BEHAVIOR OF INTEGRAL GROUP REPRESENTATIONS UNDER GROUND RING EXTENSION

 $\mathbf{B}\mathbf{Y}$

IRVING REINER¹

1. Let K be an algebraic number field, and let R be a subring of K containing 1 and having quotient field K. Of primary interest will be the cases

(i) R = K,

(ii) $R = \text{alg. int. } \{K\}$, the ring of all algebraic integers in K.

(iii) R = valuation ring of a discrete valuation of K.

Given a finite group G, we denote by RG its group ring over R. By an RG-module we shall mean a left RG-module which as R-module is finitely generated and torsion-free, and upon which the identity element of G acts as identity operator. Each RG-module M is contained in a uniquely determined smallest KG-module

$$K \otimes_{R} M$$

hereafter denoted by KM. For a pair M, N of RG-modules, we write

 $M \sim_{R} N$

to denote the fact that $M \cong N$ as RG-modules. The notation

 $M \sim_{\kappa} N$

shall mean that $KM \cong KN$ as KG-modules.

Now let K' be an algebraic number field containing K, and let R' be a subring of K' which contains 1 and has quotient field K'. Suppose further that R' is a finitely generated R-module such that

$$R' \cap K = R.$$

Each RG-module M then determines an R'G-module denoted by R'M, given by

$$R'M = R' \otimes_R M.$$

If M, N are a pair of RG-modules, we write $M \sim_{R'} N$ if $R'M \cong R'N$ as R'G-modules. Surely

$$M \sim_R N \implies M \sim_{R'} N.$$

The reverse implication is false, as we shall see. We propose to investigate more closely the connection between R- and R'-equivalence.

As a first step we may quote without proof a well-known result [9, page 70] which is a consequence of the Krull-Schmidt theorem for KG-modules.

 1 The research in this paper was supported in part by a contract with the Office of Naval Research.

Received November 23, 1959.

THEOREM 1. Let M, N be KG-modules, and let K' be an extension field of K. Then

$$M \sim_{\kappa'} N \implies M \sim_{\kappa} N.$$

Remark. This result is valid for any pair of fields $K \subset K'$, even for those of nonzero characteristic.

COROLLARY. If M, N are RG-modules, then

 $M \sim_{R'} N \implies M \sim_{\kappa} N.$

2. An *RG*-module *M* is called *irreducible* if it contains no nonzero submodule of smaller *R*-rank. As is known [10], *M* is irreducible if and only if *KM* is irreducible as *KG*-module. Call *M* absolutely *irreducible* if for every field $K' \supset K$, the module K'M is irreducible as K'G-module. Repeated use will be made of the following result [9, page 52]:

M is absolutely irreducible if and only if every KG-endomorphism of KM is given by a scalar multiplication

$$x \to ax,$$
 $x \in KM,$

for some $a \in K$.

As a first result, we prove

THEOREM 2. Let R be a principal ideal ring, and let M, N be a pair of absolutely irreducible RG-modules. Then

$$M \sim_{R'} N \implies M \sim_{R} N.$$

Proof. The preceding corollary shows that $M \sim_{\kappa} N$. After replacing N by some new RG-module which is RG-isomorphic to N, we may in fact assume that $M \supset N$.

The isomorphism $R'M \cong R'N$ can be extended to an isomorphism $K'M \cong K'N$. As a consequence of the absolute irreducibility of M, and the fact that K'M = K'N, this latter isomorphism must be given by a scalar multiplication. Consequently there exists a scalar $\alpha \in K'$ such that

(1)
$$R'N = \alpha \cdot R'M.$$

Since R is a principal ideal ring, we may find an R-basis $\{m_1, \dots, m_k\}$ of M, and nonzero elements $a_1, \dots, a_k \in R$, such that

