BEHAVIOR OF INTEGRAL GROUP REPRESENTATIONS UNDER GROUND RING EXTENSION

BY
Irving Reiner ${ }^{1}$

1. Let K be an algebraic number field, and let R be a subring of K containing 1 and having quotient field K. Of primary interest will be the cases
(i) $R=K$,
(ii) $\quad R=$ alg. int. $\{K\}$, the ring of all algebraic integers in K.
(iii) $R=$ valuation ring of a discrete valuation of K.

Given a finite group G, we denote by $R G$ its group ring over R. By an $R G-$ module we shall mean a left $R G$-module which as R-module is finitely generated and torsion-free, and upon which the identity element of G acts as identity operator. Each $R G$-module M is contained in a uniquely determined smallest $K G$-module

$$
K \otimes_{R} M
$$

hereafter denoted by $K M$. For a pair M, N of $R G$-modules, we write

$$
M \sim_{R} N
$$

to denote the fact that $M \cong N$ as $R G$-modules. The notation

$$
M \sim_{K} N
$$

shall mean that $K M \cong K N$ as $K G$-modules.
Now let K^{\prime} be an algebraic number field containing K, and let R^{\prime} be a subring of K^{\prime} which contains 1 and has quotient field K^{\prime}. Suppose further that R^{\prime} is a finitely generated R-module such that

$$
R^{\prime} \cap K=R
$$

Each $R G$-module M then determines an $R^{\prime} G$-module denoted by $R^{\prime} M$, given by

$$
R^{\prime} M=R^{\prime} \otimes_{R} M
$$

If M, N are a pair of $R G$-modules, we write $M \sim_{R^{\prime}} N$ if $R^{\prime} M \cong R^{\prime} N$ as $R^{\prime} G$ modules. Surely

$$
M \sim_{R} N \Rightarrow M \sim_{R^{\prime}} N
$$

The reverse implication is false, as we shall see. We propose to investigate more closely the connection between R - and R^{\prime}-equivalence.

As a first step we may quote without proof a well-known result [9, page 70] which is a consequence of the Krull-Schmidt theorem for $K G$-modules.

[^0]Theorem 1. Let M, N be $K G-m o d u l e s$, and let K^{\prime} be an extension field of K. Then

$$
M \sim_{K^{\prime}} N \Rightarrow M \sim_{K} N
$$

Remark. This result is valid for any pair of fields $K \subset K^{\prime}$, even for those of nonzero characteristic.

Corollary. If M, N are $R G$-modules, then

$$
M \sim_{R^{\prime}} N \Rightarrow M \sim_{K} N
$$

2. An $R G$-module M is called irreducible if it contains no nonzero submodule of smaller R-rank. As is known [10], M is irreducible if and only if $K M$ is irreducible as $K G$-module. Call M absolutely irreducible if for every field $K^{\prime} \supset K$, the module $K^{\prime} M$ is irreducible as $K^{\prime} G$-module. Repeated use will be made of the following result [9, page 52]:
M is absolutely irreducible if and only if every $K G$-endomorphism of $K M$ is given by a scalar multiplication

$$
x \rightarrow a x, \quad x \in K M
$$ for some $a \in K$.

As a first result, we prove
Theorem 2. Let R be a principal ideal ring, and let M, N be a pair of absolutely irreducible $R G$-modules. Then

$$
M \sim_{R^{\prime}} N \Rightarrow M \sim_{R} N
$$

Proof. The preceding corollary shows that $M \sim_{K} N$. After replacing N by some new $R G$-module which is $R G$-isomorphic to N, we may in fact assume that $M \supset N$.

The isomorphism $R^{\prime} M \cong R^{\prime} N$ can be extended to an isomorphism $K^{\prime} M \cong K^{\prime} N$. As a consequence of the absolute irreducibility of M, and the fact that $K^{\prime} M=K^{\prime} N$, this latter isomorphism must be given by a scalar multiplication. Consequently there exists a scalar $\alpha \in K^{\prime}$ such that

$$
\begin{equation*}
R^{\prime} N=\alpha \cdot R^{\prime} M \tag{1}
\end{equation*}
$$

Since R is a principal ideal ring, we may find an R-basis $\left\{m_{1}, \cdots, m_{k}\right\}$ of M, and nonzero elements $a_{1}, \cdots, a_{k} \in R$, such that

$$
\begin{align*}
M & =R m_{1} \oplus \cdots \oplus R m_{k} \tag{2}\\
N & =R a_{1} m_{1} \oplus \cdots \oplus R a_{k} m_{k} \tag{3}
\end{align*}
$$

Then

$$
\begin{equation*}
R^{\prime} M=\sum R^{\prime} m_{i}, \quad R^{\prime} N=\sum R^{\prime} a_{i} m_{i}=\sum R^{\prime} \alpha m_{i} \tag{4}
\end{equation*}
$$

