A KUNNETH FORMULA FOR COHERENT ALGEBRAIC
SHEAVES

BY
J. H. SampsoN AND G. WASHNITZER!

Introduction

Let X and Y be varieties over an algebraically closed ground field K, and
let ¥, G denote coherent sheaves on X resp. Y. Our main result (mentioned
earlier in less general form, in [3]) states that H(X X Y, ¥* ®¢* G*) and
H(X, §) ®x H(Y, G) are canonically isomorphic, where §*, G* denote the
reciprocal images of ¥, G on the product, ©* being the sheaf of local rings on
X X Y (Section 6, Theorem 1). We first establish a local form of this re-
sult for affine varieties (Proposition 8, Section 3), then derive the global
form by a homological argument of a type familiar in algebraic topology.
That argument is presented in some detail, since the setting is somewhat dif-
ferent from the usual one. We have been informed that P. Cartier and
J-P. Serre have independently obtained results similar to ours (oral commu-
nication from P. Cartier).

1. Some remarks on tensor products

We require a series of elementary results concerning tensor products and
product varieties. They are presented in Propositions 1-7 below. Proofs
are omitted where the statements alone suffice to make the assertions evident.

ProrositioNn 1. Let R and S be subrings of a commutative ring Q, and
suppose that R and S contain a common subfield XK. Then the natural ring
homomorphism of the Kronecker product R ®x S into Q@ (defined by

> a; ®x bi — 2 aibs,

where a; € B and b; € S) is an injection if and only if R and S are linearly dis-
jomnt® over K.

The following proposition is proved in [4], No. 48:

ProrositionN 2. Let Q be a commutative ring with unit, and let 0 > 4 —
B — € — 0 be an exact sequence of Q-modules. Let Q* be a ring of quotients
of Q° Then the sequence 0 - A ®qQ* >B ®oQ* —>C ®@qQ*— 0 1s
exact.

Received April 5, 1958.

! The authors were supported in part by a National Science Foundation Grant.

2 This means that if b, , --- , b, are linearly independent elements of 8 over K, then
they are linearly independent over R. From this it follows that if @, , -+ , an are lin-
early independent elements of R over K, then they are linearly independent over S
(cf. Weil [6], Chapter 1, Proposition 3). The proposition is easily verified by taking a
K-base for R and S.

31.e., with respect to some multiplicatively stable subset of @ not containing zero.
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ProrositTioN 3. Let R and S be commulative rings containing a common
subfield K. Let 0 > A — B — C — 0 be an exact sequence of R-modules,
and let G be an S-module. Put@Q = R ®x S, A’ = A ®:Q,B' = B ®zQ,
C"=C®rQ, and G = Q ®3sG. Then the sequence 0 > A’ ® (G’ —
B ®eG —->C ®;G —0 1is exact.

Proof. We have only to show that the first homomorphism is injective,
since ® is a right-exact functor. We have

A" ®GF = (A®:Q)® (PG X A®Q ®s G

(using the natural identification of @ ® ¢ @ with @), and the last expression is
by definition equal to A @z (R ®x S) ® s G. From the canonical isomor-
phisms A ® ; R~ 4 and 8 ® s @ = @G it follows that A’ ® ¢ G’ is canoni-
cally isomorphic to 4 ®x G. Similarly, B’ ® ¢ @ = B ®x G. The asser-
tion follows at once, since K is a field.

ProrosiTiON 4. Let the rings and modules be as in Proposition 3, and let
Q* be a ring of quotients of Q. Put A* = A ® Q% B* = B ®: Q* C* =
C ®rQ*% and G* = Q* ®sG. Then the sequence

00 A*@pGF*F>B*R®uG@* > C*®ep G*F—>0
18 exact.

Proof. Wehave A* = A @, Q*~ A ®r (Q ®¢Q*) = A’ ® Q¥ ete,,
A’ being as in Proposition 3. Thus

A* @ G* R (A" ®eQ*) B (@* ®G)
RA @Q*®G =~ (4" ®G) ®e QY

and similarly for the other two terms of the sequence in question. It follows
at once that this sequence is naturally isomorphic to the tensor product with
Q* of the sequence considered in Proposition 3. The assertion then follows
from Propositions 2 and 3 above.

