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1. Introduction

For finite-memory channels as defined in [1] the equality of stationary and
ergodic capacities has been proved by I. P. Tsaregradsky [2] and L. Breiman
[3]. For channels with infinite memory we give a new definition of the rate of
transmission which coincides with the usual definition for finite-memory
channels. By utilising the representation of a general stationary measure
as a direct integral of ergodic measures due to Kryloff and Bogoliouboff [4],
we obtain a representation for the rate of transmission of any stationary input
in terms of the rates for ergodic inputs. This representation leads to two
important results: It shows that for any stationary channel the ergodic
capacity is equal to the stationary capacity, and that the ergodic capacity is
attained whenever the stationary capacity is attained.

2. Basic properties of stationary and ergodic inputs

In this section we shall consider stationary measures on the Borel field
generated by cylinder sets of the product space

A" =TI 4., A;=A forallq,

where the product is taken over all integers and A is a finite set consisting of
a elements. Then under the product topology we can assume A’ to be a
compact metric space. If T is the shift transformation of A” into itself, then,
under the group of automorphisms T":n = ---, —1,0,1, ---, A’ becomes
a compact dynamical system. Hereafter we shall follow the notation and
terminology of Oxtoby [5]. If f(p) is a real-valued function on A’ let

(2.1) M(f, p, k) = fu(p) = (1/k) 25 f(T'p) (b =1,2--+)
and
(2.2) M(f, p) = f*(p) = lime M(f, p, k)

in case this limit exists. A Borel subset E of A’ is said to have invariant
measure one if u(E) = 1 for every invariant probability measure u. Let Q
be the set of points p for which M(f, p) exists for every feC(A’) where
C(A") is the space of continuous functions on A’. It follows easily from
Riesz’s representation theorem that corresponding to any point p e @ there
exists a unique invariant probability measure u, such that

M(f,p) = [ £ du,.
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Let R C @ be the set of those points for which u, is ergodic. R is called the
set of regular points. Now we quote from Oxtoby’s paper the results of
Kryloff and Bogoliouboff for reference.

TaEOREM 2.1 The set R of regular points is Borel measurable, and of in-
variant measure one.

THEOREM 2.2. For any ergodic measure u, the set of regular poinis p such
that u, = u s of u-measure one.

TaEOREM 2.3. For any bounded Borel measurable function f on A’ f fduy
18 a Borel measurable function of p on R, and

[iau= [ [10n]utr)

for every finite invariant Borel measure p.

TraEorEM 2.4. For any Borel set E C A’ uy(E) is Borel measurable on R,
and

w(E) = [ up(E) du(p)

for every finite invariant Borel measure p.

We denote by [;, - - - z;] the cylinder set of points 2 in A" where 7, - - -,
7" coordinates are z; , - -, @ respectively. Let Fi be the Borel field
generated by cylinder sets [x;, --- z;] where 4;, - -+, ¢, vary over negative
integers only. Let Z, denote the cylinder set of points with zeroth coordi-
nate equal to a. Corresponding to any finite measure p we consider the
following conditional probability function g,(z, &) given by

(23) W(EnZ) = fE 0, @) du(z)

for any Borel set E in F;. We shall now prove the following theorem con-
cerning g.(x, ).

THEOREM 2.5. If u, w1, and s are invariant measures in A,
w=oau + (1 —a)u (0 < a = 1), and w and us are orthogonal, then
g"(«’l?, Ol) = gﬂl(x’ a) ae. r (/J'l)~

Proof. Since p; and u, are invariant and orthogonal, the critical sets in
which their masses are concentrated can be taken to be invariant and hence
in F, . It is then immediate from the definition of conditional probabilities
that

gu(2, @) = gu (2, @) ae. r (m).

TueorEM 2.6. If u is an tnvariant probability measure, then
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gu(2, @) = gu,(%, @) ae. & (up)
for almost all p (u).

Proof. For any invariant measure u, we have from (2.3) and Theorem
2.3,

@8 wE02) = [ o) dste) = [ | [ oule,0) dunte) | dutr).

From Theorems 2.4 and (2.3) we have

5 wEaz) = [wEnz) ) = [[ [ 000 du |duto),

where R is the set of regular points and E is any set in Fy .
For any invariant set A for which u(A) is neither zero nor one we can
write

p=ap + (1 — a)us,

where @ = p(4), m(E) = w(EnA)/u(4), and p(E) = uw(En A")/u(4")
for any Borel set E. Then u; and s are invariant and orthogonal. Hence,
by Theorem 2.6,

g#(x7 a) = gm(x, Ot) ae. r (“1)

Substituting w; for u in (2.4) and (2.5), equating the two expressions, and
making use of Theorem 2.3, we obtain

o) [ [ ot @ i = [ [ [ o) dunte) | duto

for any invariant set A and any set E in F; . Since the functions of p within
the square brackets in (2.6) are invariant and thus measurable with respect
to the o-field of invariant Borel sets, we have, for all cylinder sets E ¢ F; and
almost all p (u),

[ 0@ @) dine) = [ 01,02, 00 di(a.

The required result now follows from the uniqueness of the Radon-Nikod§m
derivative.

