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1. Introduction
In this pper we will study permutation groups stisfying the following

conditions.

HvPOWHESS I. G is a doubly transitive permutation group on m 1 letters
in which no nontrivial permutation leaves three letters fixed.

All known examples of permutation groups G stisfying Hypothesis I either
contain normal subgroup of order m - 1 or re contained in n exactly
triply transitive permutation group Go, with [G0"G] _-< 2. In the ltter cse
it is known [10] that m p for some prime p nd that the Sylow p-groups
of G are belin. In view of this it seems reasonable to coniecture that the
only permutation groups stisfying Hypothesis I re the ones just mentioned.
In this pper we prove the following result which is step in the direction of
the conjecture.

THEOREM 1. Let G be a permutation group of order qm(m - 1) which satis-

fies Hypothesis I. Then either G contains a normal subgroup of order m 1,
or m p for some prime p. In the latter case, [S" S] < 4q, where S is the
Sylow p-group of G, and if S 11}, there exists an exactly triply transitive per-
mutation group Go containing G such that [Go" G] _-< 2.

Section 2 is devoted to the proof of Theorem 2 which is the min result of
this pper. This theorem enables one to compute lrge prt of the char-
acter table for groups G which contain subgroup M stisfying certain condi-
tions (Hypothesis II in Section 2). The proof of Theorem 2 uses the fund-
mental result recently proved by J. G. Thompson [9], which together with the
results of [5] nd [7] show that the regular subgroup of Frobenius group is
nilpotent. The special cse of Theorem 2 in which the subgroup M is belin
ws proved by R. Bruer nd M. Suzuki [8] nd hs turned out to be power-
ful tool in the study of finite linear groups (see for example [3], [8]). Since
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it may be of interest independent of its application here, Theorem 2 is proved
in a more general form than is actually needed for the proof of Theorem 1.
The methods used in Section 3 to derive Theorem 1 from Theorem 2 are

similar to those used in [1] and [3]. It is easily seen from the proof of Theorem
1 that if Theorem 2 could be proved for the case in which M is a non-abelian
p-group with [M’M’] < 4q2, then the above-mentioned conjecture would be
proved in full.
The object of Section 4 is to classify those groups G which satisfy Hypothesis

I, are not exactly doubly transitive, but contain a normal subgroup of order
m + 1. Furthermore, transitive extensions of such groups are also classified.
For any subset T of a group G, C(T), N(T), T I, will mean respectively

the centralizer, normalizer, and number of elements in T. For any complex
valued functions 1, 2 on G, the hermitian product (1, .)a is defined by

and the norm by 1 II (, $)a. The subscript G will be dropped in
cases where it is clear from the context which group is involved.

2. A theorem on characters
LEMMA 2.1. Let P be a p-group, and let p be an irreducible character of P

with p (1) > 1. Then
p(1) ------- 0 (mod p(1)2),

where the summation ranges over all irreducible characters p of P with
<

Proof. The degree of every irreducible character of P is a power of p; hence
p(1) __< pi(1) is equivalent top(l) ]p(1). The relation pi(1)2 iF[,
where p ranges over all the irreducible characters of P, implies that p(1 ) is
a power of p which is less than P [, hence p(1)21] P [for all i. Consequently

p(l><p() P(1) PI 0 (mod p(1)e),

s was to be shown.
Before getting to the main result of this section it is necessary to prove some

lemmas about characters of groups related to Frobenius groups.

LEMCiA 2.2. Let N be a group of order qmh which contains a normal subgroup
of the form M X H, where MI m, HI h. Suppose both M and H are
normal subgroups of N, and N/H is a Frobenius group whose regular subgroup
is (M X H)/H. Let o, be the irreducible characters of (M X H)/H,
and let Xo X1, be the irreducible characters of (M X H)/M, where
is the trivial character of M X H. Denote X by . The character of N

1 was informed by Professor M. Suzuki that he and H. Zassenhaus had independently
proved Theorem 1 under the additional assumption that the subgroup M of G (which is
shown to exist in Lemma 3.1) is abelian.
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induced by i8 will be written as . Then for i O, is an irreducible char-
acter of N which vanishes outside of M X H. Define . by

.(y) is(xyx-1)

for all y in M X H. Then . and . for x in N (M X H), i O.

Proof. Assume first that s 0. Then without loss of generality it may
be assumed that H /1}.
Suppose that M has lcl + 1 classes of conjugate elements and N/M has k2

classes of conjugate elements. Then it is easily seen that N has ]ci/q - ]C2
irreducible characters, and the representations of k2 of these contain M in
their kernel. Furthermore it is clear that 0 is the character of the regular
representation of N/M. Hence no irreducible character of N whose repre-
sentation has M in its kernel occurs in any for i 0.