2. Products of affine varieties

Henceforward K will denote an algebraically closed ground field. In this
section and in Section 3 below, U and V will denote affine varieties over K
(cf. Serre [4], No. 30 et seq.). The projectionsU X V—>UandU X V-V
are regular mappings which induce injections of the rings of regular functions
P(U, 0(]) g F(U X V, evxv) and P(V, Ov) - P(U X V, vav). We
shall thus regard I'(U, 0y), T(V, Oy) as subrings of T'(U X V, Oyxv). Fur-
ther, at points u ¢ U, v ¢ V and the corresponding point (u, ») e U X V
the projections induce injections of the local rings 0, — O resp. 9, —
Ou,» , Where for simplicity of notation we write 0, for Serre’s 9,.v, ete.
‘We shall regard 0, and 0, as subrings of O, . The facts just mentioned
are immediate consequences of Nos. 30-33 of [4].
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ProrosiTioN 5. The rings T'(U, Oy) and T'(V, Ov) are linearly disjoint
subrings of T(U X V, Ouxv) over K, and they generate T(U X V, Ouxv).
The local rings O, , O, are linearly disjoint subrings of O over K.

The fact that T'(U, 0y) and T'(V, Or) generate the ring of regular functions
on the product U X V is easily seen by first embedding U and V as closed
subsets of suitable affine spaces and then applying Corollaire 3, No. 44 of
[4] to the product of the affine spaces and the closed subset U X V. Linear
disjointness is trivial. From Proposition 1 we have the

CoROLLARY. The natural ring homomorphism
(U, 0y) ®x T'(V, 0y) =I(U X V, Ouxy)
s an tsomorphism.

ProrosiTioN 6. The local ring O, at @ point (u, v) on the product U X V
s a ring of quotients of the subring Q@ = 0,0, generated by O, and O, .

In fact, if m denotes the maximal prime ideal of O, , then O v is pre-
cisely the ring of quotients of @ relative to the prime ideal @ n m.

3. A local Kinneth formula

We require now the notion of the reciprocal image on U X V of an algebraic
sheaf on U or V (relative to the projections of U X V onto U, V). For
details we refer to [3], §1. To recall the definition summarily, let § be an
algebraic sheaf on U. Then its reciprocal image * on U X V is the sheaf
Ouxy oy F. Similarly, if G is an algebraic sheaf on V, then its reciprocal
image on the product is G* = Ouxy ®p, §. In particular, both oy and OF
can be identified with Oyyy , which we shall sometimes denote by ©*. Our
Kiinneth formula is concerned with the cohomology of a sheaf of the type
F* Qo+ §* = F @y Ovxv ®oyG, Where § and G are coherent sheaves on U
resp. V. Asterisks will be used consistently below to denote reciprocal
images.

ProrosiTioN 7. Let 0 > Q@ — ® — € — 0 be an exact sequence of alge-
braic sheaves on U, and let G be an algebraic sheaf on V. Then the sequence
0> G*®uG*>R*®e+G* o C* R+ G*—>0 on U XV s exact.

Proof. Consider the stalks at a point (u, v) e U X V: From Proposition
1 and Proposition 5 the natural homomorphism of the ring 0, ®x 6, onto
the subring 0,0, of O is an isomorphism. Then, by Proposition 6, the
local ring O, .,y can be identified with a ring of quotients of 0, ®x 0,. The
assertion follows at once from Proposition 4.

We have thus a somewhat simpler proof of the main result of §2 of [3],
without the restrictions imposed there.

It is scarcely necessary to point out that Proposition 7 holds equally well
for an exact sequence on V rather than on U.
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ProrosiTION 8.  Let F be a coherent sheaf on U, and let G be a coherent sheaf
on V. Then the natural homomorphism

(1) rU,5) ®xT(V,8) > T(U X V, §* ®e: G*)
8 an tsomorphism.

Proof. Let us first point out explicitly how (1) is defined. If fe I'(U, F)

and g e (V, G), then with the pair (f, g) we associate the function s* on
U X V given by

s*(u, v) = f(u) @ 1 ® g(v) €Fu o, Ow) ®o, Gv
where F, is the stalk of Fat u, etc. From the definition of *, G* and F* ® p» G*
as sheaves, it follows that the function s* is a section of F* ®¢« G*. It is
very easily seen that the mapping (f, g) — s* thus defined induces (1).
Now for the special case § = Oy and § = Oy it is clear from the corollary to
Proposition 5 that (1) is an isomorphism. Hence the proposition holds for
free sheaves.