Let $u\left(R^{\prime}\right)$ be the group of units of R^{\prime}, and $u(R)$ that of R. Then (4)
implies the existence of $\beta_{1}, \cdots, \beta_{k} \in u\left(R^{\prime}\right)$ such that

$$
a_{i}=\beta_{i} \alpha, \quad 1 \leqq i \leqq k
$$

Therefore

$$
a_{i} / a_{1}=\beta_{i} / \beta_{1} \in u\left(R^{\prime}\right)
$$

and so

$$
b_{i}=a_{i} / a_{1} \in u\left(R^{\prime}\right) \cap K=u(R)
$$

Therefore

$$
N=\sum R a_{i} m_{i}=a_{1} \sum R b_{i} m_{i}=a_{1} M
$$

which shows that N, M are R-equivalent, Q.E.D.
We next give an example to show that the result stated in Theorem 2 need not hold when R is not a principal ideal ring. Set

$$
\mathfrak{0}=\text { alg. int. }\{K\}, \quad \mathfrak{v}^{\prime}=\text { alg. int. }\left\{K^{\prime}\right\},
$$

where \mathfrak{o} is not a principal ideal ring. It is possible to choose K^{\prime} so that for each ideal \mathfrak{a} in \mathfrak{p}, the induced ideal $\mathfrak{v}^{\prime} \mathfrak{a}$ in \mathfrak{v}^{\prime} is principal (see [4]). Now let M be any absolutely irreducible $o G$-module, a any nonprincipal ideal in \mathfrak{o}, and set $N=\mathfrak{a} M$. Then M, N cannot be \mathfrak{d}-equivalent, since by the above remarks the isomorphism $M \cong N$ would imply that $N=a M$ for some $a \epsilon K$. On the other hand,

$$
\mathfrak{v}^{\prime} N=\mathfrak{v}^{\prime} \mathfrak{a} M=\alpha^{\prime} \mathfrak{v}^{\prime} M
$$

for some $\alpha^{\prime} \in K^{\prime}$, and so M, N are o^{\prime}-equivalent.
If M, N are $o G$-modules, we say that M, N are in the same genus (notation: $M \vee N$) if $R M \cong R N$ for each valuation ring R of a discrete valuation of K (see [5, 6]).

Corollary. Let M, N be absolutely irreducible $\mathfrak{o G}$-modules. Then

$$
M \sim_{0^{\prime}} N \Rightarrow M \vee N
$$

Proof. Let R be a valuation ring of a discrete valuation ϕ of K, and let ϕ^{\prime} be an extension of ϕ to K^{\prime}, with valuation ring R^{\prime}. Then R is a principal ideal ring, and so

$$
M \sim_{0^{\prime}} \mathrm{N} \Rightarrow \mathrm{M} \sim_{R^{\prime}} \mathrm{N} \Rightarrow \mathrm{M} \sim_{R} \mathrm{~N}
$$

by Theorem 2, Q.E.D.
Maranda [5] showed that a pair of absolutely irreducible $\mathfrak{D} G$-modules M, N are in the same genus if and only if $M \cong \mathfrak{a} N$ for some \mathfrak{o}-ideal \mathfrak{a} in K. But then $\mathfrak{o}^{\prime} M \cong \mathfrak{o}^{\prime} \mathfrak{a} N$, so M, N are \mathfrak{o}^{\prime}-equivalent if and only if $\mathrm{o}^{\prime} \mathfrak{a}$ is a principal ideal in K^{\prime}. Thus, the converse of the above corollary holds if and only if every ideal in \mathfrak{o} induces a principal ideal in \mathfrak{o}^{\prime}.
3. Throughout this section let R be the valuation ring of a discrete valuation ϕ of K, with unique maximal ideal P, and residue class field $\bar{K}=R / P$. Let ϕ^{\prime} be an extension of ϕ to K^{\prime}, with valuation ring R^{\prime}, maximal ideal P^{\prime},
residue class field $\bar{K}^{\prime}=R^{\prime} / P^{\prime}$. We shall give some sufficient conditions for the validity of the implication:

$$
\begin{equation*}
M \sim_{R^{\prime}} N \Rightarrow M \sim_{R} N \tag{5}
\end{equation*}
$$

where M, N denote $R G$-modules.
Theorem 3. If the group order ($G: 1$) is a unit in R, then (5) is valid.
Proof. Use Theorem 1, together with the result [5] that if ($G: 1$) is a unit in R, then

$$
M \sim_{R} N \text { if and only if } M \sim_{K} N
$$

Theorem 4. If $\bar{K}^{\prime}=\bar{K}$, then (5) holds.
Proof. Since R, R^{\prime} are principal ideal rings, we may use matrix terminology. Let M, N be R-representations of G such that $M \sim_{R^{\prime}} N$. Set

$$
\begin{aligned}
& C=\{X \text { over } R: M(g) X=X N(g), g \in G\} \\
& C^{\prime}=\left\{X \text { over } R^{\prime}: M(g) X=X N(g), g \in G\right\}
\end{aligned}
$$

Since C is a finitely generated torsion-free R-module, we may choose an R basis $\left\{X_{1}, \cdots, X_{n}\right\}$ of C. It is easily verified that this is also an R^{\prime}-basis of C^{\prime}.