Let Q be a subgroup of N of order q; then for y in M,

i(Y) ZxeQ i(xyx-I) xeQ ’(Y).
This immediately yields that (i, )N 0 unless i for some x e Q;
in that case i .. Hence there are at least kl/q distinct , and at most
]c/q irreducible characters which can occur as constituents of the . As no
irreducible character is a constituent of two distinct , there must be exactly
k/q distinct , and for each i 1, 2, ,]ci/q, i di i, where , ,
are the irreducible characters of N whose representations do not contain M
in their kernel. Only the characters , x e Q, induce a given . Hence for
each i, there must be q distinct characters ., x e Q, since there are ]c non-
trivial characters of M and only ]ci/q distinct . The Frobenius reciprocity
theorem now implies that each -, x e Q, occurs as a constituent of when
restricted to M. Hence (1) _>- qz (1). Consequently - is
irreducible.
Assume now that s 0. It is clear that . . Since ()(x),

the equation would imply that . , and we have already shown
this to be false. To complete the proof it is now only necessary to show that
8 is an irreducible character of N. This will be done by showing that it has
norm one. Since i -, where x ranges over a system of coset repre-
sentations of M X H in N, we get

(l/q) -,,,x. 8(x, x) 1,

where 8(Xl X2) 1 or 0 according to whether Xl X2 or x x.
pletes the proof of the lemma.

This tom-

LEMMA 2.3. Let M, N have the same meaning as in Lemma 2.2, and assume
that H 1}. Suppose that M is not a non-abelian p-group with [M" M’] < 4q
Then for any irreducible character of M of degree z > 1

z > 2qz,
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where the zi range over the degrees of all characters of M, ’0, with
ziz.

Proof. For any character of M of degree z > 1, let A () A (z) denote
z, where zi ranges over the degrees of all nontrivial characters of M with

zz.
If M is abelian, the result is trivial, since there are no characters of degree

z > 1. Hence we may assume that M is not abelian. Therefore by a well
known theorem of Burnside [4, p. 172] q is odd. It follows from [5], [7], [9]
that M is nilpotent. Two cases will be considered"

(I) A(z) 4q, (II) A(z) <4q.
Case (I) A (z) 4q. Let p be a prime dividing z. Since M is nilpotent,

M S X M0 where S is p-group and the order of M0 is not divisible by
p. The character can be written as ph, where p is an irreducible char-
acter of M/Mo of degree p(1) > 1 and h is an irreducible character of M/S
It follows from Lemm 2.1 that

(1) (1),
where pi ranges over all irreducible characters of M/Mo with p(1) < p(1).
The characters p h are all distinct and have degree p(1)h(1) < p(1 )h(1 z;
hence

A(z) + 1 p(1)k(1) p(1)k(1)= z.
Since A (z) 4q, this implies that

A(z) + 1} > 4qz;
therefore A (z) + 1 > 2qz. As A (z) is an integer, this yields that A (z) 2qz.

If A (z) 2qz, then 2qz 4q; hence z 2q. Since z divides m which is
relatively prime to q, this implies that z 2q + 1. Therefore

2qz + 1 A(z) + 1 z z(2q + 1).

This is clearly impossible as z > 1. Therefore A (z) 2qz; hence A (z) > 2qz.
Case (II) A(z) < 4q. The number of characters of M of degree 1 is

[M’M’]; hence [M’M’] A(z) + 1 4q. Since (m, q) 1, this implies
that [M’M’] < 4q. Therefore by assumption M is not a p-group. Let
p, p, p be the distinct primes dividing m; then

where S is a p-group, 1. Furthermore

It follows from [5, Lemma 2.5], that q divides [S" S] 1. If p is odd, this
implies that 2q divides [S" S] 1, since q is odd. Hence if at least two
odd primes were to divide m, it would follow that 4q < [M" M’], in contradiction
to a previous inequality. Therefore M S S, where p is an odd prime,
and neither S nor $2 has order one. Furthermore

A(z) [M:M’]- 1 > 2q.



174 WALTER FEIT

The character of M can be written in the form ph, where p is a char-
acter of M/S., and h is a character of M/S,. Either p(1) 1, or h(1) 1.
The proof will be broken up into three cases: (i) h(1) 1, (ii) p(1) 1,
(iii) h(1) 1 p(1).

Case (i) h(1) 1; therefore p(1) 1. Lemma 2.1 implies that

pi(1) _--> p(1)3- 1 > 2p(1) 2z,

where p ranges over all the nontrivial characters of M/S. with pi(1) < p(1 ).
The second inequality follows from the fact that p(1) p => 3. There are
at least q distinct characters . of M/S of degree 1, and the characters pi

are all distinct as pl, " range over characters of M/S., M/S,, respectively.
Hence

A(z) >= q pi(1)3 > 2qz.