Under the hypothesis that & and G are coherent, we can find exact sequences
of sheaves

0-X->M—>F—>0
(2)

0L —->N—->9g—0

where X is coherent and 9 is free on U, and where £ is coherent and 9 is
free on V (Serre [4], No. 45, Corollaire 1 and No. 13, Théoréme 1). Con-
sider first the exact sequences 9 — F — 0, L — G — 0 and the associated
(exact) sequence M* e N* — F* @+ G* — 0 on U X V. Since U and
V, hence also U X V, are affine, the induced sequences of modules of sections
are exact ([4], No. 45, Corollaire 2), and we obtain the diagram

T(M* ®gs N*) — T(F*®e+G*) — 0

(3) E [
r(om) ®xI'(M) — I'(F) ®xT(g) — 0
in which the rows are exact; we have written T'(M* ® g+ 9*) for
T(U XV, M* ®@ps N*)

and T(9M) for T(U, M), etc. The homomorphisms « and 8 in (3) are of
course instances of (1). It is clear that the diagram is commutative. Since
I and I are free, it follows from the remarks above that « is an isomorphism.
Therefore B—i.e., the homomorphism (1)—is surjective.

Consider now 0 —» X — 9 — F — 0 and the corresponding sequence
0o X*®@xG* > M* @« G* > F* ®e«G*—0 on U X V. By Proposi-
tion 7 this sequence is also exact. Taking the induced sequences of modules

of sections we obtain an exact, commutative diagram (again omitting the
names of the spaces)
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0 > I'(X*®p+G*) — T(M* @« G*) — T(F* ®e+ G*) — 0

@ a| g 7]
0 — T(x) ®xT(g) — I'(M) ®xT(g) — T(F)®T(g) — 0

where «, 8, v are the appropriate homomorphisms (1). As we have just
shown, they are all surjective. Suppose first that G is free. Then B is an
isomorphism, and from exactness it follows that v is also an isomorphism.
We conclude that (1) is an isomorphism if either & or G is free. But then,
since 9N is free, it follows that B in (4) is an isomorphism for any coherent
G, and again it follows that v is an isomorphism, Q.E.D.

4. Double complexes

In order to extend the local version of the Kiinneth formula (Proposition 8)
to products of arbitrary varieties, we shall first establish some properties of
complexes associated with three open coverings U = {Ugir, B = {Vi}ju,
and B = {Wi}rex of a topological space M, generalizing the results of Chapi-
tre I, §4 of [4]. £ will denote a sheaf of abelian groups on M. By S(I)
we denote the set of all ordered (p + 1)-tuples s = (4o« - %) with 4, el
(p=0,1,2,---) such that Ui, n --- n U, is not empty; s is called a p-
simplex, and the open set U;, n - - - n U, is its support, also denoted by U, or
Ui, *++ i, Similar conventions apply to J and K.

Let us first recall briefly the definition of the double complex C(U, B; £) =
D> p.a CP9(1, B; £) associated with the coverings Il and B and the sheaf
£ (Serre [4], No. 28): The elements of C*?(U, B; £) are functions f which
assign to each p-simplex s ¢ S(I) and each ¢-simplex &' ¢ S(J), such that
UnV, %0, an element f, v of T(U;n Ve ; £). If s = (4 1,) and
8 = (Jo+-Jg), we also write foo = figeouip jorrrdg- CT(U, Vi £) has
an evident structure as abelian group. Homomorphisms

d:C™(1, B; £) — ", B; L)
and

dr:c™(1, B; £) — (U, B; £)
are defined by*
(A igviprrr doia = Drds (— 1) T€S figridyernippn, oremiq
(@) igeevips doreigss = Drt (—1)PF 168 Figer i, doreedye--igns -
We have then d'd’ = d'd’ + d"d’ = d"d” = 0. If we define
C"(U, B; £) = Dpien C7(U, B; £)

1 By “res” we always mean restriction to the open set indicated by the left member
of the equation.

and
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and d = d' + d”’, then d is a homomorphism of C"(U, B; £) into
C"(1, B; £) satisfying dd = 0. The cohomology groups of this single
complex are denoted by H"(U, B; £).