The hypothesis $M \sim_{R^{\prime}} N$ is equivalent to the statement that there exist elements $\alpha_{1}, \cdots, \alpha_{n} \in R^{\prime}$ such that

$$
\alpha_{1} X_{1}+\cdots+\alpha_{n} X_{n}
$$

is unimodular over R^{\prime}, that is, has entries in R^{\prime} and satisfies

$$
\left.\left|\alpha_{1} X_{1}+\cdots+\alpha_{n} X_{n}\right| \epsilon u\left(R^{\prime}\right) \quad \text { (the group of units of } R^{\prime}\right)
$$

Since $\bar{K}^{\prime}=\bar{K}$, we may choose $a_{1}, \cdots, a_{n} \in R$ such that

$$
a_{i} \equiv \alpha_{i} \quad\left(\bmod P^{\prime}\right), \quad 1 \leqq i \leqq n
$$

In that case,

$$
a_{1} X_{1}+\cdots+a_{n} X_{n} \in C
$$

and is unimodular over R . Therefore $M \sim_{R} N$, Q.E.D.
In particular, suppose that K^{\prime} is an Eisenstein extension of K relative to the valuation ϕ, that is, suppose that $K^{\prime}=K(\alpha)$ where

$$
\operatorname{Irr}(\alpha, K)=x^{m}+b_{1} x^{m-1}+\cdots+b_{m}
$$

with $b_{1}, \cdots, b_{m} \in P, b_{m} \notin P^{2}$ (see [3]). In this case ϕ is uniquely extendable to K^{\prime}, and $\bar{K}^{\prime}=\bar{K}$, so that (5) is true. We shall apply this later on.

Let us call a matrix of the form

$$
\left[\begin{array}{lll}
1 & & \\
& \ddots & * \\
& \ddots & \\
& & 1
\end{array}\right]
$$

a translation; by such a notation, we mean to imply that the elements below the main diagonal are all zero. If M, N are R-representations of G, we write $M \approx N$ to indicate that M, N can be intertwined by a translation matrix.

On the other hand, suppose that

$$
M=\left[\begin{array}{lll}
M_{1} & & \tag{6}\\
& \ddots & * \\
& \ddots & \\
& & M_{k}
\end{array}\right], \quad N=\left[\begin{array}{lll}
M_{1} & & \\
& \ddots & * \\
& & \\
& & M_{k}
\end{array}\right]
$$

are a pair of R-representations of G in which the $\left\{M_{i}\right\}$ are distinct (that is, not K-equivalent) and absolutely irreducible. If M, N can be intertwined by a matrix X over R of the form

$$
X=\left[\begin{array}{lll}
a_{1} I & & \tag{7}\\
& \ddots & * \\
& \ddots & \\
& & a_{k} I
\end{array}\right]
$$

in which $a_{i} \in u(R)$, the group of units of R, then we shall say that M, N are i-intertwinable. Call M, N everywhere intertwinable if for each $i, 1 \leqq i \leqq k$, M, N are i-intertwinable. Clearly if M, N are i-intertwinable, and if ${ }^{2}$

$$
M \approx M^{\prime}, \quad N \approx N^{\prime}
$$

then also M^{\prime}, N^{\prime} are i-intertwinable.
Lemma. Let M, N be given by (6), and suppose the $\left\{M_{i}\right\}$ distinct and absolutely irreducible. Suppose that M, N are everywhere intertwinable, and further that they are intertwined by a matrix X given by (7) for which

$$
\begin{equation*}
a_{1}, \cdots, a_{r} \notin u(R), \quad a_{r+1}, \cdots, a_{k} \in u(R) \tag{8}
\end{equation*}
$$

Then

Proof. Use induction on r. The result is trivial when $r=0$, so assume $r \geqq 1$, and write

$$
M=\left[\begin{array}{ccc}
M_{1} & * & * \\
& M^{\prime} & \Lambda \\
& & M^{\prime \prime}
\end{array}\right], \quad N=\left[\begin{array}{ccc}
M_{1} & * & * \\
& N^{\prime} & \Delta \\
& & N^{\prime \prime}
\end{array}\right]
$$