(2)
$$M = Rm_1 \oplus \cdots \oplus Rm_k,$$

$$(3) N = Ra_1 m_1 \oplus \cdots \oplus Ra_k m_k.$$

Then

(4)
$$R'M = \sum R'm_i, \quad R'N = \sum R'a_i m_i = \sum R'\alpha m_i$$

Let u(R') be the group of units of R', and u(R) that of R. Then (4)

implies the existence of β_1 , \cdots , $\beta_k \in u(R')$ such that

$$a_i = \beta_i \, \alpha, \qquad \qquad 1 \leq i \leq k.$$

Therefore

 $a_i/a_1 = \beta_i/\beta_1 \,\epsilon \, u(R'),$

and so

$$b_i = a_i/a_1 \in u(R') \cap K = u(R).$$

Therefore

$$N = \sum Ra_i m_i = a_1 \sum Rb_i m_i = a_1 M,$$

which shows that N, M are R-equivalent, Q.E.D.

We next give an example to show that the result stated in Theorem 2 need not hold when R is not a principal ideal ring. Set

$$\mathfrak{o} = \text{alg. int. } \{K\}, \quad \mathfrak{o}' = \text{alg. int. } \{K'\},$$

where \mathfrak{o} is not a principal ideal ring. It is possible to choose K' so that for each ideal \mathfrak{a} in \mathfrak{o} , the induced ideal $\mathfrak{o}'\mathfrak{a}$ in \mathfrak{o}' is principal (see [4]). Now let Mbe any absolutely irreducible $\mathfrak{o}G$ -module, \mathfrak{a} any nonprincipal ideal in \mathfrak{o} , and set $N = \mathfrak{a}M$. Then M, N cannot be \mathfrak{o} -equivalent, since by the above remarks the isomorphism $M \cong N$ would imply that $N = \mathfrak{a}M$ for some $\mathfrak{a} \in K$. On the other hand,

$$\mathfrak{o}'N = \mathfrak{o}'\mathfrak{a}M = \alpha'\mathfrak{o}'M$$

for some $\alpha' \in K'$, and so M, N are \mathfrak{o}' -equivalent.

If M, N are $\mathfrak{o}G$ -modules, we say that M, N are in the same genus (notation: $M \lor N$) if $RM \cong RN$ for each valuation ring R of a discrete valuation of K (see [5, 6]).

COROLLARY. Let M, N be absolutely irreducible oG-modules. Then

$$M \sim_{\mathfrak{o}'} N \implies M \lor N.$$

Proof. Let R be a valuation ring of a discrete valuation ϕ of K, and let ϕ' be an extension of ϕ to K', with valuation ring R'. Then R is a principal ideal ring, and so

$$M \sim_{\mathfrak{o}'} \mathrm{N} \implies \mathrm{M} \sim_{R'} \mathrm{N} \implies \mathrm{M} \sim_{R} \mathrm{N}$$

by Theorem 2, Q.E.D.

Maranda [5] showed that a pair of absolutely irreducible $\mathfrak{o}G$ -modules M, N are in the same genus if and only if $M \cong \mathfrak{a}N$ for some \mathfrak{o} -ideal \mathfrak{a} in K. But then $\mathfrak{o}'M \cong \mathfrak{o}'\mathfrak{a}N$, so M, N are \mathfrak{o}' -equivalent if and only if $\mathfrak{o}'\mathfrak{a}$ is a principal ideal in K'. Thus, the converse of the above corollary holds if and only if every ideal in \mathfrak{o} induces a principal ideal in \mathfrak{o}' .

3. Throughout this section let R be the valuation ring of a discrete valuation ϕ of K, with unique maximal ideal P, and residue class field $\bar{K} = R/P$. Let ϕ' be an extension of ϕ to K', with valuation ring R', maximal ideal P',

642

residue class field $\bar{K}' = R'/P'$. We shall give some *sufficient* conditions for the validity of the implication:

(5)
$$M \sim_{R'} N \Rightarrow M \sim_{R} N,$$

where M, N denote RG-modules.

THEOREM 3. If the group order (G:1) is a unit in R, then (5) is valid.

Proof. Use Theorem 1, together with the result [5] that if (G:1) is a unit in R, then

 $M \sim_{R} N$ if and only if $M \sim_{\kappa} N$.

THEOREM 4. If $\bar{K}' = \bar{K}$, then (5) holds.