Lemma.  Suppose that M occurs among the open sets U; , and suppose that
H"(B, £) =0 for n > 0. Then H"(U,B; L) =0 for n > 0. (Cf. [4],
No. 29, Lemma 1.)

Proof. Let M = U,, where « is a fixed element of I, and let
F=f+f++r
be a cocycle in C"(U, B; £), where £ C*" (U, B; £). If n > 0, define
g eC”" (U, B; L) forp=10,1,---,n—1hy
(0" )ioe i g0 inopor = (I ) aior e ipy dor+ inepet

(noting that U,,, = Uaipri). Put g=¢"+g'+ - +¢" it is a
cochain in C"* (11, 58 &), and we havedg = f — J°, Wheref0 o™, B; £)
is defined by Ji i0,dorein = T€S o, jo-+-in - Clearly df® = 0, and therefore
a1 =o. Consequently the element f° can be considered as a cocycle in
C"(RB, £). By assumption it is the coboundary of an element k ¢ C"7(%, £).
Define 7° e C*" (U, B; £) by A%.jp---iny = res hjy...i_, . Then di® =
AR = 7° and thus f = d(g + #°), Q.E.D.

5. Triple complexes
We must now consider the triple complex
C(uy %’ QB; °B) = ZP-Q'T Cp,q,r(u’ %7 %r "e)

associated with the three coverings U, B, @, of M. It is quite analogous to
the double complex just discussed, viz., the group C*'*" (U, B, W; £), which
for brevity we call A”'%", consists of functions f which assign to every triple
of simplices s e S(I), s’ ¢ S(J), s ¢ S(K), of dimensions p, ¢, r respectively,
an element f;o. in T(U;n Vo n Wer; £). Three homomorphisms
d/ i APTT 5 AT @ AP 5 AP and @77 AP0 — AP are defined
by the formulas

(dlf)ioc.-ip.'.l,sl,sn = 25:01 (—1)" res fio""fr"‘iz:+1,0'.8" ,
(d,,f)s,jo...jq+l'8u = q+1 ( l)p—l-v res Js JO"‘;v"‘jqq.l'&" ,
(d///f)s,sf,ko...k,ﬂ = Z::% (—-1)1’+q+v res fs.s'.ko"'ﬁw“k,_‘_l s

in which s, s/, and s’ have the same significance as above. The three homo-
morphisms satisfy d'd’ = d”’d” = d'"’d""’ = 0 and

dldll + dlldl = dldlll + dllldl o dlldlll + dllldll = 0.

We now regard the triple complex A = Y .. A”*" as a double com-
plex A* = > ,, A™" where A" = Y ,i4=n A”'"", with the two dif-
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ferentials dy = d’ + d"’ and d» = d"’. The bigraded cohomology groups
of A* with respect to the two differentials d; and d, will be called H7"(A*)
resp. Hii (A%).

With the triple complex 4 we can also associate a single complex ., A",
where A™ = Y ,iqir=n A”'?", the differential being d’ + d” + d'’’ =
d; + da». The cohomology groups of this complex will be called
H"(1, B, W; £). They are manifestly the same as the cohomology groups
of the single complex associated with the double complex 4* and the to-
tal differential d; + ds .

Now let s’ be any simplex in S(K). Then U and 8 induce open coverings
U,» and B, of the support W, , and with these coverings we can associate
a double complex C(U,, B, ; £), as in Section 4 above. If s e S(I) and
s’ € S(J) are any two simplices, then ¥ induces an open covering L,
of Us;n V., and with this covering is associated the usual single complex
C(,,.r, £). From the definitions of d; and d. above, it follows by in-
spection that there is an isomorphism

(5) ?'T(A*) ~ Hs" Hu(ua" ’ 238” ;°B))

the product being over all r-simplices s’ ¢ S(K) (cf. [4], No. 28, Proposition
2). Similarly there is an isomorphism

(6) H?I'T(A*) ~ He.s' Hr(smm’ ) £)’

the product extended over all pairs of simplices s ¢ S(I) and s’ ¢ S(J) the
sum of whose dimensions is equal to n.

