
EIGENFUNCTION EXPANSIONS IN AND C

BY

D. R. SMART

In L (1 < p < [in L or C] the Fourier series is (conditionally1) con-
vergent [(C, 0) summable (0 > 0)]. Known equiconvergence theorems ex-
tend this result to the eigenfunction expansions of operators of the form

T=D (u>= 2),

with u suitable boundary conditions. It will be shown that in cases where
the sequence of eigenvalues of T also behaves reasonably, an operator T + S
will have the same type of spectral expansion as T. Here S can be

(i) any bounded lineur operator;
(ii) in very restricted cases, any operator

Bu_.D- - BID Bo,

where the B are bounded linear operators.
The methods are those developed by Schwartz [4] nd Kramer [2] for the

L case, but very much modified to deal with conditionally convergent or
summable expansions.

1. Definitions and known results
will denote a Banach spce with complex scalars. L will denote L[O, 1]

nd C will denote C[0, 1] (or one of its principal subspces; see 5(1)). If T
is a linear operator in , the set of complex numbers }, such that (T XI)-1

exists and is a bounded linear operator on to will be written p(T) nd
called the resolvent set of T. The complement of p(T) in the complex plane
is z(T), the spectrum of T. (T) will denote the domain, nd JR(T) the
range, of T.

If G is a contour in p(T), the following results are well known. (For our
purposes it can be assumed that G is circle or a rectangle.)

LEMMA 1.1. The operator

2ri
(T [)- dh

and its complement I- P are bounded projections onto subspaces invariant
under T. R(P) )(T), and, as an operator in 9(P) T is bounded The
spectrum of T in (P) is the part of the spectrum of T lying inside G. If ’
r2 are disjoint components of (T) and the curves GI G. G3 contain respectively
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the components rl r2 rl t r. of a(T), then for the corresponding projections we
have

(1.1) P P O; P A- P Pa.

Proof. See Taylor [6], especially Theorem 8,2 and the lines preceding the
formulae (8.3).

If the contour G contains only one point of a(T), say h, the dimension of
9(P0 will be called the generalised multiplicity of h. It is easily shown by
induction on n that (P0 contains the set

(h) U:= {x: (T M I)’x 0},

the set of proper vectors of M. Thus the dimension of t’(hi) (which will be
called the algebraic multiplicity of h0 is at most the generalised multiplicity
of M. The term eigenvector will be reserved for a (nonzero) solution of
(T hI)x 0, and the term eigenvalue for a scalar h for which eigenvectors
exist. The multiplicity of h is the dimension of its space of eigenvectors.
The point spectrum, written r(T), is the set of eigenvalues of T.

LEMMA 1.2. If (P) is finite-dimensional, then G contains only a finite
number of points of r(T), say h, h2, h,, and

(i) the generalised multiplicity of M, m say, is finite and equal to its al-
gebraic multiplicity and is the same whether we consider the operator T in !
or the operator T(p) in (P);

(ii) m dim (P);
(iii) P, P.

Proof. The part of a(T) inside G is the spectrum of T as an operator in
the finite-dimensional space (P), which must be a finite set of points. En-
closing each of these points in a contour G we obtain (iii) from (1.1), and (ii)
follows immediately. As (P0 is finite-dimensional and the spectrum of T
in 9(P0 is the one-point set {MI, we have

9(P0 (M),
which proves (i).
A result proved by Nagy [3] is

LEMMA 1.3. Let E, F be bounded projections in a Banach space !, with
E F < 1. Then E! and F! have the same dimension if the dimension

of either is finite.

Proof. Let (x)l _< be a basis for E!. We can write Ex ’ y( )x
with y e * (1 =< i <- m). If dim F! > m, Ff contains a nonzero vector
x orthogonal to (y)_< Thus Fx x, Ex.= O, and

E F -> (E F)x I[/l[ x 1.

Thus dim F!3 __< m dim E, and the converse inequality is obtained by a
similar argument.
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We will say that an operator T in a Banach space ! (= L or C) is of the
form D with the boundary conditions

(1.2) - fo’) u-1 f<’)(’=o a, (0) + ’=o , 1) O,

where i runs over a finite index set I (possibly empty), if
(i) )(T) is the set of functions f on [0, 1] such that f() is absolutely con-

f(u)tinuous (0 < j <_- u 1), e !, and (1.2) is satisfied for all i e I;
(ii) for f e (T), Tf f().
LEMMA 1.4. An operator T of the form D with the boundary conditions

(1.2) is a closed linear operator.