Proof. Since R, R' are principal ideal rings, we may use matrix terminology. Let M, N be R-representations of G such that $M \sim_{R'} N$. Set

$$C = \{X \text{ over } R: M(g)X = XN(g), g \in G\},$$

$$C' = \{X \text{ over } R': M(g)X = XN(g), g \in G\}.$$

Since C is a finitely generated torsion-free R-module, we may choose an R-basis $\{X_1, \dots, X_n\}$ of C. It is easily verified that this is also an R'-basis of C'.

The hypothesis $M \sim_{R'} N$ is equivalent to the statement that there exist elements $\alpha_1, \dots, \alpha_n \in R'$ such that

$$\alpha_1 X_1 + \cdots + \alpha_n X_n$$

is unimodular over R', that is, has entries in R' and satisfies

$$| \alpha_1 X_1 + \cdots + \alpha_n X_n | \epsilon u(R')$$
 (the group of units of R').

Since $\bar{K}' = \bar{K}$, we may choose a_1 , \cdots , $a_n \in R$ such that

$$a_i \equiv \alpha_i \pmod{P'}, \qquad 1 \leq i \leq n.$$

In that case,

 $a_1 X_1 + \cdots + a_n X_n \in C$,

and is unimodular over R. Therefore $M \sim_{R} N$, Q.E.D.

In particular, suppose that K' is an *Eisenstein extension* of K relative to the valuation ϕ , that is, suppose that $K' = K(\alpha)$ where

Irr
$$(\alpha, K) = x^m + b_1 x^{m-1} + \cdots + b_m$$

with $b_1, \dots, b_m \in P$, $b_m \notin P^2$ (see [3]). In this case ϕ is uniquely extendable to K', and $\overline{K'} = \overline{K}$, so that (5) is true. We shall apply this later on.

Let us call a matrix of the form

$$\begin{bmatrix} 1 \\ \cdot & * \\ \cdot \\ \cdot \\ 1 \end{bmatrix}$$

a translation; by such a notation, we mean to imply that the elements below the main diagonal are all zero. If M, N are R-representations of G, we write $M \approx N$ to indicate that M, N can be intertwined by a translation matrix.

On the other hand, suppose that

(6)
$$M = \begin{bmatrix} M_1 & & \\ & \ddots & \\ & & \\ & & M_k \end{bmatrix}, \qquad N = \begin{bmatrix} M_1 & & \\ & \ddots & \\ & & M_k \end{bmatrix}$$

are a pair of *R*-representations of *G* in which the $\{M_i\}$ are distinct (that is, not *K*-equivalent) and absolutely irreducible. If *M*, *N* can be intertwined by a matrix *X* over *R* of the form

(7)
$$X = \begin{bmatrix} a_1 I & & \\ & \ddots & * \\ & & \ddots & \\ & & a_k I \end{bmatrix},$$

in which $a_i \in u(R)$, the group of units of R, then we shall say that M, N are *i*-intertwinable. Call M, N everywhere intertwinable if for each i, $1 \leq i \leq k$, M, N are *i*-intertwinable. Clearly if M, N are *i*-intertwinable, and if²

$$M \approx M', \qquad N \approx N',$$

then also M', N' are *i*-intertwinable.

LEMMA. Let M, N be given by (6), and suppose the $\{M_i\}$ distinct and absolutely irreducible. Suppose that M, N are everywhere intertwinable, and further that they are intertwined by a matrix X given by (7) for which

(8)
$$a_1, \cdots, a_r \notin u(R), \quad a_{r+1}, \cdots, a_k \notin u(R).$$

Then

(9)
$$M \approx \begin{bmatrix} M_1 & & & \\ & \ddots & * & \\ & & M_r \\ & & & \\$$

Proof. Use induction on r. The result is trivial when r = 0, so assume $r \ge 1$, and write

$$M = \begin{bmatrix} M_1 & * & * \\ & M' & \Lambda \\ & & M'' \end{bmatrix}, \qquad N = \begin{bmatrix} M_1 & * & * \\ & N' & \Delta \\ & & N'' \end{bmatrix},$$