[^1]where
\[

$$
\begin{aligned}
& M^{\prime}=\left[\begin{array}{ccc}
M_{2} & & \\
& \ddots & * \\
& & \\
& & M_{r}
\end{array}\right], \quad M^{\prime \prime}=\left[\begin{array}{lll}
M_{r+1} & & \\
& \ddots & * \\
& & \\
& & M_{k}
\end{array}\right], \quad(\text { submatrices of } M), \\
& N^{\prime}=\left[\begin{array}{ccc}
M_{2} & & \\
& \ddots & * \\
& & \\
& & M_{r}
\end{array}\right], \quad N^{\prime \prime}=\left[\begin{array}{lll}
M_{r+1} & & \\
& \ddots & * \\
& & \\
& & M_{k}
\end{array}\right], \quad \text { (submatrices of } N \text {). }
\end{aligned}
$$
\]

Then also

$$
\left[\begin{array}{cc}
M^{\prime} & \Lambda \\
& M^{\prime \prime}
\end{array}\right], \quad\left[\begin{array}{cc}
N^{\prime} & \Delta \\
& N^{\prime \prime}
\end{array}\right]
$$

are everywhere intertwinable, and furthermore are intertwined by

$$
\left[\begin{array}{lll}
a_{2} I & & \\
& \ddots & * \\
& \ddots & \\
& & a_{k} I
\end{array}\right]
$$

a submatrix of X. It follows from the induction hypothesis that by transforming M, N by suitable translation matrices, we can make $\Lambda=\Delta=0$. The new M, N will still be everywhere intertwinable, and also intertwinable by a new X for which (8) still holds.

Let us write

$$
\left.\begin{array}{c}
M=\left[-\frac{M_{1}}{-}\left|\frac{*}{M^{\prime}}\right| \frac{\Lambda_{r+1} \cdots \Lambda_{k}}{0}\right], \quad N=\left[\frac{M_{1}}{M^{\prime \prime}}\left|\frac{{ }^{*}}{N^{\prime}}\right| \frac{\Delta_{r+1} \cdots \Delta_{k}}{0}\right. \\
X=\left[\frac{N^{\prime \prime}}{-}\left|\frac{X^{\prime}}{X^{\prime}}\right| \frac{T_{r+1} \cdots T_{k}}{T}\right. \\
X^{\prime \prime}
\end{array}\right], \quad X^{\prime \prime}=\left[\begin{array}{cc}
a_{r+1} I & \\
\ddots & * \\
& a_{k} I
\end{array}\right] .
$$

Then

$$
\left[\begin{array}{cc}
M^{\prime} & 0 \\
& M^{\prime \prime}
\end{array}\right]\left[\begin{array}{cc}
X^{\prime} & T \\
& X^{\prime \prime}
\end{array}\right]=\left[\begin{array}{cc}
X^{\prime} & T \\
& X^{\prime \prime}
\end{array}\right]\left[\begin{array}{cc}
N^{\prime} & 0 \\
& N^{\prime \prime}
\end{array}\right]
$$

whence $M^{\prime} T=T N^{\prime \prime}$. Since $M^{\prime}, N^{\prime \prime}$ have no common irreducible constituent, we conclude that $T=0$.

It now follows that

$$
\left[\begin{array}{cc}
M_{1} & \Lambda_{r+1} \tag{10}\\
& M_{r+1}
\end{array}\right], \quad\left[\begin{array}{cc}
M_{1} & \Delta_{r+1} \\
& M_{r+1}
\end{array}\right]
$$

are R-representations intertwined by

$$
\left[\begin{array}{cc}
a_{1} I & T_{r+1} \tag{11}\\
& a_{r+1} I
\end{array}\right]
$$

This implies that

$$
M_{1} T_{r+1}+a_{r+1} \Lambda_{r+1}=a_{1} \Delta_{r+1}+T_{r+1} M_{r+1}
$$

and hence (since $a_{r+1} \in u(R)$),

$$
\begin{equation*}
\Lambda_{r+1}=b \Delta_{r+1}+M_{1} U-U M_{r+1}, \quad b=a_{r+1}^{-1} a_{1} \notin u(R) \tag{12}
\end{equation*}
$$

for some U over R. On the other hand, the hypothesis that M, N are 1-intertwinable guarantees the existence of a matrix of the form (11) which intertwines the representations given in (10), but for which the element playing the role of a_{1} is a unit in R. Therefore we also have

$$
\begin{equation*}
\Delta_{r+1}=c \Lambda_{r+1}+M_{1} V-V M_{r+1} \tag{13}
\end{equation*}
$$

for some $c \in R$ and some V over R. Combining (12) and (13), we obtain

$$
(1-b c) \Lambda_{r+1}=M_{1} W-W M_{r+1}
$$

for some W over R. Since $(1-\mathrm{bc}) \in u(R)$, we conclude that

$$
\Lambda_{r+1}=M_{1} Y-Y M_{r+1}
$$

for some Y over R. Hence by a translation transformation of M, we can make $\Lambda_{r+1}=0$. From (13) it follows that we can also make $\Delta_{r+1}=0$ by a translation transformation of N. For this new M, N we must have $T_{r+1}=0$.