Proof. It is obvious from (i) and (ii) that T is linear. For the operator
T1 of the form D with boundary conditions

f()(0) =f()(1) 0 (0 _-<j =< u- 1)
(u)it is easily seen that the convergence in ! norm of a sequence Tlf, j,

(n _-> 1) in (T1) implies the uniform convergence of f() (0 _-< j =< u- 1)
and the equation

(lim f)() lim f().
It follows that T is closed, and, as the graph of T can be obtained from that
of T1 by removing a finite number of boundary conditions, T is closed. (This
proof was adapted from that given by Schwartz [4].)

LLEMMA 1.5. For f e C, gl we have

where

(f, g) ] f(t)g(t) dr.
,0

Proof. After approximating to g with a continuous function the proof is
obvious.

LEMMA 1.6. The Fourier series of a function f in ! 51 or C [! Lp

(1 < p < )] is (C, O) summable (0 > O) [is convergent] to f in the norm of
Proof. As regards C and Lp (1 < p < ) see Zygmund [8], 3.3 and

7.3. As regardsL’if 0 > 0and! CorL1,1etF F(!) F(!,
be the operator in which maps each function in ! onto the (C, ) mean of
the first n partial sums of its Fourier series. We have F,(C)x -- x (x C)
so that by Lemm 1.5 and the Banach-Steinhaus theorem,

F,(L1) sup {I (F g,f) I’gL1, f e C, [If [[ g 1}
sup {l(g,Ff) l’geL,feC, IIf]] IIg]] 1}
F(C)II

0(1) as n--
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Since F g - g on the dense subspce of L consisting of trigonometric poly-
nomials, F g -- g for 11 g in L.

2. Axioms

All of the following xioms re stisfied by operators hving the form D
nd domains restricted by u suitable boundary conditions. They hve been
separated into four groups needed for different purposes. Most of the xioms
re relations between the distribution of the eigenvlues of’T nd the norms
of its spectral projections.
The first group of xioms comprises those needed in showing the existence

of the resolvent of T.
Condition ().
(a0) T is closed.
(a) (T) consists of a discrete sequence (h) of positive eigenvalues,

each of multiplicity one.
(a) h is monotone increasing and

() There exist vectors () in and (@) in * such that

(T- hI) 0 and () .
(a) The eigenvectors () form total set.
(a) For the projections

E(X) (. ),

E, E(X) ( )@,

we have E, O(Xn) and

j <
X+i X

The min difficulty in discussing the perturbation of T by bounded linear
operator B is to estimate ][ (T- M)- on suitable contours. For this
purpose we need the following xioms"

Condition (b). There exists rel number such that

(b) 0 < < ;

(b) +- K< ;

where ( + X+) and H is independent of r.
The following condition simplifies he discussion of the relation of the new

eigenvlues to he old.
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Condition (c). There exists a number > 1 such that, for n > 1,

(2.1) AXn_I < 1AX.

In discussing the perturbation of T by an operator S which is not neces-
sarily bounded but whose domain includes that of Tv, for some with

(2.2) 0 < < 1,

we must estimate not only Rx but also TVRx [(. We therefore require
the following additional axioms:

Condition (d). For some choice of and ti (satisfying (b) and (2.2)) there
exists a number r such that

i_X,l -Fr<F< o,

where F is independent of r.
By (al) and (as) the following contours pass through no point X
The contour Fr (r _-> 1) is the square with centre the origin and sides paral-

lel to the axes, whose right-hand vertical side (written V) passes through

(2.3)

The contour formed by the upper, left-hand, and lower sides of I’ will be
written

The contour
and a radius pr satisfying the condition

(2.4) Pr <= AXr-1/21.
Thus by (c), or -< inf {1/2Xr_, 1/2AXe}.