² We use ${}^{t}M$ to denote the transpose of M; thus, M' is just another representation in this context.

where

$$M' = \begin{bmatrix} M_2 & & \\ & \ddots & \\ & & M_r \end{bmatrix}, \qquad M'' = \begin{bmatrix} M_{r+1} & & \\ & \ddots & \\ & & M_k \end{bmatrix}, \qquad \text{(submatrices of } M\text{)},$$
$$N' = \begin{bmatrix} M_2 & & \\ & \ddots & \\ & & M_r \end{bmatrix}, \qquad N'' = \begin{bmatrix} M_{r+1} & & \\ & \ddots & \\ & & M_k \end{bmatrix}, \qquad \text{(submatrices of } N\text{)}.$$

Then also

$$\begin{bmatrix} M' & \Lambda \\ & M'' \end{bmatrix}, \begin{bmatrix} N' & \Delta \\ & N'' \end{bmatrix}$$

are everywhere intertwinable, and furthermore are intertwined by

$$\begin{bmatrix} a_2 I & & \\ & \ddots & * \\ & & \ddots & \\ & & a_k I \end{bmatrix}$$
,

a submatrix of X. It follows from the induction hypothesis that by transforming M, N by suitable translation matrices, we can make $\Lambda = \Delta = 0$. The new M, N will still be everywhere intertwinable, and also intertwinable by a new X for which (8) still holds.

Let us write

$$M = \left[\frac{M_1}{\underline{M'}} \middle| \frac{\Lambda_{r+1} \cdots \Lambda_k}{0} \right], \qquad N = \left[\frac{M_1}{\underline{M'}} \middle| \frac{\Lambda_{r+1} \cdots \Lambda_k}{0} \right],$$
$$X = \left[\frac{a_1 I}{\underline{M'}} \middle| \frac{*}{\underline{X'}} \middle| \frac{T_{r+1} \cdots T_k}{\underline{T}} \right], \qquad X'' = \left[\frac{a_{r+1} I}{\underline{K'}} \middle| \frac{A_{r+1} \cdots A_k}{2} \right],$$
$$\left[\frac{M' \quad 0}{M''} \right] \left[\frac{X' \quad T}{X''} \right] = \left[\frac{X' \quad T}{X''} \right] \left[\frac{N' \quad 0}{N''} \right],$$

Then

whence M'T = TN''. Since M', N'' have no common irreducible constituent, we conclude that T = 0.

It now follows that

(10)
$$\begin{bmatrix} M_1 & \Lambda_{r+1} \\ & M_{r+1} \end{bmatrix}, \begin{bmatrix} M_1 & \Delta_{r+1} \\ & M_{r+1} \end{bmatrix}$$

are R-representations intertwined by

IRVING REINER

(11)
$$\begin{bmatrix} a_1 I & T_{r+1} \\ & a_{r+1} I \end{bmatrix}$$

This implies that

$$M_1 T_{r+1} + a_{r+1} \Lambda_{r+1} = a_1 \Delta_{r+1} + T_{r+1} M_{r+1},$$

and hence (since $a_{r+1} \epsilon u(R)$),

(12)
$$\Lambda_{r+1} = b\Delta_{r+1} + M_1 U - UM_{r+1}, \qquad b = a_{r+1}^{-1} a_1 \notin u(R),$$

for some U over R. On the other hand, the hypothesis that M, N are 1-intertwinable guarantees the existence of a matrix of the form (11) which intertwines the representations given in (10), but for which the element playing the role of a_1 is a unit in R. Therefore we also have

(13)
$$\Delta_{r+1} = c\Lambda_{r+1} + M_1 V - VM_{r+1}$$

for some $c \in R$ and some V over R. Combining (12) and (13), we obtain

$$(1 - bc) \Lambda_{r+1} = M_1 W - W M_{r+1}$$

for some W over R. Since $(1 - bc) \epsilon u(R)$, we conclude that

$$\Lambda_{r+1} = M_1 Y - Y M_{r+1}$$

for some Y over R. Hence by a translation transformation of M, we can make $\Lambda_{r+1} = 0$. From (13) it follows that we can also make $\Delta_{r+1} = 0$ by a translation transformation of N. For this new M, N we must have $T_{r+1} = 0$.

