given by (6), and set

$$
\begin{equation*}
s_{j}=r_{j}+r_{j+1}+\cdots+r_{n}, \quad 1 \leqq j \leqq n \tag{7}
\end{equation*}
$$

The number of R-automorphisms of V is then

$$
\begin{equation*}
N_{V}=\prod_{j=1}^{n} t^{s_{j}^{2}} F\left(t, r_{j}\right) \tag{8}
\end{equation*}
$$

Proof. For convenience we rewrite (6) as

$$
V=\sum_{j=1}^{n} \sum_{i=1}^{r_{i}} V_{j} e_{j i}
$$

where $e_{j i}$ is just an indexing mark, say

$$
e_{j i}=(0, \cdots, 0,1,0, \cdots, 0)
$$

with the 1 in an appropriate position. Any R-homomorphism is completely determined by its effect on the $\left\{e_{j i}\right\}$.

For $v \in V, v \neq 0$, define the order of v to be the smallest integer s for which $\pi^{s} v=0$. Let us say that 0 has order zero. The elements of W_{j} have order $\leqq j$, clearly.

Now let θ be an R-automorphism of V. Then θ preserves order, so that for $1 \leqq j \leqq n$ we have

$$
\theta\left(W_{j}\right) \subset W_{1}+\cdots+W_{j-1}+W_{j}+\pi W_{j+1}+\cdots+\pi^{n-j} W_{n}
$$

Hence if we set

$$
\begin{equation*}
\theta\left(e_{j i}\right)=\sum_{m} a_{j i}^{(m)}, \quad a_{j i}^{(m)} \in W_{m} \tag{9}
\end{equation*}
$$

then we see that for $m>j$ we have

$$
\begin{equation*}
a_{j i}^{(m)} \in \pi^{m-j} W_{m} \tag{10}
\end{equation*}
$$

Furthermore, for fixed j the mapping

$$
\begin{equation*}
e_{j i} \rightarrow a_{j i}^{(j)}, \quad 1 \leqq i \leqq r_{j} \tag{11}
\end{equation*}
$$

must be an R-automorphism of W_{j}. It is easy to see that conversely if we define an R-homomorphism θ by means of (9) and (10), where for each j ($1 \leqq j \leqq n$) equation (11) gives an R-automorphism of W_{j}, then θ is indeed an R-automorphism of V.

For fixed $j, 1 \leqq j \leqq n$, the elements $\left\{a_{j i}^{(m)}: m<j\right\}$ may be chosen arbitrarily. Since there are r_{j} choices to be made, and $W_{1}+\cdots+W_{j-1}$ contains

$$
t^{1 r_{1}+2 r_{2}+\cdots+(j-1) r_{j-1}}
$$

elements, this gives

$$
\begin{equation*}
t^{r_{j}\left(1 r_{1}+2 r_{2}+\cdots+(j-1) r_{j-1}\right)} \tag{12}
\end{equation*}
$$

possibilities for the $\left\{a_{j i}^{(m)}: m<j, 1 \leqq i \leqq r_{j}\right\}$.
Next the set of elements $\left\{a_{j i}^{(j)}: 1 \leqq i \leqq r_{j}\right\}$ may be chosen in

$$
\begin{equation*}
t^{j_{j}{ }^{2}} F\left(t, r_{j}\right) \tag{13}
\end{equation*}
$$

ways, by Lemma 2. Finally, since for $m>j$ there are exactly $t^{j r_{m}}$ elements in $\pi^{m-j} W_{m}$, there are

$$
\begin{equation*}
t^{j r_{j}\left(r_{j+1}+\cdots+r_{n}\right)} \tag{14}
\end{equation*}
$$

choices for the elements $\left\{a_{j i}^{(m)}: m>j, 1 \leqq i \leqq r_{j}\right\}$. The number of R-automorphisms of V is therefore

$$
N_{V}=\prod_{j=1}^{n}\left\{t^{u_{i}} F\left(t, r_{j}\right)\right\}
$$

where for each j,

$$
u_{j}=\sum_{m=1}^{j} m r_{m} r_{j}+j r_{j} \sum_{m=j+1}^{n} r_{m}
$$

If we define the symbols $\left\{s_{j}\right\}$ by (7), a routine calculation establishes (8).
(The above generalizes the formula for N_{V} obtained by Fine-Herstein in pp. $500-502$, loc. cit., where N_{V} is referred to as μ in their paper.)

Now let V range over a full set of non-isomorphic R-modules having exactly t^{n} elements, so that $\left\{r_{1}, \cdots, r_{n}\right\}$ range over all n-tuples of non-negative integers for which

$$
n=r_{1}+2 r_{2}+\cdots+n r_{n}
$$

Lemma 4. As V ranges over the above-mentioned R-modules, we have

$$
\begin{equation*}
\sum_{V} 1 / N_{V}=1 / t^{n} F(t, n) \tag{15}
\end{equation*}
$$

Proof. Use the formula (8) for N_{V}, and then apply Lemma 1 with $u=t^{-1}$.

3. Nilpotent matrix polynomials

Let K be a field with q elements, $f(x) \in K[x]$ an irreducible polynomial of degree $d \geqq 1$, and let n be a fixed integer. We wish to determine the number of matrices $X \in K_{n d}$ for which $f(X)$ is nilpotent. We remark that $f(X)$ is nilpotent if and only if $f^{n}(X)=0$, since $f(X)$ is nilpotent if and only if the characteristic polynomial of X is $f^{n}(x)$.