Of particular interest in the sequel is the special case W = U n B, by
which wemeanthat K = I X J and that if £ = (4, j), then W, =U;n V;.

PropositioN 9. Let the covering B of M be a common refinement of U
and B. Then the canonical homomorphism® 1, : H*(®, £) — H"(U, B, W; £)
is an isomorphism for alln = 0. If H"(B,,, , £) = 0 for all n > 0 and for
every s e S(I), s' e S(J), then the canonical homomorphism

u:H'(U,8;¢) - H" (I, B, BW; £)

18 an tsomorphism for all n = 0. The hypotheses are automatically fulfilled if
W= UnD.

5 .y is defined as follows (see [4], Nos. 27, 28): Let A7; be the subgroup of Ao =
Co.0r (11, B, W; £) consisting of all f such that dif = 0, and put 4;; = 3, A7, .
This is a subcomplex of A* and the total differential d; + d. coincides on it with d, =
d". Let iy : C(W,L) — A;; be the canonical isomorphism defined by (t2 f)sqg.50.k0: kr =
res frq---x, for f e C'(W, £). This isomorphism followed by the injection 4, — A*
then induces ¢ : H*(, L) —» H*(A*) = H*(1, B, W;L). In an analogous way there is
defined a canonical isomorphism ¢; of C(11, B; £) onto a subcomplex A; of A*, with a
resulting homomorphism ¢, : H*(Ul, B; £) — H*(4*). Similar homomorphisms will
occur below for other complexes; they will be denoted by s resp. «;1 , as above, with
primes when it is necessary to distinguish different occurrences.
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Proof. Let s ¢ S(K). If B refines B, then the covering B, of the
support W induced by L contains W,» among its open sets. Then

H" (B, L) =0

for n > 0, by Lemma 1, No. 29, [4]. If also T refines U, then U, contains
W among its open sets. Then from the lemma of Section 4 above, we have
H"(Us, B ; £) = 0 for n > 0, whence Hr' "(A*) = 0 forr =2 0, n > 0,
by (5). Consequently w: H"(L, £) — H"(A*) is an isomorphism for
n 2 0, by Proposition 1, No. 27 of [4]. As we have already pointed out,
H"(A*) = H"(1, B, B; £). If now H (W, ., £) = 0 for r > 0 and all
s, 8, then Hri (A*) = 0 for r > 0, n = 0, by (6). It follows, again by
Proposition 1, No. 27 of [4], that 4 : H"(Ul, B; £) — H"(A*) is an isomor-
phism for » = 0. Finally, if T = U n LB, then the set U, n V,, is among
the open sets of the covering 8, ., so that A (W, , £) = 0forr > 0, by
Lemme 1, No. 29, [4], Q.E.D.

Remark 1. Proposition 9 is analogous to Propositions 4 and 5, No. 29 of [4].

Remark 2. If B is a refinement of U and B, then ;"¢ defines a canonical
homomorphism H"(U, B; £) —» H*(W, £). We shall show presently how
this can be obtained from a cochain mapping.

The question of stability of this homomorphism vis-a-vis refinement of
coverings naturally arises. Let us then consider three new open coverings
W = {Uiiar, ¥ = {Vi}yrer, and B = {Wi}wex of M which are re-
finements of U, B, W respectively. Let o:I' > I, r:J’' — J,and £:K' — K
be maps of the index sets such that Ui C Upir, Vie C Vijo , Wio © W .
The maps o, 7 resp. o, 7, £ determine cochain mappings

(o7):C"% (U, B; £) - C"4Y(W, B'; £)
resp.

(o7g):C"77(1, B, BW; £) — C"" (W, ¥, W; £)
defined for an element f by

(O'Tf),;'o...,‘rp, Qlgereitq = res fﬂ;ro...,ilp, 7370015y
resp.

(O'TEf) Pgeeeilp, G0 d g B gee by = res fn'fo...qirp, il g Ti gy kT ge e ER -

These homomorphisms clearly commute with the differentials and therefore
induce homomorphisms

a:H"; (U, B &) - HY (W, ¥'; £)
and
B:H"(U, B, W; &) — H" (W, B, W'; £).