But now we observe that

$$\begin{bmatrix} M_1 & \Lambda_{r+2} \\ & M_{r+2} \end{bmatrix}, \qquad \begin{bmatrix} M_1 & \Delta_{r+2} \\ & M_{r+2} \end{bmatrix}$$

are representations intertwined by

$$\begin{bmatrix} a_1 I & T_{r+2} \\ & a_{r+2} I \end{bmatrix}.$$

The above type of argument shows that we can make $\Lambda_{r+2} = \Delta_{r+2} = 0$, and therefore also T_{r+2} must be 0. By continuing this process, we establish the validity of (9), Q.E.D.

We may now prove one of the main results of this paper.

THEOREM 5. Let M, N be RG-modules which are R'-equivalent, and suppose that the irreducible constituents of KM (which coincide with those of KN) are distinct from one another and are absolutely irreducible. Then also M, N are R-equivalent.

Proof. Again use matrix terminology, and proceed by induction on the number k of irreducible constituents of KM. The result for k = 1 follows from Theorem 2; suppose it known up to k - 1, and let KM have k distinct absolutely irreducible constituents. There will be no confusion from our

646

using M to denote both the module and the *R*-representation it affords. The *R*-representations of *G* afforded by the *RG*-modules M, N may be taken to be of the form³

(14)
$$M = \begin{bmatrix} M_1 & & \\ & \ddots & * \\ & & \ddots & \\ & & & M_k \end{bmatrix}, \qquad N = \begin{bmatrix} N_1 & & \\ & \ddots & * \\ & & \ddots & \\ & & & N_k \end{bmatrix},$$

where the $\{M_i\}$ and $\{N_i\}$ are absolutely irreducible, and where

(15)
$$M_i \sim_{\kappa} N_i$$
, $M_i \nsim_{\kappa} M_j$, $j \neq i$, $1 \leq i \leq k$.

Since M, N are R'-equivalent, they are intertwined by a matrix X' unimodular over R'. From (15) we find readily (see [6]) that X' has the form

(16)
$$X' = \begin{bmatrix} X'_1 & & \\ & \ddots & \\ & \ddots & \\ & & X'_k \end{bmatrix},$$

and necessarily each X'_i is also unimodular over R'. But we have then

(17)
$$M_i X'_i = X'_i N_i, \qquad 1 \le i \le k,$$

so that M_i , N_i are R'-equivalent for each i. By the induction hypothesis it follows that for each i, $1 \leq i \leq k$, M_i and N_i are R-equivalent. Consequently for each i there exists a matrix Y_i unimodular over R which intertwines M_i and N_i . Setting $Y = \text{diag}(Y_1, \dots, Y_k)$, we deduce that

$$N \sim_{\mathbb{R}} Y N Y^{-1} = \begin{bmatrix} M_1 & & \\ & \ddots & * \\ & & \ddots \\ & & & \\ & & M_k \end{bmatrix}$$
(say).

Replacing N by YNY^{-1} , we may henceforth assume that $N_1 = M_1$, \cdots , $N_k = M_k$, that is, that M, N are given by (6).

From the R'-equivalence of M, N it follows that they are intertwined by a unimodular matrix X' over R', given by (16). Since now $M_i = N_i$, and M_i is absolutely irreducible, (17) implies that each X'_i is a scalar matrix, so that we may write

(18)
$$X' = \begin{bmatrix} \alpha_1 I & & \\ & \ddots & \\ & & \ddots & \\ & & \alpha_k I \end{bmatrix}, \qquad \alpha_1, \cdots, \alpha_k \in u(R').$$

Let us now set

$$R' = R\beta_1 \oplus \cdots \oplus R\beta_n$$
, $\beta_1 = 1$, $n = (K':K)$.

³ This really follows from [10].

