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1. Introduction

For finite-memory channels as defined in [1] the equality of stationary and
ergodic capacities has been proved by I. P. Tsaregradsky [2] and L. Breiman
[3]. For channels with infinite memory we give a new definition of the rate of
transmission which coincides with the usual definition for finite-memory
channels. By utilising the representation of general stationary measure
as a direct integral of ergodic measures due to Kryloff and Bogoliouboff [4],
we obtain a representation for the rate of transmission of any stationary input
in terms of the rates for ergodic inputs. This representation leads to two
important results" It shows that for any stationary channel the ergodic
capacity is equal to the stationary capacity, and that the ergodic capacity is
attained whenever the stationary capacity is attained.

2. Basic properties of stationary and ergodic inputs
In this section we shall consider stationary measures on the Borel field

generated by cylinder sets of the product space
+* A= A foralli,A 1=-* A,

where the product is taken over all integers and A is a finite set consisting of
a elements. Then under the product topology we can assume A to be a
compact metric space. If T is the shift transformation of A into itself, then,
under the group of automorphisms T’:n -1, O, 1, A becomes
a compact dynamical system. Hereafter we shall follow the notation and
terminology of Oxtoby [5]. If f(p) is a real-valued function on A, let

(2.1) M(f, p, k) f(p) (1//) =f(Vp) (l 1, 2 ...)
and

(2.2) M(f, p) f*(p) lim_, i(f, p, k)

in case this limit exists. A Borel subset E of A is said to have invariant
measure one if (E) 1 for every invariant probability measure . Let Q
be the set of points p for which M(f, p) exists for every f C(A) where
C(A) is the space of continuous functions on A z. It follows easily from
Riesz’s representation heorem that corresponding to any point p Q there
exists a unique invariant probability measure such that

M(f, p) f f
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Let R c Q be the set of those points for which is ergodic. R is called the
set of regular points. Now we quote from Oxtoby’s paper the results of
Kryloff and Bogoliouboff for reference.

THEOREM 2.1 The set R of regular points is Borel measurable, and of in-
variant measure one.

THEOREM 2.2. For any ergodic measure , the set of regular points p such
that is of -measure one.

THEOREM 2.3. For any bounded Borel measurable function f on A, fd
is a Borel measurable function of p on R, and

for every finite invariant Borel measure v.

THEOREM 2.4. For any Borel set E c A, (E) is Borel measurable on R,
and

fR (E) d(p)

for every finite invariant Borel measure .
We denote by [xil x.] the cylinder set of points x in AX where ilth, ...,

ikth coordinates are xil, ..., xi respectively. Let be the Borel field
generated by cylinder sets [x x] where il, ik vary over negative
integers only. Let Z, denote the cylinder set of points with zeroth coordi-
nate equal to a. Corresponding to any finite measure we consider the
following conditional probability function g,(x, ) given by

(2.3) (E [ Z) f, g(x, a) d(x)

for any Borel set E in F. We shall now prove the following theorem con-
cerning g, (x, a).

THEOREM 2.5. If , and are invariant measures in A,
a -F (1 a) (0 <= a <- 1), and and . are orthogonal, then

g(x, ) g(x, ) a.e. ().

Proof. Since and are invariant and orthogonal, the critical sets in
which their masses are concentrated can be taken to be invariant and hence
in F]. It is then immediate from the definition of conditional probabilities
that

g(x, ) g(x, ) a.e. x ().

THEOREM 2.6. If is an invariant probability measure, then
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g,(x, x
for almost all p t

Proof. For any invariant measure t, we have from (2.3) and Theorem
2.3,

(2.4) t(EnZa) f. i g(x’a)dt(x)ldt(P)"
From Theorems 2.4 and (2.3) we have

(2.5) (EZ,)= f . (EoZo)dry(p)= f.[ a)dt(x)ldt(p)
where R is the set of regular points and E is any set in F.
For any invariant set A for which p(A) is neither zero nor one we can

write
at + (1 a),

where a t(A), t(E) t(E n A)/t(A), and t(E) t(E n A’)/(A’)
for any Borel set E. Then and are invariant and orthogonal. Hence,
by Theorem 2.6,

g,(x, a) g,(x, a) a.e. x (t)

Substituting t for p in (2.4) and (2.5), equating the two expressions, and
making use of Theorem 2.3, we obtain

(2.6) f o. g Cx, a)dt(x) 1 dry(p)= f o. [f. g,,(x, a)dt(x)1 dry(p)

for any invariant set A and any set E in F. Since the functions of p within
the square brackets in (2.6) are invariant and thus measurable with respect
to the a-field of invariant Borel sets, we have, for all cylinder sets E e and
almost all p (),

f g(x, a)dt(x) f g,(x, a)dt(x).