But now we observe that

$$
\left[\begin{array}{cc}
M_{1} & \Lambda_{r+2} \\
& M_{r+2}
\end{array}\right], \quad\left[\begin{array}{cc}
M_{1} & \Delta_{r+2} \\
& M_{r+2}
\end{array}\right]
$$

are representations intertwined by

$$
\left[\begin{array}{cc}
a_{1} I & T_{r+2} \\
& a_{r+2} I
\end{array}\right]
$$

The above type of argument shows that we can make $\Lambda_{r+2}=\Delta_{r+2}=0$, and therefore also T_{r+2} must be 0 . By continuing this process, we establish the validity of (9), Q.E.D.

We may now prove one of the main results of this paper.
Theorem 5. Let M, N be RG-modules which are R^{\prime}-equivalent, and suppose that the irreducible constituents of $K M$ (which coincide with those of $K N$) are distinct from one another and are absolutely irreducible. Then also M, N are R-equivalent.

Proof. Again use matrix terminology, and proceed by induction on the number k of irreducible constituents of $K M$. The result for $k=1$ follows from Theorem 2; suppose it known up to $k-1$, and let $K M$ have k distinct absolutely irreducible constituents. There will be no confusion from our
using M to denote both the module and the R-representation it affords. The R-representations of G afforded by the $R G$-modules M, N may be taken to be of the form ${ }^{3}$

$$
M=\left[\begin{array}{lll}
M_{1} & & \tag{14}\\
& \ddots & * \\
& \ddots & \\
& & M_{k}
\end{array}\right], \quad N=\left[\begin{array}{lll}
N_{1} & & \\
& \ddots & * \\
& \ddots & \\
& & N_{k}
\end{array}\right]
$$

where the $\left\{M_{i}\right\}$ and $\left\{N_{i}\right\}$ are absolutely irreducible, and where

$$
\begin{equation*}
M_{i} \sim_{K} N_{i}, \quad M_{i} \nsim K_{K} M_{j}, \quad j \neq i, \quad 1 \leqq i \leqq k \tag{15}
\end{equation*}
$$

Since M, N are R^{\prime}-equivalent, they are intertwined by a matrix X^{\prime} unimodular over R^{\prime}. From (15) we find readily (see [6]) that X^{\prime} has the form

$$
X^{\prime}=\left[\begin{array}{lll}
X_{1}^{\prime} & & \tag{16}\\
& \ddots & \\
& \ddots & \\
& & X_{k}^{\prime}
\end{array}\right]
$$

and necessarily each X_{i}^{\prime} is also unimodular over R^{\prime}. But we have then

$$
\begin{equation*}
M_{i} X_{i}^{\prime}=X_{i}^{\prime} N_{i}, \quad 1 \leqq i \leqq k \tag{17}
\end{equation*}
$$

so that M_{i}, N_{i} are R^{\prime}-equivalent for each i. By the induction hypothesis it follows that for each $i, 1 \leqq i \leqq k, M_{i}$ and N_{i} are R-equivalent. Consequently for each i there exists a matrix Y_{i} unimodular over R which intertwines M_{i} and N_{i}. Setting $Y=\operatorname{diag}\left(Y_{1}, \cdots, Y_{k}\right)$, we deduce that

$$
N \sim_{R} Y N Y^{-1}=\left[\begin{array}{lll}
M_{1} & & \tag{say}\\
& \cdot & \\
& & \\
& & M_{k}
\end{array}\right]
$$

Replacing N by $Y N Y^{-1}$, we may henceforth assume that $N_{1}=M_{1}, \cdots$, $N_{k}=M_{k}$, that is, that M, N are given by (6).

