
ON THE EXACT NUMBER OF PRIMES LESS THAN A GIVEN LIMIT
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The problem of counting the exact number of primes x, wthout actually
listing them all, dates from Legendre [l] who observed that the number of
primes p for which xII p - x is one less than

where [z] denotes, as usual, the greatest integer z, and the pi range over all
the primes less than or equal to xII. Since then, a large number of writers
[2] have suggested variants and improvements of this result. Foremost
among these was the astronomer Meisse| [3] whose formula (5) s derived
below. This formula, and Meissel’s obscure derivation of it, is to be found in
a number of textbooks in number theory. It is of practical value to our
problem because in its "Legendre’s sum" the primes extend only as far as
x13. Messel used his formula to evaluate (x), the number of primes x
for a number of large values of x including

(107) 66459, (108) 561455, (109 508448.

Others writers with "better" formulas than Legendre’s or Meissel’s have
been content to advocate rather than utilize their results. At any rate, unti|

now no one has made such calculations beyond x 107, except N. P. Bertelsen
[4] who confirmed Meissel’s corrected value of r(1.08) and computed (2.107)
and r(9.107). Meissel’s calculation of (109), made sometime between 1871
and 1885, must be regarded as one of the outstanding single calculations of
the 19th century, even though his value is slightly in error. Because of the
recent interest in such functions as (x) li(x), the writer has been con-
sidering the problem of extending Meissel’s method so as to reduce the range
of the primes in the Legendre sum still further. The fact that we now have
high speed computers to do our actual calculations does not relieve us of the
responsibility of counting the minutes as Meissel must have counted his
weeks. Some preliminary work on the SWAC in 1956 indicated that for very
fast machines there is a decided lack of balance in Meissel’s formula, most of
the time being spent on its Legendre sum.

Notation and general formula
Let ma denote the product

m, p p Pa

of the first a primes. We consider the general Legendre sum

(x, a)
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where ranges over all the divisors of ma, and (it), the MSbius function, has,
in this case, the value 4-1 or -1 according as is the product of an even or
an odd number of primes. By the well-known combinatorial principle, called
by Sylvester the Principle of Crossclassification, (x, a) is the number of
numbers =< x divisible by none of the first a primes.
We denote by Pk(x, a) the number of products =< x of/ primes each greater

thanpa. We takeP0(x,a) 1 and note thatPk(x, a) Oforall/ _>- r
where x < p:+l. Since each of the numbers enumerated by (x, a) is a
product of a certain number of primes > p, we have at once the general
formula

(1) (x, a) 7-0 P(x, a).

Because we wish to find (x), our interest in this formala stems from the
simple fact that

(2) P(x, a) r(x) a,

and our formula becomes effective as soon as we provide adequate means of
computing the other P’s as well as an independent practical method of evalu-
ating (x, a). With x given, our choice of a and hence the number of non-
zero P’s will depend on the economics of these separate parts of the calcu-
lation.

The functions P(x, a)
These functions may be evaluated from a knowledge of a more or less

limited list of primes or of the function v(y). Thus for k 2 we have

If we denote the number of primes not exceeding the square root and cube
root of x by

b (x) and c ’(x),
then we my write the above as follows:

(3), P(x, a) _,<<= ’(x/p) 1/2(b- a)(b -[- a- 1).

For/ 3 we have

(4)
’,,<i<__c ’i_j_,, {r(x/pp)- (j- 1)1,

where we have introduced
bi ’{ (x/p)l/}.

In using this formula for P3(x, a) it is supposed that a short table of (y)
is stored in the high-speed memory of the machine fr rapid consultation at
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very frequent intervals of time. This is not so in the formula for P(x, a).
Here the argument x/p may be expected, for a small, to reach high values
beyond the storage capacity of the machine’s fast memory. The procedure
to use in this case will be discussed later.
To derive Meissel’s formula we have only to set a c. Then P3(x, c) O,

and the general formula (1), when solved for r(x), becomes in view of (2)
and (3)

r(x) (x, c) 1 + c P(x, c),
or

(5) r(x) b(x, c) + 1/2(b + c 2)(b c + 1) ’c<_b r(x/p),

which is Meissel’s formula.
Another special case arises when we put

a---- (xl/4).
In this case P4(x, a) 0, and the general formula becomes in view of (2)
and (4)

(6)
r(x) (x, a) + 1/2(b + a 2)(b a + 1) "a<_b ’(x/p)

(J

Finally if we set a b, we obtain

r(x) (x, b) 1 + b,

which is Legendre’s formula.

Evaluation of (x, a)
The number (u, v) of numbers __< u not divisible by the first v primes

satisfies the recurrence

(7) (u, v) (u, v 1) (u/p,,,v 1).