Case ii p(1) 1; therefore h(1) 1. Lemma 2.1 implies that

hi(l) => h(1)3- 1 > h(1) z,

where hi ranges over the characters of M/S, with h(1) < h(1). There are
at least 2q characters of M/S. of degree 1. By an argument similar to that
used in case (i), this yields that

A (z) >= 2q hi(l)3 > 2qz.

Case (iii) p(1) 1 h(1). Lemma 2.1 now yields that

hi(l) h(1) p(1) > p(1)

where hi, p. range over the characters of M/S, M/S. with degree less than
h(1), p (1) respectively. Therefore__.. h(1 )3p.(1)2 => h(1)3p(1 )2 z",

=>. h( 1 )3p.( 1 )2 _>_ h( 1 )3p( 1 )3 z3.
The degree of every character which occurs in any of the three sums is less
than z, and no character of M appears twice. Therefore A (z) -{- 1 => 3z3.
Since A (z) > 2q2, it follows that

therefore
{A(z) + 1}3> 6z3q3;

A (z) + 1 > %/6 zq > 2zq-t- (2/5)zq.

Since zq >- 4, this implies that A (z) + 1 > 2zq--[- 1; hence A (z) > 2zq. This
completes the proof of Lemma 2.3.

In the remainder of this section, groups satisfying special assumptions will
be studied. To prevent repetition, the basic hypothesis will be stated sep-
arately with the notation to be used.
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HYPOTHESIS II. The group G contains a subgroup of the form M X H,
M 1 }, satisfying the following conditions:

(i) If y is in M X H- H, then C y c M X H.
(ii) For every x in G which is not contained in the normalizer of M >( H,

(M X H) [a x(M >( H)x-1 H.
(iii) N(M X H) M >( H, and both H and M are normal subgroups of

N(M H).
Let Ii m, ]H h, N(M X H) qmh; henceq > 1. Let o,

1, be the irreducible characters of (M )< H)/H, and let o, 1, be the
irreducible characters of (M )< H)/M, where o o is the trivial character
of M )< H. Let z ’i(1), and denote ) by . The characters of G,
N(M X H) induced by will be denoted by ** respectively.

LEMMA 2.4. If G is a group which satisfies Hypothesis II, then
N(M X H) N(M), and N(M X H)/H is a Frobenius group whose regular
subgroup is (M X H)/H. Furthermore no element of H is conjugate to any
element of M X H- H, and for y in M X H- H, (y) *(y) for all i, s.

Proof. By assumption N(M X H) N(M). If x e N(M), then
xHx-1 C(/); therefore by (i), xUx-1 C M X H; hence x(M X H)x-1 C

M )< H. Consequently N(M) N(M >(H).
IfyeM XH- H, theny-- yly2,whereyleM, yeH, Yl 1. Suppose

there is an x e N(M X H) M )< H such that xyx- y (rood H). Since
H is a normal subgroup of N(M X H), this implies that xyl x

-1
yl (rood H).

As M is normal in N(M X H), xyl x- e M; therefore xyl x- y since each
coset of H in M X H contains exactly one element of M. This contradicts
condition (i) of Hypothesis II. Consequently (M X H)/H is a normal sub-
group of N(M )< H)/H with the property that no element in (M)< H)/H,
other than the identity, commutes with an element of N(M X H)/H not in
(M X H)/H. By [5, Lemma 2.1] this proves that N(M X H)/H is a Fro-
benius group whose regular subgroup is H.

If y H, xyx-1 M )< H H, then x is not in N(M X H) since H is normal
in N(M X H). Therefore

xyx- x(M >( H)x-r (M H) H;

hence xyx- H r (M X H H) which is clearly impossible. Therefore no
element of H is conjugate to any element of M X H H.

If xi 1, x:, form a system of coset representatives of N(M )< H)
in G, then

i(Y) lc is(Xlc yxl).

Therefore it is sufficient to show that for tc 1, y M H H, x yx is
not contained in M X H. If this were not the case, then

-1 (M X H) x(M )< l-I)x- H,x yx e
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and y e M X H H would be conjugate to an element of H, in contradiction
to what has just been proved.

We are now in a position to state and prove the main result of this section.
Only the special case h 1 will be needed in the remainder of this paper.
The following theorem generalizes a special case of [8, Lemma 5], which is
essentially due to R. Brauer.

THEOREM 2. Let G be a group satisfying Hypothesis II. Suppose that
q m 1, and M is not a non-abelian p-group with [M:Mt] < 4q2. Then
for each 8 there exist irreducible characters xl8 x2 of G and a sign 1
such that

(1)

for all i, j O.

(2)

Furthermore for i O,

where (Fs, x8) 0 for all j.