LEMMA 2.1. Let (a) and (a0 be satisfied. Then
(i) there exists a number lc > 0 such that for all r, all X e L, and all n,

(ii)

Proof. The proof is obvious from (a).
LnMMA 2.2. Let (a) and (e) be satisfied.
and all n r we have

x x -> ax_/3,

for all r, all X on Vr (say X r + in) and all n,

Then for all r > 1, all X on

IX- Xnl >_--I.--
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Proof. By (c) we have

(1/2/) A)‘r_. < inf

-< inf (1/21 X X_ l, 1/21 X X,+ 1)

by the definition of 2, and (32).
Ifn < r we clearly have )‘ )‘n > r-_ )‘n [. Ifn > r,

I-- xl _-< I,-- xl + Ix,.- xl + Ix- x!
-< 1/2zxr_ + 1/2zxx,. + x Xn

_--< aZl X X I.
3. Operational calculus

Let 0 be the normed linear space consisting of finite linear combinations
of eigenvectors of T. Let To be the restriction of T to 0. We will set up
a natural operational calculus for To and extend it (subject to (as)) to an opera-
tional calculus for T.
We write the eigenvalues of T as (Xi)i>_l and write E0()‘,) for the proiection

of 0 onto the set of eigenvectors of )‘i parallel to the eigenvectors of all other
eigenvalues. If f()‘) is any function defined on the set ()‘i)>_1 we may now de-
fine

(3.1) f(To) -. f()‘i)E0()‘).

If the functions f(X) 1, 1/(X- t), )‘, )‘:, )‘, )‘()‘- t)-1, are de-
fined, we write the corresponding operators f(To) Io, (To- Io)-1, To,
T;, T7, T;(To M0)-1.
THEOREM 3.1. For the correspondence f()‘) f(To) defined above,

(i)
(ii) f()g() f(To)g(To);
(iii) f(To) has an inverse (not necessarily bounded) on o to o if and only

if f() never vanishes, in which case 1/f() f(To)-;
(iv) if Eo() is bounded for all i and

(3.2) f(X)
the series (3.1) converges in operator norm to f(To) (which is. thus bounded);

(v) if f(X) Eo 0 as i and Eo is bounded for all i and

(3.3)
where Eo Eo(hi), then the series

(3.4)
converges to f(To) in operator norm.
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Proof. Since eigenvectors of distinct eigenvalues are linearly independent,
(i), (ii), and (iii) are obvious. If the conditions of (iv) are satisfied, we have

0 S n .
This proves (iv), nd the proof of (v) is similar. For if we write
x Eo(h)x with m m(x, N) > N we hve

f(To)x f(h)E(X)x
m--1Eo Af(X)x +Eo Af(h)x + f(X)Eo x.

The following lemm contains our definition of f(T).

LEMX 3.1. Let (a4) be satisfied. Let f(To) be bounded. Then the closure
f(To of f(To) is the unique bounded linear operator f(T) on to whose
striction to o is f(To).

Proof. The proof is obvious.

LEM 3.2. Let (a) be satisfied. Then
(i) E0(X) .W(X); E0 E
(ii) if (h), then

E(r- x- (x- x+(x- x’
wih eoeverence ie opera,or eorm

(iii) (T)= (T) (X)a
(iv) (. x.- (r x)-l;
(v) Ior r > ,

(r- xz)- ax, (x) (r- x)- ax.

Proof. (i) I is obvious from ghe definigions of No(X) (see p. 87) and N(X)
(see (a)) ghag N(X) is bounded and N0(X) is ghe resgriegion of N(X) go ,.
The analogous faegs aboug N and N0 are proved in he same way. hus
Lemma g.1 gives bogh resulgs.

(ii) By (a) ghe series converges go a bounded linear opera,or, Sx say,
on o . By heorem a.1 (ii), (iii), and (iv), he resgriegion of Sx o
is (T, XI.)-. hus by Lemma a.1,

Sx (T. Xlo)-,
so ghag as T is closed Sx is eongained in (T XI)-t. Since (T XI)-t is
single-valued by (a), and (Sx)= , Sx (T- XI)-t. his proves
(ii), (iii), and (iv).
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(v) By (al) and (a.), rr contains &, k2, "", ),r, and the set
lies outside r. Since (a2) and (as) imply that the series in (ii) converges
uniformly on F, we have

2vi
(T- hi)- dk

(k- k,+)(k- k,)dk

(x- +)(x- )

The discussion for is similar.

LEMMA 3.3. Let (a) and (b) be satisfied. Then
(i) if k lies on L

(T kI)- 0(] L ]-+),
independently of k;

(ii) if k lies on V say k + i,

(T- x)- 0(, -+), I (T- XI)- 0((aX,)-+),
independently of k;

(iii) if (c) holds and k lies on the circle

(T-
Pr /

independently of k and p.