Then we may write

we note that

$$X' = \sum_{\nu=1}^{n} X^{(\nu)} \beta_{\nu} , \qquad X^{(\nu)} \text{ over } R;$$
$$X^{(\nu)} = \begin{bmatrix} a_{1}^{(\nu)} I & & \\ & \ddots & \\ & & \ddots & \\ & & a_{k}^{(\nu)} I \end{bmatrix}, \qquad 1 \leq \nu \leq n,$$

where

(19) $\alpha_i = \sum_{\nu} a_i^{(\nu)} \beta_{\nu} , \qquad \qquad a_i^{(\nu)} \epsilon R.$

Let us fix $i, 1 \leq i \leq k$. Then $\alpha_i \in u(R')$, and so by (19) at least one of $a_i^{(1)}, \dots, a_i^{(n)}$ is a unit in R. Since each $X^{(\nu)}$ intertwines M and N, and since $a_i^{(\nu)}$ occurs in the *i*th diagonal block of $X^{(\nu)}$, we may conclude that M, N are *i*-intertwinable. This shows then that if M, N given by (6) are R'-equivalent, they must be everywhere intertwinable.

Since M, N are 1-intertwinable, there exists an X (over R) given by (7) which intertwines M and N, and for which $a_1 \,\epsilon \, u(R)$. If also $a_2, \dots, a_k \,\epsilon \, u(R)$, then X is unimodular over R, and so M, N are R-equivalent. For the remainder of the proof we may therefore suppose that not all of a_2, \dots, a_k are units in R. Let us write

$$a_1, \cdots, a_q \in u(R), \qquad a_{q+1}, \cdots, a_r \notin u(R), \qquad a_{r+1}, \cdots, a_s \in u(R), \cdots$$

Partition X accordingly, say

$$X = \begin{bmatrix} Y_1 \\ \cdot & * \\ \cdot & \cdot \\ & Y_t \end{bmatrix}, \quad Y_1 = \begin{bmatrix} X_1 \\ \cdot & * \\ \cdot & \cdot \\ & X_q \end{bmatrix}, \quad Y_2 = \begin{bmatrix} X_{q+1} \\ \cdot & * \\ \cdot & \cdot \\ & X_r \end{bmatrix}, \cdots.$$

Correspondingly partition M, N, say

(20)
$$M = \begin{bmatrix} \bar{M}_1 & \Lambda_{12} & \Lambda_{13} & \\ & \bar{M}_2 & \Lambda_{23} & \\ & & \bar{M}_3 & * \\ & & & \ddots & \\ & & & & \bar{M}_t \end{bmatrix}, \qquad N = \begin{bmatrix} \bar{N}_1 & \Delta_{12} & \Delta_{13} & \\ & \bar{N}_2 & \Delta_{23} & \\ & & \bar{N}_3 & * \\ & & & \bar{N}_3 & * \\ & & & & \ddots & \\ & & & & \bar{N}_t \end{bmatrix},$$

where

$$ar{M_1} = egin{bmatrix} M_1 & & & \ & \ddots & & \ & & \ddots & \ & & M_q \end{bmatrix}, \qquad ar{N_1} = egin{bmatrix} M_1 & & & & \ & \ddots & & \ & & \ddots & \ & & M_q \end{bmatrix}, \ \cdots$$

By repeated use of the lemma, we may transform M, N by translations so as to make successively

(21)
$$\Lambda_{12} = \Delta_{12} = 0, \quad \Lambda_{23} = \Delta_{23} = 0, \quad \cdots, \quad \Lambda_{t-1,t} = \Delta_{t-1,t} = 0.$$

648

Such transformations do not affect the diagonal blocks of X, nor the R'-equivalence of M, N. We may therefore assume for the remainder of the proof that (21) holds. But in that case we see from (20) that

$$\begin{bmatrix} \bar{M}_1 & \Lambda_{14} \\ & \bar{M}_4 \end{bmatrix}, \begin{bmatrix} \bar{N}_1 & \Delta_{14} \\ & \bar{N}_4 \end{bmatrix}$$

are *R*-representations of *G*, and again we may apply the lemma to conclude that *M*, *N* may be further transformed by translation matrices so as to make $\Lambda_{14} = \Delta_{14} = 0$, and so on. Continuing in this way, we find that