Remark. In the language of [8, p. 662], the classes of G which contain
elements of M X H H are called special classes. In analogy with the
definition on p. 663 of [8], we will say that xl, x, are the exceptional
characters associated with 1, ,

Proof. If i* ’*, then [8, Lemma 4] implies that

3

for i, j 0. Since z * z * vanishes on elements of H by Lemma 2.4,
and since for any class function of M X H, Lemma 2.4 implies that for
y in M X H H, (y) *(y), an easy computation yields that

(4)

For i 0, is an irreducible character of N(M X H) by Lemma 2.2.
If M is abelian, all the characters 18, .,, have the same degree; hence
the theorem is a special case of [8, Lemma 5]. Therefore it may be assumed
that M is not abelian. Since M is isomorphic to the regular subgroup of the
Frobenius group N(M X H)/H, this implies that q 2 by [4, p. 172]. As
M is nilpotent ([5], [7], [9]), the assumptions of the theorem imply that
[M:M’] > q -t- 1. Therefore by Lemma 2.2 there are at least q > 2 distinct
churacters *, :*, with z z2 1. Hence by [8, Lemma 5],
there exist irreducible characters x,, x:, ,"" of G such that for i, j 0,
Zi--" Zj 1,

(5)

where v :i: 1 is independent of i, j. As there are more than two such char-
acters, e is uniquely determined, and the characters x, are well defined.
From now on, let -* be a fixed character with zl 1. Let E, be the set
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of all characters *, i 0, such that there exists an irreducible character
of G with

(6) z *. *, (z x

By (5), E8 contains all * with z 1. If , are in E, then

z 5 z 5 z( z 5) z( z 5)
(7) {z(x- z x) z(x.- zs x)}

(z x z x).

Furthermore, for any k 0, relations (4) and (7) imply that

(5, z x. z x.), (., z . z
(s)

(z z ;),
where 1 if and 0 otherwise. In particular, (8) implies

(9) Xl + a zi xi + F,

where x, ranges over all characters associated with some * in E, and
is orthogonal to each of these x The relations (7) and (9) now imply that
if is in E, then

and if is not in E, then

(11) bzx+ F,

where the summations in (10), (11) range over all x associated with i in
E, and F, F are orthogonal to ech of these x,.
The theorem will be proved once it is shown that E contains all characters, i 0, since in that case (7) is equivalent to (1), and (10) is equivalent

to (2).
Suppose that E does not contain all characters for i 0. Let be

character of this form of minimum degree z such that * is not in E then
z > 1 by a previous remark. The relations (9) and (11) imply that

(2) z * (ze + za. b)xl + (za. b)l z x. + r’,

where F’ zF r. Now (3) and (12) imply

z +=ll.-
(13)

z + 2,z(za b)+ (za b) z + F’ [[.
The summation, ranges over all values of i such that is in E. The set
E includes all with z < z, i 0. By Lemma 2.2 and Lemma 2.4 there
are exactly q distinct characters of M X H which induce , namely the
characters ( ), where x ranges over a system of coset representatives of
M X H in N(M X H). Each of these has degree z(1). Therefore the
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expression z in (13) is at least (1/q)A(z), where A(z) z, and the
summation ranges over all . with j 0, z. <: z. Lemm 2.3 now implies
that the expression z in (13) satisfies z > 2z.
Suppose (za8 b) O. Then (13) yields

1 > 2z(za-- b) + 2z(za-- b) + F’
(14)

2z[(za b) + e(za

It is easily seen that (za b) + e(za, b) 0; clearly r’[ 0.
Hence (14) implies that both these expressions vanish. Therefore F’ 0,
(za b) e. Substituting these values into (12) leads to

(15) z*. * .{ (z 1)x z
Since the left-hand side of (15) has degree zero, so does the right-hand side.
It follows from (6) that x,(1) z x(1) hence

( 1)x.(1) E, z x.(1).
Consequently

2z < Ez (z- 1) + z,

which is impossible. Hence (za b) O.
Now (13) implies that [ r’[ 1. Hencer’ ex, where s 1 and

x is an irreducible character of G. When these values are substituted in (12),
we get

(16) z * .(zx. + . x).

As the degree of the left-hand side of (16) is zero, this is also the case for the
right-hand side; therefore ee, 1. Consequently * is in E,, contradicting
our assumption. Therefore every character , is in E,, and this suffices to
prove the theorem.

COROllaRY 2.1. Let G satisfy the assumptions of Theorem 2.
are exceptional characters associated with , ], then z x, zi x], vanishes
on elements which are not conjugate to some element of M X H H.

Proof. This is an immediate consequence of (1).