Proof. (i) By Lemmas 3.2 (ii) and 2.1,

by {b). nd L 6 by the definition of L.
{ii) To the seoond line of the proof of {i) apply Lemma 2.1 {ii) to obtain

sup (l,l +x:),- 1.. . -I.. x.
H

sup (I,l,
by (b3).
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(iii) Lemma 3.2 (ii) gives the series
r- EA), Er_l

nt. E- E 4_ Er EAX+ (x

LEMMA 3.4. If (d) is satisfied, T- is bounded.

Proof. Apply Theorem 3.1 (v) to (d:).
We will write T for T- (cf. Lemma 3.1). Following Kramer [2] we prove

LEMMA 3.5. If S is a closed linear operator in 93, if (d) is satisfied, and if
) S) 9(T-V), then ST is bounded.

Proof. ST is closed and (ST-v) (by the previous lemma) so
that ST is bounded by the Closed Graph Theorem.

LEMMA 3.6. Let (a), (b), and (d) be satisfied. Let )(S) (T-V). Then
(i) if h lies on L

S(T XI)- O(I Lr I-+),
independently of X;

(ii) if h lies on V,, say

independently of X;
(iii) if (c) holds and X lies on

S(T hi)- 0((/),_)-+ -k pTx[I E(h)ll),

independently of X and pr.

Proof. Since S(T M)-1 is closed, an argument on the lines of Lemma
3.1 shows that its order is the same as that of S(To hIo)-1, if the latter is
bounded. By Theorem 3.1,

S(To Xlo)-1 STVTo(To Io)-,

(r > 1),

by (b).

for (T- hi)-1.
IX X+/-[ -> pr (see the definition of 2),

II (T XI)-1

].

(X_)

Thus by Lemma 2.2 and the relations
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so that by Lemm 3.5 it is sufficient to estimate the order of

I! Tg(To Io)-1 II
(i) Using Lemma 2.1 (i) we obtain

2’-I1 T(T0 XIo)-x 11 Z
by (d).

(ii) Using Lemma 2.1 (ii) we obtain

T(To kIo)-
<_

by (d).

(iii) Using Lemm 2.2,

31F E(k.)< +(aX_)-, p
by (d).

E(.)
sup (I, 1/2ax)-

F
sup (I, I, 1/2ax)’

E<x,)II
Pr

(r> 1)

4. The perturbation theorems
Let T satisfy () and (b). Let r (r >= 1) be the contour de-

Let S be any bounded linear operator on into !. Then
THEOREM 4.1.

fined on p. 86.
(i) a(T S) consists of a sequence of eigenvalues , (i >= k + 1) of

generalised multiplicity m < oo;

and for r sufficiently large

(ii) -+1m r, mr 1 and ,r lies between Fr_ and Fr (and if (c) is satis-

fied and Ii Er-1 -’]" Er o(A,r_l),

(4.1) + o(ll E_ + E IIDD;
(iii) the projection

exists;
(iv)

(T + S XI)-dx

there are sets of linearly independent vectors (@q)_k+l,<_q_,. in

k should be regarded as the number of eigenvalues of T which disappear, by amal-
gamating with other eigenvalues, when S is added to T.
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and (is)>=k+l,l<=s<__, in 93* such that (T
is(qpq) =-- @ sq and

E: _rq( )qq

(v) E: E -- 0.

0 and

Proof. (iii) Write R for (T-),1)-1. By (a2) and Lemma 3.3,
SRxll < 1/2 for X on Fr Lru V, for r sufficiently large. Thus

(I -4- SRx)-1 exists and

(1/2)2 -4- 2.

With Lemma 3.2 (iii) this proves the existence on F of the right-hand side of
the equation

(4.3) (T + S XI)- Rx Rx(I -t- SRx)-ISRx,
which can now be verified by multiplying the right-hand side (on the left
and on the right) by T-t- S- XI. Thus (TA- S-),1)-1 exists on F.
This proves (iii).