In like manner the map £:K’ — K induces a homomorphism
v:H' (B, £) - H'(W, £)
which is well known to be independent of the choice of £ ([4], No. 21, Propo-
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sition 3). It is easily verified in a similar manner that « and 8 are independent
of the particular choice of ¢, 7 resp. o, 7, £&. For example, @ can be decom-
posed in an obvious way into H" (11, B; L) — H"(W, B; L) —» H" (W, B'; £),
the first homomorphism induced by o alone, the second by 7 alone. A
rather trivial modification of the proof of the proposition just cited shows
that each homomorphism is independent of the choice of ¢ resp. ». We
omit the verification here. Similar remarks apply to the triple complexes.

From the cochain mappings just described and from the canonical injections
u and ¢, we obtain a diagram

c, B; &) —2 0, B, BW; £) —— C(W, £)

l (a7) l (o78) lf

(W, B e) -1 (0, B, W, £) —2— C(W, £)

which is clearly commutative. The induced cohomology diagram is then also
commutative, and all the homomorphisms are canonical. Thus we have

ProrosiTioN 10. Let U, B, W and W', B, W’ be two sets of open coverings
of M such that L refines U and B, such that W' refines W and B’, and such
that W, B', W' are refinements of U, B, W, respectively. Then the diagram

1

(U, B; €) — 21, BHY(R, £)

1—171
H(W,958) —— H'(W, £)
induced by these refinements is commutative for all n = 0.

From this fact we can easily calculate "t explicitly. First takell = 8 = 8.
The hypotheses of Proposition 9 are fulfilled, and we obtain isomorphisms ¢:
H'(®, &) > H" (W, W, BW; £) and 4 : H"(W, B; £) - H'(VW, B, W; £).
There is also a canonical isomorphism® w: H "B, L) > H (W, W; £). We
claim that 4 ts = . To show this, let f e C" (W, £) be a cocycle (n > 0).
For each ¢ = 0, 1, .-+, n — 1 define g% e C"*" (W, W, W; £) by’

g%o’ k'O"'k'qv k"q'“k”n-—l = (-—]_)q res fk'o"'k'qk"q“’k”n—l‘
Clearly d’g® = 0. One easily finds that for the (n — 1)-cochain
g=g0+g1+”.+gn—1

we have (d' + d"’ + d'"')g = f/ — f”, where f’, f’ are homogeneous of de-
grees (0, 0, n) resp. (0, n, 0), and where fig g, k7g---kr7n = Y€S frrrg...kr, and
¢ The definition of «» is analogous to the definition of ¢z , as explained in the preceding

footnote.
7 Here and below, k, k', and k” denote elements of K.
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fk"o»k'o"'k’m K, = Tres fk'on-k’”- I.e.,f'= L2f andf”= [5} L;f;f"\’f". This
proves the assertion for n > 0; it is trivial for n = 0.

We now calculate t; explicitly: Let f = f° + f* + --- + f™ be a cocycle
of C*"(W, W; £), where f* is in C*" (W, W; £) and n > 0. For each
p=0,1,---, n—1 define g* e C*"?7(W, W; &) by the formula

g]fo...kp, k'p"'k'n—l = (—l)p Z::;fgz-l"‘kpk'p"‘k'r, k'r"'k’n—l .
From a straightforward calculation it is easily seen that for the (n — 1)-
cochain ¢ = @ +g 4+ - 4+g"" we have dg=(d +dVg=F -1
where f ¢ C*"(28, W; £) and
(7) fko: Krgee bl = Z;‘,go res f%'o-“k’p, Bl e vkiy
Since d’f = 0, this n-cocycle lies in the image of
1 CM(W, £) — C"M(B/W, BW; £).