COROAaY 2.2. Let G satisfy the assumptions of Theorem 2. Suppose
h h are distinct characters of (M X H)/M; then a character x of G cannot
be an exceptional character that is associated with both and where
are any two nontrivial characters of (M X H)/H.

Proof. Suppose the statement is false. Let be u nontrivial character
of (M X H)/H of degree z lwith . Thenby (1) weget

z : z, r (zx z x),
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where h 1 if ’ , k i if ’ ’*. This yields

z (z, z,

By using (4) nd Lemm 2.2 the norm of the left-hand side is esily com-
puted to be z z z W z W z. This is strictly larger thn z z W z which
is lrger than, or equal to, the norm of the right-hand side of (17). Hence
(17) is impossible, nd this proves the corollary.

Coohv 2.3. Let G satisfy the assumptions of Theorem 2. Then for
yinM X H-- H

U is a character of G distinct from all the xi, then

x(y) a ]0 z (y) + c 0(y).

Proof. This is an immediate consequence of the Frobenius reciprocity
theorem applied to (1), (2), and Corollary 2.2.

ConoAV 2.4. Let G satisfy the assumptions of Theorem 2, and suppose
h 1. There exists a rational integer c such that if x x0 is an exceptional
character associated with , then for any element y in M {1},

x(Y) (Y) + zi c.

If x is not an exceptional character, then the restriction of x to M {1} is a
constant.

Proof. Since h 1, Corollary 2.3 yields that if x is the exceptional char-
acter associated with i, then for y in M {1}

xi(y) i(y) + zi ao z1 (y) + z(co ao)o(y).

Since z is the character of the regular representation of M, it vanishes
on M {1}. This implies the desired result. A similar argument applied
to the nonexceptional character x shows that x is a constant on M {1}.

3. The proof of Theorem 1

LEM 3.1. Suppose that G is a group of order g which satisfies Hypothesis I.
Then g qm(m + 1), and q divides m 1. If q 1, then G contains a sub-
group M of order m which satisfies conditions (i), (ii), (iii) of Hypothesis II
where h 1, N(M) qm. Furthermore for any subgroup Q of N(M)
of order q,

yQy- n Q Q or{l}

for every y in G, and N Q 2q. Hence for x in Q {1},C(x) N Q

Proof. Let N be the subgroup of G consisting of those permutations which
leave a given letter fixed. Then by a theorem of Frobenius [4, p. 334], N con-
tains a normal subgroup M of order m which consists of the identity and the
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permutations in N which leave only the given letter fixed. If IN[ mq,
then q divides m 1, and g qm(m - 1). The group M is a normal sub-
group of N and has m - 1 conjugates in G; therefore N N(M). Any
element x which commutes with y in M /1} must leave the same letter
fixed as y does; hence x is in N(M). If x is not in M, then it leaves exactly
two letters fixed; hence so does y, which is impossible. Therefore x is in M.
This verifies condition (i) of Hypothesis II. Condition (ii) is easily seen
to be true, since any element in M n xMx-1 must leave two letters fixed unless
xMx- M. The only elemen in M leaving at least two letters fixed is the
identity. If q # 1, N(M) # M; thus condition (iii) is also verified.
The subgroup Q of N(M) is the set of all permutations fixing two given

letters; hence if yQy-1 Q, the only element in yQy-1 n Q is the identity
by assumption. The group N(Q) is a permutation group on the two letters
left fixed by the elements of Q; hence IN(Q) --< 2q.

Before proceeding to the proof of Theorem 1 we need some other lemmas.
Groups satisfying the following conditions will be considered.

HYPOTHESIS III. G is a group of order qm(m + 1) which satisfies Hy-
pothesis II with h 1. Furthermore q is odd, G does not contain a normal sub-
group of order m + 1, and the normal subgroup generated by M is G.

LEMMA 3.2. To prove Theorem 3, it suces to prove the following statement:
If G is a group satisfying Hypothesis III, then q >= (m 1)/2, or M is a non-
abelian p-group with [M:Mr] 4q2.

Proof. Suppose the statement has been proved. Let G satisfy the as-
sumptions of Theorem 1. By [10, Theorem 19], only the case that q is odd
needs to be considered. Let G1 be the normal subgroup generated by M.
Since M has m 1 conjugates in G, G1 has order q m(m 1 where ql divides
q. If q 1, then ([4, p. 181])G contains a normal subgroup of order m - 1;
this subgroup is characteristic in G1, and hence normal in G. If q > 1, then
by Lemma 3.1, G1 satisfies Hypothesis II with h 1, and therefore also Hy-
pothesis III unless G, and therefore G, contains a normal subgroup of order
m - 1. Consequently q => q >= (m 1)/2 or M is a non-abelian p-group
with [M"Mr] 4q 4q. The conclusion of Theorem 1 now follows from
[10, pp. 37-38].