$$M \approx M' = \begin{bmatrix} \bar{M_1} & \Omega \\ & \ddots \\ & \bar{M}t \end{bmatrix}, \qquad N \approx N' = \begin{bmatrix} \bar{N_1} & \Sigma \\ & \ddots \\ & \bar{N}t \end{bmatrix},$$

where $\Omega_{ij} = \Sigma_{ij} = 0$ whenever the diagonal entries of X associated with \bar{M}_i are units, those with \bar{M}_j nonunits, or vice versa. But we may then find a permutation matrix F such that

$$FM'F^{-1} = \begin{bmatrix} M^* & 0 \\ M^{**} \end{bmatrix}, \quad FN'F^{-1} = \begin{bmatrix} N^* & 0 \\ N^{**} \end{bmatrix},$$

where

$$M^{*} = \begin{bmatrix} \bar{M}_{1} & & \\ & \bar{M}_{3} & * \\ & & \ddots \end{bmatrix}, \qquad M^{**} = \begin{bmatrix} \bar{M}_{2} & & \\ & \bar{M}_{4} & * \\ & & \ddots \end{bmatrix},$$
$$N^{*} = \begin{bmatrix} \bar{N}_{1} & & \\ & \bar{N}_{3} & * \\ & & \ddots \end{bmatrix}, \qquad N^{**} = \begin{bmatrix} \bar{N}_{2} & & \\ & \bar{N}_{4} & * \\ & & \ddots \end{bmatrix}.$$

We now have

(22)
$$M \sim_{\mathbb{R}} \begin{bmatrix} M^* & 0 \\ M^{**} \end{bmatrix}, \qquad N \sim_{\mathbb{R}} \begin{bmatrix} N^* & 0 \\ N^{**} \end{bmatrix},$$

and so (since $M \sim_{R'} N$),

$$\begin{bmatrix} M^* & 0 \\ & M^{**} \end{bmatrix} \sim_{\scriptscriptstyle R'} \begin{bmatrix} N^* & 0 \\ & N^{**} \end{bmatrix}.$$

Since M^* , M^{**} have no common irreducible constituents, this latter equivalence implies that

$$M^* \sim_{R'} N^*, \qquad M^{**} \sim_{R'} N^{**}.$$

We may (at last) use the induction hypothesis to conclude from this that

$$M^* \sim_R N^*$$
, $M^{**} \sim_R N^{**}$.

This, together with (22), implies that M, N are R-equivalent. Thus the theorem is proved.

4. We shall apply the preceding result to the case of *p*-groups.

THEOREM 6. Let G be a p-group, where p is an odd prime. Let R be the ring of p-integral elements of the rational field Q. Suppose that K' is an algebraic number field, and R' any valuation ring of K' such that $R' \supset R$. Then for any pair of irreducible RG-modules M, N we have

$$(23) M \sim_{R'} N \implies M \sim_{R} N.$$

Proof. Set $(G:1) = p^m$, m > 1, and let ζ be a primitive $(p^m)^{\text{th}}$ root of 1 over Q. Let M, N be R'-equivalent irreducible RG-modules. As a first step, let us set $K_1 = K'(\zeta)$, and let R_1 be a valuation ring of K_1 such that $R_1 \supset R'$. Then since

$$M \sim_{R'} N \implies M \sim_{R_1} N,$$

we may now restrict our attention to K_1 , R_1 instead of K', R'.

Next we note that

$$f(x) = \operatorname{Irr} (\zeta, Q) = x^{p^{m-1}(p-1)} + x^{p^{m-1}(p-2)} + \dots + x^{p^{m-1}} + 1$$

and that f(x + 1) is an Eisenstein polynomial at the prime p. If we set $K_0 = Q(\zeta)$, it follows that K_0 contains a uniquely determined valuation ring R_0 such that $R_0 \supset R$, and further that the residue class fields corresponding to R_0 , R coincide. We may therefore conclude from Theorem 4 that