In fact the numbers enumerated by (u, 1) are of two sorts: those not
divisible by p, of which there are (u, ), and those divisible by p of which
there are (u/p v 1).

If we use (7) repeatedly starting with u x, v a, we get an aggregate
of terms of the form

(-- 1) L (x/(P,l P,2 P,,L), )),
where

a<a2<... <a<=<_a.

Such a term may be said to be of level L and signature (- 1). There are
three ways of disposing of this term. In the first place the first argument of
may be small, in fact less than px. In this case b 1 by definition.
In the second place, the second argument of may be small, so that may

be found by having the machine consult a stored table of (u, ]) for fixed
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This value may then be accumulated, according to its signature, as a con-
tribution to the final value of 6(x, a). A good practical value of k is 5.
Suppose

u 2310q+ r (0 =< r =< 2309).
Then

(8) (u, 5) 480q + (r, 5),

where the last term is tabulated. Only 1155 entries in this table are needed
since

(2s, 5) (2s 1, 5).

The table could be cut in half again by exploiting the functional equation

(2309 u, 5) 480 (u, 5)

if space for storage is a problem. It is perhaps worth pointing out that the
multiplication by 480 indicated in (8) may be postponed until the very end
of the calculation by accumulating all the items q, according to their signature,
and multiplying their accumulated value by 480 only once. This serves to
speed up an already lengthy calculation.

Finally if neither argument of is sufficiently small, the recurrence (7)
is resorted to; thus replacing h by h 1 in our term and introducing the new
term

(- 1)+ (x/(p, Pa PAL), X 1)

of level L + 1 at the cost of one division operation. This new term is the
one to which the machine now gives its undivided attention.
Thus in carrying out the calculation of (x, a) in this methodical way,

there is in storage, at any one time, only one term of level 0, one term of
level 1, and so on up to one term of. highest level L, the latter being treated
in one of the three ways mentioned above, while the terms of lower level
await future consideration. The number of terms in storage is quite modest,
10 levels being sufficient to treat an x as large as 5.10TM, assuming a table of
(r, 5) is also stored.
The culculution of (x, a), if written out in full for a lurge x and u modest

value of a, would be a highly ramified structure reminiscent of a shower or
cascade of particles produced by a single cosmic ray. Each application of
(7) gives a bifurcation into a pair of terms, one being of the next level. This
process continues until the term is absorbed by the boundary conditions
u < p or 5. To give an idea of the extent of this proliferation, for the
case of (10, 65) there were precisely 2 818 344 consultations of the table of
(u, 5) and 401 962 cases in which u < p, giving in all 3 220 306 ends of
branches, yet there were no terms of level 8 or more.

This is a good example of how one can substitute time for space with a
high-speed computer. For checking purposes one can use the fact that
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(x, a) is approximately equal to

x Ii=<a (1 pl).
Tables of this product have been given by Legendre [5] and Glaisher [6] for
a =< 1229 and 10 000 respectively. This approximation is often fairly good.

It was in the (x, a) part of the calculation of (109) by means of (5) that
Meissel made his mistake. His value of (109, 168) is 57 short of its true
value 81 515 102. A recalculation of (109) by means of (6) confirms this
fact. There is also a minor error of a unit in his value of ’(x/pi).

The calculation of P2(x, a)
In calculating P2(x, a) the sum

(9) ’a<i__<b ’(x/pi)

is best found by accumulating tallies of the number of primes between x/p
and x/p_l. To this effect we first construct a large number of binary digits
in the number

(10) .1110110110100110010110100

whose ]th digit is 1 or 0 according as 2]c - 1 is a prime or not. This can be
done by a straightforward Eratosthenes sieve process running over a memory-
ful of binary digits at one time. The characteristic number may then be
stored on magnetic tape in lieu of a list of primes. Four large tapes cover
the primes less than 50 million. In evaluating the sum (9) the p’s are run
backward from pb to p, and the long binary number (10) is fed through the
arithmetic unit, which counts the binary l’s. At the appropriate moments
the subtotal is accumulated until the final sum is reached. In programming
the change from one prime p to the next smaller one, a small copy of the
characteristic number (10) is fed backwards through the arithmetic unit.
A similar procedure applies to the calculation of P3(x). In this case, as

mentioned above, a small table of (x) is stored for accumulation as called
for in (4).
The results shown in Table 1 illustrate the general formula (1).
Using (1) and (2) we derive at once from the values in Table 1 the values

of (x) shown in Table 2. These are compared with the approximations

li(x) dUlog and R(x) -l(n) li(x’),
n----1

the latter being suggested by Riemann [7].
It will be noted that in the cases of x 90 000 000 and x 1 000 000 000

where there are two sets of data, both sets lead to exactly the same value of
(x).
The values of (x) for x 20 000 000 and 90 000 000 are in agreement with

those of Bertelsen.
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TABLE 1

15 485 864
20 000 000
25 000 000
32 452 845
33 000 000
37000000
40 000 000
90 000 000
90 000 000