Throughout the remainder of this section we will assume that G is a group
which satisfies Hypothesis III.

LEMIIA 3.3. N(Q 2q, Q is cyclic, and no element of Q {1} commutes
with any element not in Q.6

Proof. Since q is odd, it follows from [4, p. 335] that every Sylow group

I am indebted to Professor M. Suzuki for suggesting this proof. My original
method for handling the case in which some element of Q {1} commutes with an el-
ement not in Q was more complicated than the method used in the text.
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of Q is cyclic. As IN(Q) =< 2q, this is also the case for N(Q). Hence by
[11, p. 175], N(Q)’ and N(Q)/N(Q)’ are cyclic groups, and

([N(Q)’N(Q)’], [N(Q)’" 1]) 1.

Suppose an odd prime p divides [N(Q)"N(Q)’], and let Sp be a Sylow p-
group of N(Q). It follows from Lemma 3.1 that N(Sp) c N(Q). It is
easily seen that this implies that Sp is in the center of N Sp); hence theorem
of Burnside [4, p. 327] implies that G contains a normal subgroup of index p.
This normal subgroup must contain M, contradicting Hypothesis III. There-
fore [N(Q)" N(Q)’] is a power of 2. Since q is odd and Q Q’, this implies
that N(Q) Q. Therefore by Lemma 3.1, N(Q) 2q; hence N(Q)’ Q,
and Q is cyclic.

Suppose an element x in Q /1} commutes with some element not in Q.
By Lemma 3.1, C(x) c N(Q). Therefore there exists an involution which
commutes with x. Hence there is some element xl of prime order p which
commutes with t. Let x0 be a generator of the Sylow p-group S of N(Q).
If txo x-, then txl xl which is not the case; therefore txo xo Con-
sequently Sp is in the center of N(Q) hence by Burnside’s theorem [4, p. 327],
p divides [N(Q)" N(Q)’], which contradicts what we have just shown and
completes the proof of the lemma.

LEMMA 3.4. G contains only one class of involutions. If m is even, there
are q(m q- 1) involutions in G; if m is odd, there are mq. In both cases the only
elements of M 1} which are products of two involutions are involutions.

Proof. Suppose m is even. Let M be a subgroup of G conjugate to M,
but distinct from M. Let u, u. be involutions, u in M, u in M. It is easily
seen that no involution commutes with both u and ul. Therefore by [2,
Lemma 3A], u is conjugate to u. Since u was an arbitrary involution in M,
every involution in M is conjugate to u hence any two involutions of M
are conjugate. Since every involution in G is conjugate to some involution
in M, this implies that G contains only one class of involutions. As M is
nilpotent, there is an involution u in the center of M; hence C(u) M. The
number of involutions in G is [G" C(u) q(m -t- 1) furthermore every in-
volution in M is in the center of M. Suppose Ul, u2 are distinct involutions

--1such that u u2 is in M; then u(ul u)u u. ul (u u)-. Hence ul us is
contained in u Mu-f n M; therefore ul Mu-f M. Thus u is in N(M)
hence u is in M since M isa normal subgroup of N(M) and [N(M)"M] is odd.
Consequently u. is in M; hence they are both in the center of M. Therefore
u u: is an involution.

Suppose m is odd. If for some y in M {1}, there exists an x such that
--1 --1xyx y then y is in M n xMx-; hence x is in N(M). This is impossible

as N(M) has odd order. Therefore M 11 contains no real elements;S
An involution is an element of order two; see [2].
An element is said to be real if it is conjugate to its inverse; see [2].
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hence [2, Corollary 2B] no element of M l} is the product of two involu-
tions. If ul, u2 are involutions, ulM u2M implies ul u2 is in M; therefore
uu 1; hence ul .. No coset of M contains more than one involu-
tion, and N(M) contains no involutions; hence there are at most q(m q- 1)
q qm involutions in G. If u is an involution, then any element which com-
mutes with u must hve order dividing m q- 1; therefore IC(u) divides
m q- 1. Consequently the number of elements coniugate to u is [G’C(u)],
which is multiple of qm. Hence [G:C(u)] qm, and every involution in
G is conjugate to u.

LEMMA 3.5. There are at least q nontrivial characters of G which are not ex-
ceptional characters associated with M.

Proof. It is sufficient to show that G hs at least q conjugate classes, none
of which contain any elements of M. Let ] be the number of conjugate classes
which contain no elements whose order divides two, but in which every element
is a product of two involutions. By Lemm 3.4, it is sufficient to show that
lc __> q. Lemma 3.4 implies that G contains at least qm involutions. Hence
by [2, Theorem 2J],9

la qm(qm q- 1)/g (qm q- 1)/(m q- 1) --q- (q- 1)/(m q- 1);

hence/c > q 1; therefore/c => q, as was to be shown.
We are now in a position to prove Theorem 1. Suppose G stisfies Hypoth-

esis III, M is not non-abelian p,group with [M:M’] < 4q, nd q < m 1.
By Lemm 3.2 it is sufficient to show that q => (m 1 )/2; we will now do this.