From the R^{\prime}-equivalence of M, N it follows that they are intertwined by a unimodular matrix X^{\prime} over R^{\prime}, given by (16). Since now $M_{i}=N_{i}$, and M_{i} is absolutely irreducible, (17) implies that each X_{i}^{\prime} is a scalar matrix, so that we may write

$$
X^{\prime}=\left[\begin{array}{lll}
\alpha_{1} I & & \tag{18}\\
& \ddots & * \\
& & \\
& & \alpha_{k} I
\end{array}\right], \quad \quad \alpha_{1}, \cdots, \alpha_{k} \in u\left(R^{\prime}\right)
$$

Let us now set

$$
R^{\prime}=R \beta_{1} \oplus \cdots \oplus R \beta_{n}, \quad \beta_{1}=1, \quad n=\left(K^{\prime}: K\right)
$$

[^2]Then we may write

$$
X^{\prime}=\sum_{\nu=1}^{n} X^{(\nu)} \beta_{\nu}, \quad X^{(\nu)} \text { over } R
$$

we note that

$$
X^{(\nu)}=\left[\begin{array}{ccc}
a_{1}^{(\nu)} I & & \\
& \ddots & * \\
& \ddots & \\
& & a_{k}^{(\nu)} I
\end{array}\right]
$$

$$
1 \leqq \nu \leqq n
$$

where

$$
\begin{equation*}
\alpha_{i}=\sum_{\nu} a_{i}^{(\nu)} \beta_{\nu}, \quad a_{i}^{(\nu)} \in R \tag{19}
\end{equation*}
$$

Let us fix $i, 1 \leqq i \leqq k$. Then $\alpha_{i} \in u\left(R^{\prime}\right)$, and so by (19) at least one of $a_{i}^{(1)}, \cdots, a_{i}^{(n)}$ is a unit in R. Since each $X^{(\nu)}$ intertwines M and N, and since $a_{i}^{(\nu)}$ occurs in the $i^{\text {th }}$ diagonal block of $X^{(\nu)}$, we may conclude that M, N are i-intertwinable. This shows then that if M, N given by (6) are R^{\prime}-equivalent, they must be everywhere intertwinable.

Since M, N are 1 -intertwinable, there exists an X (over R) given by (7) which intertwines M and N, and for which $a_{1} \in u(R)$. If also a_{2}, \cdots, $a_{k} \in u(R)$, then X is unimodular over R, and so M, N are R-equivalent. For the remainder of the proof we may therefore suppose that not all of a_{2}, \cdots, a_{k} are units in R. Let us write

$$
a_{1}, \cdots, a_{q} \in u(R), \quad a_{q+1}, \cdots, a_{r} \notin u(R), \quad a_{r+1}, \cdots, a_{s} \in u(R), \cdots
$$

Partition X accordingly, say

$$
X=\left[\begin{array}{cc}
Y_{1} & \\
& \ddots \\
& \\
& \\
& \\
& \\
& Y_{t}
\end{array}\right], \quad Y_{1}=\left[\begin{array}{lll}
X_{1} & & \\
& \ddots & * \\
& & X_{q}
\end{array}\right], \quad Y_{2}=\left[\begin{array}{lll}
X_{q+1} & & \\
& \ddots & \\
& & \\
& & \\
& & \\
& &
\end{array}\right], \cdots .
$$

Correspondingly partition M, N, say
(20) $\quad M=\left[\begin{array}{cccc}\bar{M}_{1} & \Lambda_{12} & \Lambda_{13} & \\ & \bar{M}_{2} & \Lambda_{23} & \\ & & \bar{M}_{3} & * \\ & & & \ddots\end{array}\right], \quad N=\left[\begin{array}{cccc}\bar{N}_{1} & \Delta_{12} & \Delta_{13} & \\ & \bar{N}_{2} & \Delta_{23} & \\ & & & \bar{N}_{3} \\ & & * \\ & & & \\ & & & \ddots \\ & & & \\ & & & \\ & & & \bar{N}_{t}\end{array}\right]$,
where

$$
\bar{M}_{1}=\left[\begin{array}{lll}
M_{1} & & \\
& \ddots & * \\
& \ddots & \\
& & M_{q}
\end{array}\right], \quad \bar{N}_{1}=\left[\begin{array}{lll}
M_{1} & & \\
& \ddots & * \\
& & \\
& & M_{q}
\end{array}\right], \cdots .
$$

By repeated use of the lemma, we may transform M, N by translations so as to make successively

$$
\begin{equation*}
\Lambda_{12}=\Delta_{12}=0, \quad \Lambda_{23}=\Delta_{23}=0, \quad \cdots, \quad \Lambda_{t-1, t}=\Delta_{t-1, t}=0 . \tag{21}
\end{equation*}
$$