$$(24) M \sim_{R_0} N \implies M \sim_R N.$$

The proof will be complete as soon as we establish

$$(25) M \sim_{R_1} N \implies M \sim_{R_0} N.$$

This is a consequence of Theorem 5, however, as we now proceed to demonstrate. The modules $R_0 M$, $R_0 N$ are (in general) no longer irreducible. Since K_0 is an absolute splitting field for G (see [1]), the irreducible constituents of $K_0 M$ and $K_0 N$ are all absolutely irreducible. The multiplicity with which any absolutely irreducible constituent of $K_0 M$ occurs is precisely the Schur index of that constituent relative to the rational field (see [7]). On the other hand, for *p*-groups (*p* odd) it is known [2, 8] that this Schur index is 1. Hence the irreducible constituents of $R_0 M$ and $R_0 N$ are distinct and absolutely irreducible. We may therefore apply Theorem 5, and obtain

$$R_1 M \cong R_1 N \implies R_0 M \cong R_0 N,$$

so that (25) is proved, Q.E.D.

The referee has kindly pointed out that the preceding theorem is also valid for the more general case in which R is a valuation ring of an algebraic number field K such that R lies over the ring of p-integral elements of the rational

field. Indeed, the above proof requires only a minor modification for the more general case.

5. We conclude by listing a number of open questions.

A. If $R \subset R'$ are valuation rings, does (5) hold without any restrictive hypotheses?

B. Using the notation of Section 2, under what conditions does $\mathfrak{o}'M \vee \mathfrak{o}'N$ imply $M \vee N$, where M and N are $\mathfrak{o}G$ -modules?

C. If o is a principal ideal ring, does o'-equivalence imply o-equivalence?

It may be of interest to mention yet one more special case in which additional information may be obtained. Suppose that M and N are projective RG-modules, where R is the valuation ring of a discrete valuation of K. (For example, M and N might be direct summands of RG.) Then it is known⁴ that $M \sim_R N$ if and only if $M \sim_{\kappa} N$. Using Theorem 1 and its corollary, we conclude that (5) holds in this case.

In particular, if M and N are projective $\mathfrak{o}G$ -modules, then $\mathfrak{o}'M \vee \mathfrak{o}'N$ surely implies that M and N are K'-equivalent, and hence by the above discussion that $M \vee N$.

Added in proof. In a recently completed paper [11], Zassenhaus and the author have shown that (5) holds without any restrictive hypotheses, assuming still that R and R' are valuation rings as in Section 3. This settles questions A and B, but C is still open.

References

- 1. R. BRAUER, Applications of induced characters, Amer. J. Math., vol. 69 (1947), pp⁻⁷⁰⁹⁻⁷¹⁶.
- 2. ———, On the representations of groups of finite order, Proceedings of the International Congress of Mathematicians 1950, vol. II, pp. 33-36.
- 3. H. HASSE, Zahlentheorie, Berlin, 1949.
- 4. E. HECKE, Vorlesungen über die Theorie der algebraischen Zahlen, Leipzig, 1923.
- J.-M. MARANDA, On \$-adic integral representations of finite groups, Canadian J. Math., vol. 5 (1953), pp. 344-355.
- I. REINER, On the class number of representations of an order, Canadian J. Math., vol. 11 (1959), pp. 660–672.
- 7. ——, The Schur index in the theory of group representations, submitted to Michigan Math. J.
- 8. P. ROQUETTE, Realisierung von Darstellungen endlicher nilpotenter Gruppen, Arch. Math., vol. 9 (1958), pp. 241–250.
- 9. B. L. VAN DER WAERDEN, Gruppen von linearen Transformationen, Berlin, 1935.
- H. ZASSENHAUS, Neuer Beweis der Endlichkeit der Klassenzahl bei unimodularer Äquivalenz endlicher ganzzahliger Substitutionsgruppen, Abh. Math. Sem. Univ. Hamburg, vol. 12 (1938), pp. 276–288.
- 11. H. ZASSENHAUS AND I. REINER, Equivalence of representations under extensions of local ground rings, to appear in Illinois J. Math.

UNIVERSITY OF ILLINOIS URBANA, ILLINOIS

⁴ R. G. SWAN, *Induced representation and projective modules*, University of Chicago, mimeographed notes, 1959, Corollary 6.4.