Let r0, r, rq_ be the irreducible characters of N(M)/M, where r0
is the trivial character of N(M), and i+(q-)/2 i for i 1, (q 1)/2..Let denote the character of G induced by r. With the help of Lemnms 3.1
nd 3.3 the vlues of can be computed; the results are given by

mq- 1 if x= 1,
, J 1 if x 1 x 1

(18) r/ (x)

i r(x) q- r(x) if xisinQ- {1},
0 if x"q 1.

This implies that for 1 =< i, j <= (q 1)/2

1 [(m q- 1) g
mq

(19)
e + {,,(x) + {,;(x) + ,;(x)

}(,, + ,,, ,; +
The statement of the theorem quoted is not quite strong enough. However the

same proof cn be used to get the inequality needed here.
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Equation (19) implies that nl n(q-1)/ are distinct irreducible characters
of G.

Since M is nilpotent, there exists a nontrivial irreducible character fl of M
of degree zl 1. Lemma 2.2 and Theorem 2 imply that

qm M--

g qm qm

q(m+ 1)/m-- q/m+ 1 q+ 1.

By Hypothesis III, the representation of no nontrivial character of G con-.
rains M in its kernel. By Corollary 2.4, this implies that any nontrivial non-
exceptional character, when restricted to M, has as a constituent. Hence
by the Frobenius reciprocity theorem, every nontrivial nonexceptional char-
acter is a constituent of i’*. By Lemma 3.5 there are at least q nontrivial
nonexceptional characters. At least one exceptional character occurs as a
constituent of . Therefore (20) implies that s 1 and

(21) ’ x-t-- F,

where (x, F) 0 for every exceptional character x. Hence by Theorem
2, for i 0,

(22) ’It is easily seen that =0 . By (19) and Corollary 2.4, x cannot
occur as a constituent of 0". In view of this, (21), (22), and the Frobenius
reciprocity theorem imply that for all y in M,

(23) X(Y) I(Y);

in particular

(24) x1(1) q.

Let x2 be an exceptional character associated with , where 1 .
Corollary 2.1 implies that z. x x vanishes on elements not conjugate to
an element of M {1}. By (18), 1 vanishes on elements conjugate to
an element of M {1} hence

(25) (zx- x)( 1) 0 for/-- 1, ..., (q- 1)/2.

This leads to

(26) zx -[- x2 x -zxl.

Hence x is a constituent of x r Therefore

(27) _,o X(x)x(x)’n(x) 0;
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hence vi is a constituent1 of xl , for i 1, (q 1)/2. Clearly x0 is
a constituent of xl . Since by (18), vi (1) m -k 1, (24) implies that

(28) q2 x(1)xl(1) => 1 -k 1/2(q- 1)(m -k 1).

Therefore 2(q -k 1) => m -k 1; hence 2q => m 1, as was to be shown.
This completes the proof of Theorem 1.

4. The case where G contains a normal subgroup of order m -J- 1

Let F be the field containing exactly 2 elements. Let Aq denote the
group of all transformations of F of the form c0 -- aw -k b, where a, b are in
F, a 0, and r is an automorphism of F. Let Pq denote the group of all
transformations of the projective line over F of the form

o (ao + b)/(c + d),
11where a, b, c, d are in F, ad bc O, - is an automorphism of F, and .

LEMMA 4.1. If q is a prime, then Aq considered as a permutation group on F
satisfies Hypothesis I and contains a normal subgroup of order 2 m 1.
Conversely, a permutation group which satisfies Hypothesis I and contains a
normal subgroup of order m - 1 is either exactly doubly transitive or is isomorphic
to Aq for some prime q. In the latter case, m 1 2q.

Proof. Since Aq contains the affine group, it is certainly doubly transitive
as a group of permutations of F. Suppose the mapping o -- a -k b leaves
three letters fixed; it may be assumed that 0, 1 are two of the fixed letters.
Hence a 1, b 0, but then the fixed field of r must contain at least three
elements. Since q is a prime, this implies that F is the fixed field of r; hence
r is the trivial automorphism. Therefore the transformation is the identity.
Suppose G satisfies Hypothesis I, is not exactly doubly transitive, and con-