Define the ring R by

$$
R=K[x] /\left(f^{n}(x)\right),
$$

and for each polynomial $g(x) \in K[x]$ let $\overline{g(x)}$ denote its image in R. Then R is a commutative ring of the type discussed in the preceding section, with
maximal ideal πR, where $\pi=\overline{f(x)}$. We have $\pi^{n}=0$, and the number t of elements in the field $R / \pi R$ is given by

$$
\begin{equation*}
t=q^{d} \tag{16}
\end{equation*}
$$

since $R / \pi R \cong K[x] /(f(x))$.
If V is any R-module of K-dimension $n d$, then V contains t^{n} elements. Furthermore V gives rise to a representation of R by matrices in $K_{n d}$, and the matrix X corresponding to \bar{x} satisfies $f^{n}(X)=0$. Conversely each such matrix X is obtainable in this way from some R-module with t^{n} elements.

For the rest of the proof we restrict ourselves to R-modules V with t^{n} elements. Each V gives rise to a set of equivalent matrix representations, and hence gives not only one matrix X corresponding to \bar{x}, but a system of matrices

$$
\left\{P^{-1} X P: P \in K_{n d}, P \text { nonsingular }\right\}
$$

The number of distinct matrices in this system is just the number $q^{n^{2} d^{2}} F(q, n d)$ of nonsingular matrices in $K_{n d}$, divided by the number of nonsingular matrices $P \in K_{n d}$ satisfying

$$
P^{-1} X P=X
$$

But since \bar{x} generates the ring R, any such P yields an R-automorphism of V, and so there are N_{V} such nonsingular P 's, where N_{V} is given by (8) with $t=q^{d}$.

On the other hand it is clear that non-isomorphic R-modules V, V^{*} give rise to matrices X, X^{*} which are not connected by any relation

$$
X^{*}=P^{-1} X P, \quad P \in K_{n d}, \quad P \text { nonsingular. }
$$

The above discussion shows therefore that the number of matrices $X \in K_{n d}$ for which $f(X)$ is nilpotent is precisely

$$
\sum_{V} q^{n^{2} d^{2}} F(q, n d) / N_{V}
$$

where V ranges over a full set of non-isomorphic R-modules having t^{n} elements. By using (15), the above is just

$$
q^{n^{2} d^{2}} F(q, n d) / q^{n d} F\left(q^{d}, n\right)
$$

that is,

$$
q^{n^{2} d^{2}-n d} \cdot \frac{\left(1-q^{-1}\right)\left(1-q^{-2}\right) \cdots\left(1-q^{-n d}\right)}{\left(1-q^{-d}\right)\left(1-q^{-2 d}\right) \cdots\left(1-q^{-n d}\right)} .
$$

This completes the proof of Theorem 1.

4. Matrices with given characteristic polynomial

We are now ready to prove Theorem 2. Let $g(x)$ be given by (3), and let

$$
S=K[x] /(g(x))=R_{1} \oplus \cdots \oplus R_{k}
$$

where

$$
R_{i}=K[x] /\left(f_{i}^{n_{i}}(x)\right), \quad 1 \leqq i \leqq k
$$

Any S-module V can be decomposed into a direct sum

$$
V=V_{1} \oplus \cdots \oplus V_{k}
$$

in which V_{i} is a left R_{i}-module, $1 \leqq i \leqq k$. We obtain all matrices $X \epsilon K_{n}$ with characteristic polynomial $g(x)$ by letting V range over a full set of non-isomorphic S-modules of dimension n over K, chosen in such a way that

$$
\left(V_{1}: K\right)=n_{1} d_{1}, \quad \cdots, \quad\left(V_{k}: K\right)=n_{k} d_{k}
$$

and then for each such module V taking the set of matrices which correspond to $\bar{x} \in S$ (the image of $x \epsilon K[x]$). Thus the number of matrices $X \in K_{n}$ with characteristic polynomial $g(x)$ is just

$$
\sum_{V} q^{n^{2}} F(q, n) / N_{V} .
$$

It follows readily from the fact that the $\left\{f_{i}(x)\right\}$ are pairwise relatively prime that any S-automorphism of V maps each V_{i} onto itself, and thus is composed of a set of k automorphisms $\left\{\theta_{i}: 1 \leqq i \leqq k\right\}$, where $\theta_{i}: V_{i} \rightarrow V_{i}$. Therefore

$$
N_{V}=N_{V_{1}} \cdots N_{V_{k}}
$$

Furthermore, a full set of non-isomorphic S-modules V of the type described above is obtained by letting each V_{i} range independently over a full set of non-isomorphic R_{i}-modules with $\left(V_{i}: K\right)=n_{i} d_{i}$, for $i=1, \cdots, k$. Thus the number of matrices $X \in K_{n}$ with characteristic polynomial $g(x)$ is

$$
\begin{aligned}
q^{n^{2}} F(q, n) \sum_{V} 1 / N_{V_{1}} \cdots N_{V_{k}} & =q^{n^{2}} F(q, n) \prod_{i=1}^{k}\left\{\sum_{V_{i}} 1 / N_{V_{i}}\right\} \\
& =q^{n^{2}} F(q, n) \cdot\left\{\prod_{i=1}^{k} q^{d_{i} n_{i}} F\left(q^{d_{i}}, n_{i}\right)\right\}^{-1}
\end{aligned}
$$

Using the relation $n=\sum d_{i} n_{i}$, we obtain formula (4). This completes the proof of Theorem 2.

University of Illinois
Urbana, Illinois

[^0]: Received July 2, 1960.
 ${ }^{1}$ This research was supported by a contract with the Office of Naval Research.
 ${ }^{2}$ N. J. Fine and I. N. Herstein, The probability that a matrix be nilpotent, Illinois J. Math., vol. 2 (1958), pp. 499-504.
 ${ }^{3}$ Another proof of Theorems 1 and 2 is given by M. Gerstenhaber, On the number of nilpotent matrices with coefficients in a finite field, Illinois J. Math., vol. 5 (1961), pp. 330333.