The map f — f clearly induces the canonical isomorphism

W HY (B, B; £) - HY(BW, £)
forn > 0. If fisa cocycle of degree zero, then we must have d’f = d”f = 0,
and in this case we simply take f = f. Thus we conclude that for n = 0
the canonical isomorphism H" (L, W; £) — H*(W, £) s induced by the co-
chain mapping x:C*" (W, W; £) — C"(W, £) defined by

(7/) (xfp)ko...k" = f,fo cockpy kpee kg o

Now assume again that B is a refinement of U and 2B, and choose maps
o:K—1I, 7:K—J such that W, € Uy and Wi, € V.. Then from
what we have established above and from Proposition 10 we obtain a com-
mutative diagram

H*(1, B; &)

\\LE‘u
a SH(®, )
e
H" (B, B; L)

from which we can express 7 ¢ in terms of the cochain mappings (¢7) and
x. We state the result in

ProposiTioN 11. Let B be a refinement of U and B. Then the canonical
homomorphism 3 uw:H"(1, B; £) — H"(W, £) is induced by the cochain
mapping o: C*4(1, B; £) — YW, £) defined by

(8) (¢f)ko. by — T€S fako- cookp, Thpe Thpiq )
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where ¢:K — I, 7:K — J are any maps such that Wi, C Uy and Wi, € Vo .
In particular, if B = U n B, then (8) can be put in the form

(8,) (¢f)(iojo)"'(ip+qu+q) = res fio"‘ip- jp"'jp+q ’
where (i0jo) **+ (ptqJora) 18 @ (p + q)-simplex of K =1 X J.

6. A Kinneth formula for coherent algebraic sheaves

Let X and Y be algebraic varieties (in the sense of Serre [4]) over an al-
gebraically closed ground field K; let U = {Ug} i resp. 8 = {Vj} s be finite
coverings of X resp. Y by open affine subsets. Put Uy = U; X ¥, Vi =
XX V;,and Wi = UfnV; =U; X V;. We obtain then three open
coverings U* = {U7}, B* = {V7}}, and B* = (W5} of the product variety
X X Y. By Proposition 9 there is a canonical isomorphism

(9) H™(U*, B*; £*) =~ H"(T*, £*)
for any sheaf £¥on X X Y (n = 0).

Now let § be a coherent sheaf on X, let G be a coherent sheaf on ¥, and
denote their reciprocal images on X X Y by &%, g*. Further, let ©* denote

the sheaf of local rings on X X ¥. We now apply (9) to the sheaf £* =
F* ®o+ G*. Consider the double cochain complex

C(U*, B*; F* ®gs G*) = D 5o CTUU*, B*; F* @ov G*):
The natural homomorphism
Vil (Uipeonip, F) ®x T(Vigeiniy»8) = T(Uigewniy X Vigjy 5 F* @os §%)
(cf. Proposition 8) induces a homomorphism
PPUCP (1, F) ®x CU(B, §) — C™I(U¥, B*; §* @« G*)
defined by '
WU ®x 9))ige-vip, do--riq = ¥ (Sioe--ip ®x Fio---3g)

forf e C?(11, ) and g e C*(B, §). By Proposition 8, " is an isomorphism.
It follows readily that the ¢”'? define a natural isomorphism of the two com-
plexes C(U1, ) ®x C(B, §) and C(U*, B*; * ®o« G*). From (9) and the
Kiinneth formula (Cartan-Eilenberg [2], Chapter VI, Theorem 3.1), we
have a natural isomorphism H(U, ¥) ®x H(DB, §) =~ H(W*, F* ®e« G*).
From the canonical isomorphisms H(1,¥) ~ H(X, ¥), H(B, Q) =~ H(Y, g),
and H(BW*, F* @¢+ §*) =~ H(X X Y, F* ®¢+ G*) ([4], No. 47, Théoreme
4) we obtain finally an isomorphism

H(X,5) ®@x H(Y, Q) ® H(X X Y, F* ®¢+ G¥).

From Proposition 10 it is easily seen that this isomorphism is independent
of the choice of coverings U and B. Therefore we have
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TureorEM 1. Let F denote a coherent sheaf on a variety X, and let G denote
a coherent sheaf on a variety Y. Then the projections X X ¥ — X resp. Y
tnduce a canonical tsomorphism

(10) H(X,5) ®x H(Y, §) = H(X X Y, 5* ®¢- §¥),

where F*, G* are the reciprocal tmages of §, G on X X Y, and 0* ¢s the sheaf
of local rings on X X Y. In particular we have

(11) H(X, 0x) ®x H(Y, 0y) ® H(X X Y, 0%).
If one of the varieties, say X, is affine, then (10) reduces to
(12) T'(X,5) ®x H*(Y, Q) ~ H*(X X Y, * ®¢« G*) (n =z 0).