3. Properties of the rate per letter of an information source and
transmission function of a channel

As is well known, the rate per letter of a stationary information source
[A7, k] is defined as the limit

(38.1)  3e(p, A) = liMpow —(1/0) Dpayeezy plar -+ - @] log plzy - - - 24].

For any point ¢ = (-, 21, o, 21, + ), let

hn(w) = gn(x, xo)-
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Then by McMillan’s theorem [1], —log h,(z) is integrable with respect to u,
and

R 4) = = [ Tog ha(z) d.

Now we shall prove the following representation theorem.

TaEOREM 3.1. There exists a function h(p) defined over R such that for
every tnvariant probability measure u,

W, 4) = [ W) du(p).
Proof. Define
(32) WD) = — [ 108 1, (@) dislz)

for any regular point p. By Theorem 2.6,

hu(z) = hl‘p(x) a.e. T (up)

for almost all p (u). Since —f log hy, du, is finite for almost all p (1), by
Theorem 2.4 and Fubini’s theorem we have,

~ [1oghutz) au = = [ [ [10g ha) duy(a) |

3e(u, A)

= — /R [flog P, (@) dup(x):l dp = /Rh(p) du(p).

This completes the proof.

Remark. It has been pointed out earlier by Breiman that the rate per
letter of an information source is linear in the convex set of stationary prob-
ability measures. The above theorem shows that it is not only linear but
given by an integral.

Next, we consider an arbitrary stationary channel [4, v, , B], where », is a
measure in B’ for every fixed z in A” possessing the usual stationarity proper-
ties, viz., v.(F) = vr(TF) for any Borel set F in B’, T being the usual shift
operator. For each fixed F, the function »,(F) is assumed to be measurable.

Let [y, ¥s, -+ - ¥4) denote the cylinder set of all points y in B’ whose

ath, @th) - gt coordinates are Y, ¥i,, v, Yi Tespectively. Write
(33)  Bea(x) = = (1/0) Liyyernd ¥alys * -+ Yul J0g vl -+ yul,
where the summation is over all cylinders of the type [y -« - y,]. For any

stationary probability measure x in F 4, let
(3.4) 50(u, B| A) = lim [A 5,(2) du(e).

The existence of the above limit is a well-known result in information theory.
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TreEOREM 3.2. There exists a function H(x) such that

Bl 4) = [ H) du(a).
H(zx) is given by

(3.5) H(z) = —f log v.[yo | y_1y—s - - -1 dv.(y),
and
(36) vilyo | Yoryos -] = lim 2=~ Wl

nsw ValY—(no) " * Y]

Proof. The existence of the limit (3.6) for almost all y (v,) is a well-
known result in the theory of martingales. Further, proceeding in the same
way as in the proof of Lemmas 7.3 to 7.7 in pages 67 to 70 of [6] we have

(3.7) lim f | g-(2, y) — g(x, y) | dr(y) =0,
where

- _ Va:[y—fn—l) te ya] }
(38) gn(x7 y) IOg {Vx[y—(n—l) e y__ll
and
(3.9) g(z, y) = —log vilyo | y_1y—2 - - 1.
Thus,
(3.10) lim ——fgn(x, y) dv.(y) = —fg(w, y) dv.(y).
Let,

(3-11) Hn(l" B I A) = ‘%f Z . Vx[yl e yn] IOg Vm[yl e yn] d/.l(ﬁl?)

[y1-yn
Then, by applying the well-known result that
limn-»oo an/bn = limneoo (an - a'n—-l)/(bn - bn——l)

whenever the second limit exists and b, is monotonic, to the sequence H, ,
we have

(312) lim H,(u, B|4) = lim —f{Z valys + -+ yal log M}du(x)
n->0 n->0 Vz[?/l e yn—l]
provided the limit on the right side of (3.12) exists. Further

Va1 -+ - yul
—f [Z Vz[yl o yn] log m] d,u(x)

= _f [Z V=gl * ** Yol log vronalloney - Yl du(z)

vrrelY—(n-1y *** Yl

(3.13)




304 K. R. PARTHASARATHY

where 77" is the shift transformation applied » times in the reverse direction.
Changing the variable z to 7"z in (3.13), we obtain

dv(y) du(x),

lim H, (s, B| 4) = lim — [ [ log 20 2 v
n—>0 n->0 Al JpI V@’[y—(n—l) .o 3/—1]

which becomes

5(s, B 4) = — [[ log vulun | yys -] douy) du(a) = [ H(z) du(a)

by the bounded convergence theorem and (3.10). This completes the proof
of Theorem 3.2.
For any stationary measure u in F, , let the measure 5 be defined by

2B = [ 2l) du(a).

n is defined in Fjp .

DeriniTion 3.1. For any stationary channel [A4, »,, B] the rate of trans-
mission for any stationary input measure u is defined by the equation

®(n) = 3(n, B) — %(n, B| 4).

It is easy to see that this definition of rate of transmission coincides with
the usual definition for finite-memory channels.

TueoreM 3.3. For any stationary channel [A, v, , B]

A = [ ) dup).

Proof. This is an immediate consequence of Theorems 2.3, 3.1, and 3.2
and (3.2).

COROLLARY 1. SUD( stationary) R(#) = SUP ergodioy R(k).

CoroLLARY 2. The set of stationary measures at which the capacity can be
achieved s a closed convex set whose extreme points are ergodic.
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