Such transformations do not affect the diagonal blocks of X, nor the R^{\prime}-equivalence of M, N. We may therefore assume for the remainder of the proof that (21) holds. But in that case we see from (20) that

$$
\left[\begin{array}{ll}
\bar{M}_{1} & \Lambda_{14} \\
& \bar{M}_{4}
\end{array}\right], \quad\left[\begin{array}{cc}
\bar{N}_{1} & \Delta_{14} \\
& \bar{N}_{4}
\end{array}\right]
$$

are R-representations of G, and again we may apply the lemma to conclude that M, N may be further transformed by translation matrices so as to make $\Lambda_{14}=\Delta_{14}=0$, and so on. Continuing in this way, we find that

$$
M \approx M^{\prime}=\left[\begin{array}{ccc}
\bar{M}_{1} & & \\
& \ddots & \Omega \\
& \cdot & \\
& & \bar{M} t
\end{array}\right], \quad N \approx N^{\prime}=\left[\begin{array}{cc}
\bar{N}_{1} & \\
& \ddots \\
& \\
& \\
& \bar{N} t
\end{array}\right]
$$

where $\Omega_{i j}=\Sigma_{i j}=0$ whenever the diagonal entries of X associated with \bar{M}_{i} are units, those with \bar{M}_{j} nonunits, or vice versa. But we may then find a permutation matrix F such that

$$
F M^{\prime} F^{-1}=\left[\begin{array}{cc}
M^{*} & 0 \\
& M^{* *}
\end{array}\right], \quad F N^{\prime} F^{-1}=\left[\begin{array}{cc}
N^{*} & 0 \\
& N^{* *}
\end{array}\right]
$$

where

We now have

$$
\begin{aligned}
& M^{*}=\left[\begin{array}{rrr}
\bar{M}_{1} & & \\
& \bar{M}_{3} & * \\
& & \ddots
\end{array}\right], \quad M^{* *}=\left[\begin{array}{lll}
\bar{M}_{2} & & \\
& \bar{M}_{4} & \\
& & \\
& & \ddots
\end{array}\right], \\
& N^{*}=\left[\begin{array}{llll}
\bar{N}_{1} & & & \\
& \bar{N}_{3} & & * \\
& & \ddots
\end{array}\right], \quad N^{* *}=\left[\begin{array}{llll}
\bar{N}_{2} & & \\
& \bar{N}_{4} & & \\
& & & \cdot
\end{array}\right] .
\end{aligned}
$$

$$
M \sim_{R}\left[\begin{array}{cc}
M^{*} & 0 \tag{22}\\
& M^{* *}
\end{array}\right], \quad N \sim_{R}\left[\begin{array}{cc}
N^{*} & 0 \\
& N^{* *}
\end{array}\right]
$$

and so (since $M \sim_{R^{\prime}} N$),

$$
\left[\begin{array}{cc}
M^{*} & 0 \\
& M^{* *}
\end{array}\right] \sim_{R^{\prime}}\left[\begin{array}{cc}
N^{*} & 0 \\
& N^{* *}
\end{array}\right]
$$

Since $M^{*}, M^{* *}$ have no common irreducible constituents, this latter equivalence implies that

$$
M^{*} \sim_{R^{\prime}} N^{*}, \quad M^{* *} \sim_{R^{\prime}} N^{* *}
$$

We may (at last) use the induction hypothesis to conclude from this that

$$
M^{*} \sim_{R} N^{*}, \quad M^{* *} \sim_{R} N^{* *}
$$

This, together with (22), implies that M, N are R-equivalent. Thus the theorem is proved.
4. We shall apply the preceding result to the case of p-groups.

Theorem 6. Let G be a p-group, where p is an odd prime. Let R be the ring of p-integral elements of the rational field Q. Suppose that K^{\prime} is an algebraic number field, and R^{\prime} any valuation ring of K^{\prime} such that $R^{\prime} \supset R$. Then for any pair of irreducible RG-modules M, N we have

$$
\begin{equation*}
M \sim_{R^{\prime}} N \Rightarrow M \sim_{R} N \tag{23}
\end{equation*}
$$

Proof. Set $(G: 1)=p^{m}, m>1$, and let ζ be a primitive $\left(p^{m}\right)^{\text {th }}$ root of 1 over Q. Let M, N be R^{\prime}-equivalent irreducible $R G$-modules. As a first step, let us set $K_{1}=K^{\prime}(\zeta)$, and let R_{1} be a valuation ring of K_{1} such that $R_{1} \supset R^{\prime}$. Then since

$$
M \sim_{R^{\prime}} N \Rightarrow M \sim_{R_{1}} N
$$

we may now restrict our attention to K_{1}, R_{1} instead of K^{\prime}, R^{\prime}.
Next we note that

$$
f(x)=\operatorname{Irr}(\zeta, Q)=x^{p^{m-1}(p-1)}+x^{p m-1(p-2)}+\cdots+x^{p^{m-1}}+1
$$

and that $f(x+1)$ is an Eisenstein polynomial at the prime p. If we set $K_{0}=Q(\zeta)$, it follows that K_{0} contains a uniquely determined valuation ring R_{0} such that $R_{0} \supset R$, and further that the residue class fields corresponding to R_{0}, R coincide. We may therefore conclude from Theorem 4 that

$$
\begin{equation*}
M \sim_{R_{0}} N \Rightarrow M \sim_{R} N \tag{24}
\end{equation*}
$$