The required result now follows from the uniqueness of the Radon-Nikod:m
derivative.

3. Properties of the rate per letter of an information source and
transmission function of a channel

As is well known, the rate per letter of a stationary information source
[A, ] is defined as the limit

(3.1) 3C(tt, A) lim_. -(l/n) ’... t[x x] log t[x x].

For any point x (... x_, x0, x, -..), let

h,(x) g,(x, Xo).
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Then by McMillan’s theorem [1], -log h,(x) is integrable with respect to ,
nd

5C(, A) f log h,(x) dt.

Now we shall prove the following representation theorem.

THEOREM 3.1. There exists a function h(p) defined over R such that for
every invariant probability measure tt,

Proof. Define

3C(, A) f h(p) d(p).

(3.2) h(p) J log g,(x) d(x)

for ny regular point p. By Theorem 2.6,

h(x) h.(x) a.e. x ()

for almost all p (). Since -] log h, d is finite for almost all p (t), by
Theorem 2.4 and Fubini’s theorem we have,

This completes the proof.
ear. It hs been pointed out erlier by Brein that the rte per

letter o n information source is linear in the convex set of sttionry prob-
ability measures. The bove heore shos that i is no only linear bu
given by n integral.
ext, e oonsider n rbitrry sttionry hnnel [A, v,, B], here v, is

esure in B’ for every xed z in AS possessing the usual sttionrity proper-
ties, viz., v:(P) v,(TP) for ny orel set P in Bs, T bint the usual shift
operator. 7or eoh fixed P, the funotion () is ssumed to be mesurble.

Let [y y y] denot the oylinder set o 11 points y in B hose
i<, i%-.., i< ooordintes re y, y,..., y rspeotively. Write

here th summation is over 11 oylinders of the typ [y y]. 7or ny
sttionry probability mesure in ,
(.) (,, B IA) li .(x) d(x).

dA

The existenoe of the hove liit is ell-knon res!t in information theory.
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THEOREM 3.2.

H(x) is given by

(3.5)

and

(3.6)

Proof.

There exists a function H(x) such that

fA H(x) d(x).3C(t,B A

H(x) f log vx[yo y_l y_2 dvx (y),

x[y01 y-1 y-2 lim
lx[y-(n-1)’’" Y0]
x[Y-(n-1) Y-l]"

The existence of the limit (3.6) for almost all y () is a well-
known result in the theory of martingales. Further, proceeding in the same
way as in the proof of Lemmas 7.3 to 7.7 in pages 67 to 70 of [6] we have

(3.7)

where

(3.S)

and

ni f (X, ) (X, ) () 0,

[Y--(n--______) Y0] tg(x, y) --log
[x[Y--(--l) Y--]

(3.9)

Thus,

(3.10)

Let

g(x, y) --log x[Y0 Y- Y-2 ].

gn(X, y) &’(y) f g(x, y) &’x(Y).

1 J 2 x[Yl Yn] log Yx[Yl Yn] d(x).(3.11) H,(t, B IA)

Then, by applying the well-known result that

lim an/bn

whenever the second limit exists and b is monotonic, to the sequence H,
we have

(3.12) lUn(D, B A l x[y Yn] log d(x)

provided the limit on the right side of (3.12) exists. Further

f [ x[Yl Yn] log [y[Y’"Yn]d(x).Yn--]
(3.13)

PT--nx[Y--(n--1) y0]--J L’ YT-nx[Y--(n--1)’’" yo] log d(x)
-[y-(-l)’’’ y-l]
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where T is the shift transformation applied n times in the reverse direction.
Changing the variable x to Tx in (3.13), we obtain

limH.(g,B[A) lim- f f.
which becomes

log [y-(.-1) y0] d,:(y) d(x)
[y_(_l)""" y-]

3a(, B IA) ff log [Y0 Y-Y-2 "] d,(y) d(x) f H(x) d(x)

by the bounded convergence theorem and (3.10). This completes the proof
of Theorem 3.2.
For any stationary measure in F, let the measure v be defined by

is defined in F..
DEFINITION 3.1.

n(E) fA* ,(F) d(x).

For any stationary channel [A, , B] the rate of trans-
mission for any stationary input measure t is defined by the equation

() (, B) C(, B IA ).

It is easy to see that this definition of rate of transmission coincides with
the usual definition for finite-memory channels.

THEOREM 3.3. For any stationary channel [A, ,, B]

6(#) fR 6t(#) d(p).

and (3.2).
This is an immediate consequence of Theorems 2.3, 3.1, and 3.2

COROLLARY 1. Sup(, stationary)(() Sup(, ergodic) ((D).

COROLLARY 2. The set of stationary measures at which the capacity can be
achieved is a closed convex set whose extreme points are ergodic.
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