(v) By (iii), Lemma 3.2 (v), equations (4.3) and (4.2), and Lemma 3.3,

1 ((TWS- XI)-1- (T- XI)-1) dX

since
O( L, -x+2a) -- 0--2-t-2 [ AAXrd/ (-- 1 - 2)-1

The result follows from (a2) and (bl).
(i), (ii), (iv). By (v) and Lemma 1.3, Er and E’ project onto subspaces of

the same dimension--which by (a) is rfor all r sufficiently large. Thus
Lemma 1.2 proves (ii) (apart from the bracket), (i), and the existence of a

mplinearly independent set (pq)k-4-l<=p,l<=q<=mp such that (T -4- S v I) q -= 0
and the vq with p _-< r span E: !. We can write any x e E: ! in the form
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Zp<=r Xpq pq where the xpq are uniquely determined scalars. Since
dim E: < , the mappings x-- xq re bounded linear functionals on
E . Thus the linear functional q on defined by

q(x) (E: X)q
for some chosen r greater than p has the required properties, for the follow-
ing argument shows that the definition is independent of the choice of r.
Tuke p r r0 then

x E(E x) E ro(Eo X)q+ (E: x)q +q,

by Lemmas 1.1 and 1.2.
(ii) Let (c) be satisfied, and let p (subject to (2.4)) have any order strictly

higher thun E_ + E ]. We can obtain (4.2) and (4.3) as before,
but now with k on the circle . of centre kr and radius Pr. Thus if we write

’(r) ( + S x)

we obgain, by ghe argumeng for (v), and (2A), (a) and (b),

0.

Thus by Lemma 1.a, N’(r) and N(X) proeeg ongo subspaees of ghe same di-
mensionwhieh by (a) is one--for all r suffieiengly large. Thus eongains

an eigenvalue of T + S, which musg be .. In ogher words,

x + 0(o)

whenever o has a sgriet.ly higher order

Coaoav 4.1. Let T and S satisfy the conditions of the theorem, and let
the vectors q q be those defined in (ua) and part (iv) g the theorem.
Let x be a vector in such that

in the sense g strong or weak convergence or strong or wea (C, O) summability.
Then

in the same sense.

Proof. The proof is obvious from part (v) of the theorem (with the defini-
tions in (a) and part (iv) of the theorem).
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THEOREM 4.2. Let T satisfy (a), (b) and (d) (for some v, 0 < v < 1).
Let S be a finite sum of operators of the form B,, S,,, where B, is a bounded linear
operator on !3 into f3 and S,, is a closed linear operator in 3 such that
(S,) >= 9(T-) u 5D(T). Then the conclusions (i) to (v) of Theorem 4.1
are true if we insert before (4.1) the words,

"and Er_l + II Er o(AX-I)1-’’.

Proof. We can apply Lemma 3.6, with S, replacing S.
(iii) Use the proof of Theorem 4.1 (iii), with Lemma 3.6 instead of Lemma

3.3.
(v) By (iii), Lemma 3.2 (v), equations (4.3) and (4.2), and Lemmas 3.3

and 3.6,
1 frIIEr-- Erll ((T+S- XI)-- (T- XI)-) dX

by (a2) and (d).
(i), (ii), (iv). Since the resolvent set of T + S is not empty, T + S is

closed. Thus we may follow the discussion of the corresponding parts of
Theorem 4.1.

(ii) Use the first four lines of the proof of this part of Theorem 4.1. Then
we obtain, by (2.4), (a2) and (d), and the argument for (v),
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We may now conclude with the last six lines of the proof of Theorem .4.1.

COROLLARY 4.2. The statement is verbally the same as that of Corollary 4.1.

Proof. The proof is the same as before.

5. Applications and extensions

(i) Let T be a Sturm-Liouville operator of the simplest type, i.e.,
operator of the form -D with boundary conditions

f(0) cos + f’(0) sin 0, f(1) cos + f’(0) sin 0,

where and b are real numbers. The following facts are well known (see
for example Titchmarsh [7])" T has simple eigenvalues, and the eigenfunc-
tion expansion of any integrable function f is uniformly equiconvergent with
its Fourier series expansion. If the boundary conditions satisfy sin sin # 0
(sin 0, sin h 0) (sin 0, sin 0) (sin sin 0), the term
"Fourier series" means an expansion in terms of cos nrx (sin (n
(cos (n 1/2)rx) (sin nx). The space C is the space of all continuous func-
tions on [0, 1] (all which vanish at 0) (all which vanish at 1) (all which vanish
at both0and 1). Thus iffisin! CorL1[! Lp(1 < p < o)]its
eigenfunction expansion is (C, 0) summable for all 0 > 0 [its expansion is
convergent] in the norm of !. Thus we have, by the Banach-Steinhaus
theorem and the limitation theorem for Cesiro summability (Hardy [1],
Theorem 4.6),