The proof will be complete as soon as we establish

$$
\begin{equation*}
M \sim_{R_{1}} N \Rightarrow M \sim_{R_{0}} N \tag{25}
\end{equation*}
$$

This is a consequence of Theorem 5 , however, as we now proceed to demonstrate. The modules $R_{0} M, R_{0} N$ are (in general) no longer irreducible. Since K_{0} is an absolute splitting field for G (see [1]), the irreducible constituents of $K_{0} M$ and $K_{0} N$ are all absolutely irreducible. The multiplicity with which any absolutely irreducible constituent of $K_{0} M$ occurs is precisely the Schur index of that constituent relative to the rational field (see [7]). On the other hand, for p-groups (p odd) it is known [2,8] that this Schur index is 1 . Hence the irreducible constituents of $R_{0} M$ and $R_{0} N$ are distinct and absolutely irreducible. We may therefore apply Theorem 5, and obtain

$$
R_{1} M \cong R_{1} N \Rightarrow R_{0} M \cong R_{0} N
$$

so that (25) is proved, Q.E.D.
The referee has kindly pointed out that the preceding theorem is also valid for the more general case in which R is a valuation ring of an algebraic number field K such that R lies over the ring of p-integral elements of the rational
field. Indeed, the above proof requires only a minor modification for the more general case.
5. We conclude by listing a number of open questions.
A. If $R \subset R^{\prime}$ are valuation rings, does (5) hold without any restrictive hypotheses?
B. Using the notation of Section 2, under what conditions does $\mathfrak{o}^{\prime} M \vee \mathfrak{o}^{\prime} N$ imply $M \vee N$, where M and N are ρG-modules?
C. If \mathfrak{o} is a principal ideal ring, does \mathfrak{o}^{\prime}-equivalence imply \mathfrak{o}-equivalence?

It may be of interest to mention yet one more special case in which additional information may be obtained. Suppose that M and N are projective $R G$-modules, where R is the valuation ring of a discrete valuation of K. (For example, M and N might be direct summands of $R G$.) Then it is known ${ }^{4}$ that $M \sim_{R} N$ if and only if $M \sim_{K} N$. Using Theorem 1 and its corollary, we conclude that (5) holds in this case.

In particular, if M and N are projective $\mathfrak{D} G$-modules, then $\mathfrak{D}^{\prime} M \vee \mathrm{o}^{\prime} N$ surely implies that M and N are K^{\prime}-equivalent, and hence by the above discussion that $M \vee N$.

Added in proof. In a recently completed paper [11], Zassenhaus and the author have shown that (5) holds without any restrictive hypotheses, assuming still that R and R^{\prime} are valuation rings as in Section 3. This settles questions A and B , but C is still open.

References

1. R. Brauer, Applications of induced characters, Amer. J. Math., vol. 69 (1947), pp• 709-716.
2. - On the representations of groups of finite order, Proceedings of the International Congress of Mathematicians 1950, vol. II, pp. 33-36.
3. H. Hasse, Zahlentheorie, Berlin, 1949.
4. E. Hecke, Vorlesungen über die Theorie der algebraischen Zahlen, Leipzig, 1923.
5. J.-M. Maranda, On \mathfrak{F}-adic integral representations of finite groups, Canadian J. Math., vol. 5 (1953), pp. 344-355.
6. I. Reiner, On the class number of representations of an order, Canadian J. Math., vol. 11 (1959), pp. 660-672.
7. ——, The Schur index in the theory of group representations, submitted to Michigan Math. J.
8. P. Roquette, Realisierung von Darstellungen endlicher nilpotenter Gruppen, Arch. Math., vol. 9 (1958), pp. 241-250.
9. B. L. van der Waerden, Gruppen von linearen Transformationen, Berlin, 1935.
10. H. Zassenhaus, Neuer Beweis der Endlichkeit der Klassenzahl bei unimodularer Äquivalenz endlicher ganzzahliger Substitutionsgruppen, Abh. Math. Sem. Univ. Hamburg, vol. 12 (1938), pp. 276-288.
11. H. Zassenhaus and I. Reiner, Equivalence of representations under extensions of local ground rings, to appear in Illinois J. Math.

University of Illinois
Urbana, Illinois

[^3]
[^0]: Received November 23, 1959.
 ${ }^{1}$ The research in this paper was supported in part by a contract with the Office of Naval Research.

[^1]: ${ }^{2}$ We use ${ }^{t} M$ to denote the transpose of M; thus, M^{\prime} is just another representation in this context.

[^2]: ${ }^{3}$ This really follows from [10].

[^3]: ${ }^{4}$ R. G. Swan, Induced representation and projective modules, University of Chicago, mimeographed notes, 1959, Corollary 6.4.