tains a normal subgroup H of order m 1. By Lemma 3.1, G satisfies
Hypothesis II. If m is even, a Sylow 2-subgroup of M contains a unique
element of order two [4, p. 335] since MH is a Frobenius group. By conditions
(i), (ii), (iii) of Hypothesis II, M is nilpotent ([5], [7], [9]) therefore M con-
tains a unique element of order two which must necessarily be in the center
of N(M), contradicting condition (i) of Hypothesis II. Therefore m is odd,
M is nilpotent, and every Sylow subgroup of M is cyclic [4, p. 335]; hence M
is cyclic. Therefore the near field F associated to MH is a field containing
m -t- 1 elements (see [11]); hence m + 1 2 since m + 1 is even. The group
Q acts as a group of automorphisms on MH, none of which can leave more
than two elements fixed by Lemma 3.1. This can be interpreted as a group
of automorphisms of the field F. Since the fixed field of no nontrivial auto-
morphism can contain more than two elements, it follows that q is a prime,

0 An argument of this type was first used by R. Brauer in [1, p. 426].
Aq is the automorphism group of the one-dimensionul affine group over F; Pq is

the automorphism group of PSL(2, 2q).
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and F contains 2 elements.
to Aq

It is now easily verified that G is isomorphic

LEMMA 4.2. If q is a prime, then Pq considered as a permutation group on
the projective line over F is triply transitive, and no nontrivial permutation leaves
four letters fixed. Conversely, a triply transitive permutation group G on m 2
letters in which no nontrivial permutation leaves four letters fixed, and in which
the subgroup G1, consisting of those permutations leaving a given letter fixed,
contains a normal subgroup of order m 1, is either exactly triply transitive or
is isomorphic to Pq for some prime q.

Proof. Since Pq contains the projective linear group over F, it is triply
transitive. The subgroup of Pq, consisting of those permutations leaving

fixed, is Aq. Hence by Lemma 4.1 no nontrivial permutation in Pq leaves
four letters fixed.

Conversely, by Lemma 4.1, G1 is isomorphic to Aq for some prime q. Thus
G can be considered as a permutation group on the projective line over F,
where Aq is the subgroup consisting of those permutations which leave
fixed. The order ofGisg q(2 1)2q(2q-t- 1),whereqisaprime. If
q 2, then G and P2 are both isomorphic to the symmetric group on five
letters, and the result is clearly true. Hence it may be assumed that q is odd.
G contains a permutation a with the property that a(0) , a( 0,

a(1) 1. Since no element of G of even order leaves three letters fixed,
a2 has odd order. Hence some power of has order two and acts the same
way as a on 0, 1, . Therefore it may be assumed that a 1. By checking
the values o 0, 1, , it is easily seen that

z(ao + b) + c a(a’cJ - b’) + c’

only if a a’, b b’, c c’, r r’. Hence the transformations which send
o into a - b or a(ao -t- b) - c are all distinct. It is easily seen that there
are q(2 1)2q2q q(2 1) 2q g of these. Consequently every permuta-
tion in G is of one of these types.
The Sylow 2-group of Aq has order m 1 2 and is a Sylow 2-group of G.

Hence no permutation in G of order two leaves more than one letter fixed.
Therefore (o) 0 unles o 1.

Let , be a primitive element of the field F; the mapping which sends o into
,(o) is in G; hence ,a(0) a(a + b) + c for some a, b, c, r. By setting
o 0, we get that b c 0; hence ,a() a(a0). Let0 1;then, a(a); hence a a(,). Repeated application of this relation yields that

a(aa aq-’) 5,a(aa... aq-2) 5,q.

If r 1, aa (q-1 is a nonzero element of F which is a norm; therefore it
must be 1; hence (1) 1, which is impossible by the choice of . Thus
r 1, ,z() a(a). Repeated application of this identity yields that
a(a) ,a(o), for all integers k, where o is any element in F. Conse-
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quently z induces an automorphism of order two on the multiplicative group
of the field F which leaves only 1 fixed. Therefore z(o) w-1 for all o in F.
It is now an easy matter to verify that G contains the projective linear group
over F; hence G contains Pq. Since Pq has the same order as G, this implies
that G Pq.

THEOREM 3. Let G be a permutation group of order g qm(m - 1) which

satisfies Hypothesis I. Suppose q > 1 and G contains a normal subgroup of
order m 1; then q is prime, and G is isomorphic to Ao If G is the subgroup
of a ]c-tuply transitive permutation group K on m - ]c 1 letters, consisting of
those permutations which leave a given set of lc 2 letters fixed, then either K
is the symmetric group, or t 2 or 3 and K is isomorphic to Aq or Pq.

Proof. By Lemmas 4.1 and 4.2 only the case ] >= 4 needs to be considered.
If q 2, then G is the symmetric group on four letters; hence m 3, and K
is the symmetric group on/c + 2 letters. If q is odd, then it follows from a
theorem of M. Hall [6] that ]c N 3.
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