Remark. In virtue of results of Serre ([5], No. 12, Théorémes 1, 2, and
3) the isomorphism (10) remains valid if X and Y are projective varieties
over the field of complex numbers and if § and G are coherent ana-
Iytic sheaves, O* being interpreted as the sheaf of germs of holomorphic
functions on X X Y. A similar remark holds for (11). However, (12) is
not valid for analytic sheaves.

Let 11 and 8 be the affine coverings used above, let f ¢ C*(1l, F), and let
g € C*(B, g). Then, from the definitions, the isomorphism

c(1, 5) ®x C(T, §) — C(U*, B¥; 7* Do+ G¥)

maps f ®x ¢ into the (p, g)-cochain whose value for simplices (% - - %),
(o «* - 7o) 18 equal to

Jiveovip ® 1 ® Gignjy € T(Usgenniy X Vigerijg F* ®oe G¥).
From Proposition 11 we have at once
ProrositioNn 12. The canonical isomorphism
H(U,5) ®x H(B, §) = H(BV*, 5* ®e §¥),
and hence also the isomorphism (10), are induced by the cochain mapping
0:C(, F) ®x C(B, §) — C(BW*, 7* ®¢ G*)
defined for an element f @« g with f e C*(U, F) and g e C"7(B, Q) by
(13) (e(f ®x 9 ivior-+Ginins = T€8 (fige-i, ®@ 1 ® Gipe-in)s
where (%ojo) * -+ (inJn) denotes an n-simplex of I X J.

7. An application

Let U be an affine variety, and let P be a projective space of positive
dimension. Let Op(h) be Serre’s sheaf ([4], No. 54) on P, and let ©*(h)
be its reciprocal image on U X P. Then the Kinneth formula (12) gives



A KUNNETH FORMULA FOR COHERENT ALGEBRAIC SHEAVES 401

us at once H"(U X P, 0*(h)) ~ T'(U, 0y) ®x H"(P, 0p(h)) for all n = 0.
In particular, H"(U X P, 0*(h)) = 0 forn > 0 and b = —1 ([4], No. 65,
Proposition 8). This is the main result (Proposition 2) of §4 of [3].

8. The cohomology ring

Let X be any variety, and let A be the diagonal in X X X. Then there
is a canonical homomorphism 0* — 95 (0* = Oxxx, ©a being extended by
zero outside of A). Because of the isomorphism X &~ A, we obtain a natural
mapping H(X X X, 0¥) — H(X, 0x). From the Kinneth formula (11)
there results a canonical homomorphism

(14) H(X, 0x) ®x H(X, 0x) = H(X, 0x)

(of degree zero). This homomorphism endows H (X, 0x) with a structure
of graded, associative K-algebra, i.e., the cohomology ring of X.

We can express the multiplication in H(X, 0x) by a formula analogous
to the ordinary cup-product (cf. [1], Exposé 4.8). The result is of course a
special case of (13). Take two finite coverings 11 and B of X by open af-
fine subsets. We use the notation of Section 6 with X = Y. The covering
W* is then a covering of X X X, and the covering induced by T&* on A
(= X) is simply the intersection 1 n B. Consider the diagram below:

H(WL, 0x) ®x H(B, 0x) — H(T*, 0% ®¢- 0%) —P—s H(W*, 0%)

Y H(T, 01) —2 H(lln B, ).

The maps are as follows: « is the natural isomorphism described in Section
6; 8 is the map induced by identification of 0% ®g¢. O3 with 0*; v is induced
by ©* — 0, ; 8 is induced by the identification of X with A and the result-
ing identification of res » W* with U n V. The composite homomorphism
is of course (14). Now take I = B. The index map I — I X I defined
by ¢ — (%, 7) induces the canonical isomorphism H(U n U, 0x) — H(U, Ox).
From this, from the sequence above, and from (13), it is then easily seen that
the homomorphism (14) s induced by the cochain mapping

C*(1, 0x) ®x C"*(U, 0x) — C*(1, Ox)
defined by f ®x g — f ¢, where
(15) (f (W] g)iO“"in = T€8 Jige-vip Gip---iy -
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