999 000 000
1 000 000 000
1 000 000 000

10 000 000 000

a

53
58
61
66
66
67
68
25
86
90
40
40
168
65

(x, a)

1 568 715
1.988 057
2 458 751
3 140 783
3 193 726
3 569 832
3 847 872
10 826 326
8 270 815
9 110 819

107 108 994
107 216 231
81 515 102
964 916 391

P(x, a)

568 767
717 507
892 884

1 140 848
1 162 124
1 308 275
1 414 285
5 127 120
3 053 946
3 349 453

51 195 835
51 248 370
30 667 735

463 026 862

P3(x, a)

0
0
0
0
0
0
0

482 276
0
0

5 113 621
5 120 366

0
46 837 081

TABLE 2

15 485 864
20 000 000
25000 000
32 452 845
33000 000
37000000
40000 000
90 000 000
100 000000
999 000000

1000 000000
10000000000

1000 000
1 270 607
1 565 927
2 000000
2 031 667
2 261 623
2 433 654
5 216 954
5 761 455
50 799 577
50 847 534

455 052 512

li(x) ’(x)

411
298
369
354
307
630
362
399
755
1389
1701
3102

R(x) -r()

109
--37

2
--56

--105
194
--85
227
97

--387
--79

--1829

If we take the difference

r 1 000 000 000) r(999 000 000),

we find 47 957 as the number of primes in the thousandth million. This
agrees with the result obtained by F. Gruenberger [8] who has made a special
study of this million. This is another confirmation of the fact that Meissel’s
often quoted value 50 847 478 for r(109) is too low by precisely 56.

It will be noted that for the above values of x the function R(x) is a much
better approximation than li(x). This is not always the case, however.
According to a theorem of Littlewood, the difference li(x) r(x) changes
sign infinitely often. Since R(x) is always less than li(x), it must be a worse
approximation infinitely often. Recent results of Skewes [9] do not give us
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much encouragement in looking for such an occurrence with the methods and
equipment available to us at this time.

The general sum over primes
We conclude with a few remarks on the extension of the preceding formulas

to the problem of summing a function over primes, for example, finding the
sums of/th powers of primes =< x.

Let f(n) be any numerical function (which up to now has been identically
equal to 1), and let Q(x, lc) be defined for x > 0 and/c a positive integer by

Q(x, l) ,,k_f(nl)
summed over all multiples of/ not exceeding x. The functions (x, a) and
Pk(x, a) are defined by

(x, a) ,_.(,.m,,)-lf(n) (m,, pl p2 pa),

Po(x, a) f(1), P,(z, a) .,q,<=,f(q,),
where q, is a product of k primes each greater than pa. Then, as a generaliza-
tion of (1), we have

(11) 4(x, a) _,l,,,()Q(x, ) _.,,-oP(x, a).

To prove the first equality we use the well-known property of M:Sbius’ func-
tion"

(12)

and write

IN() [l/N],

_,, ()Q(x, ) 1,, #() .,,_f(n)

By (12) the inner sum is seen to vanish except when m and m are relatively
prime, in which case the coefficient of f(m) is unity. This gives us (x, a)
by definition. The second equality of (11) follows at once from the simple
observation that each of the numbers -< x and prime to m is uniquely the
product of a certain number, ]c, of prime factors each greater than Pa. The
relation (11) contains

P1(x, a) p,<__<f(p),
and thus the calculation of f(p) over primes p =< x can be made to de-
pend upon (x, a) and the other P’s, as before.
As to the evaluation of (x, a), a recurrence like (7) exists when f is

"purely" multiplicative, that is,

(13) f(m)f(n) f(mn)
for every pair (m, n) of integers, as for example f(n) n. In fact in this
case
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(x, a) (x, a 1) f(p,)(x/pa, a 1),

which may be programmed as in the previous discussion.
If f is only multiplicative, that is, (13) holds in case m and n are coprime,

then we have recurrence

(x, a) + f(p)(x/pa, a) + f(p)(x/pa, a) + (x, a 1).

In this case the programming is much more elaborate for large x.
The calculations outlined above were carried out at the University of

California Computing Center on the Berkeley campus on an IBM 701 com-
puter. Some of the results were obtained while the center was partially
supported by the National Science Foundation.
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