(5.1) l1E, O(n ( :> 0) [If E, 0(1)1,

where E, is the projection in ! mapping each function onto the n partial
sum of its Sturm-Liouville expansion. As we have also

A), 2n,
we take 0 as any number between 0 and 1/2, and the only possible divergence
from the axioms (a), (b), and (c) is that some eigenvalues may be negative.
This is easily corrected by operating in the space EN !, where ),N is the first
positive eigenvalue. Let T’ be any operator commuting with E and such
that T’ is zero in (I EN) and, as an operator in E , T has a simple
spectrum consisting of positive numbers less than k. Then the operator
T E T - T’ will satisfy axioms (a), (b), and (c) and so can be used in-
stead of T. (Since E ! is finite-dimensional there exist suitable operators
T’, and these are bounded.)
Thus if B is a bounded linear operator on !8 to i and f is an arbitrary

element of !, the expansion of f in eigenvectors (and a finite number of other
proper vectors, i.e., solutions of (T - B I)x 0) of T B is, by Corol-
lary 4.1, (C, 0) summable (0 > 0) [convergent] in the norm of . Also if
we know that the T-expansion of some continuous function is uniformly
convergent, the same will be true of its (T -t- B)-expansion.
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(ii) Let T be similar to a Sturm-Liouville operator, but with nonreal
boundary conditions. Then by Schwartz [4], p. 439, the asymptotic be-
haviour of the eigenvalues will be satisfactory, but (a) the eigenvalues may
be nonreal, and (b) T may have some proper vectors which are not eigen-
vectors. Difficulty (a) could be met by adapting our proof, but the analysis
would become more complicated. Difi:iculty (b) is easily dealt with by the
device used in (i) for negative eigenvalues.

(iii) Let T have the form D with u even (u > 2), and u linearly inde-
pendent boundary conditions. Judging by Tamarkin [5] various possibili-
ties exist; but it seems that in many cases--for example, if T is the (u/2)h
power of one of the Sturm-Liouville operators discussed in (i)--we will have
simple real eigenvalues such that

Thus, replacing T (if u/2 is odd) by -T, we may assume by the argument
in (i) that all eigenvalues are positive. In the case of the (u/2)h power of
a Sturm-Liouville operator, the expansion is simply that of the Sturm-
Liouville operator; in more general cases an equiconvergence theorem (Ta-
markin [5], p. 45) reduces the expansion problem to the Fourier series case.
Thus (5.1) is obtained as before, and taking

, (u- 2)/u, 1 1/4u < r < 1

and 0 < ti < 1 r we can verify (a), (b), (c), and (d) without difficulty.
To show that S can have the form B_2 D-2 -t- -t- B1D W B0 for arbi-
trary bounded linear operators B on ! to !, it is thus sufficient by Lemma
1.4 to show that (T-’) consists of (u 2)-times differentiable functions f
with f(-) in !. Using the argument of Kramer [2], I can obtain this result
but only where T is the (u/2)th power of a Sturm-Liouville operator R (with

2/ueigenvalues A Xi ). Clearly R and T have the same normalised eigen-
vectors (f)i_l. Thus

To hf(.)f,

Z
R(-)/.

which is included in the operator of the form Du-2 (or --Du-2) and no bound-
ary conditions, which is a closed operator by Lemma 1.4. Thus T exists,
and its domain (which is 9(T-’) consists of (u 2)-times differentiable
functions.

(iv) In dealing with operators of the form D (u odd) I am handicapped
by my ignorance of any equiconvergence theorem relating the expansions
with different boundary conditions to one another. However, in the special
case where the boundary conditions are

(5.2) f()(0) f()(1) (0 _-< i -<_ u- 1)
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the expunsion is the Fourier series und the eigenwlues are simple. We have

h (2ri)n", 5h- (2ri)un-+ O(n-),
where n runs through all the integers. Inspection of the proofs of our theo-
rems shows that they can be adjusted to allow contours I’_,. which cut the
spectrum of T twice instead of once, as is necessary in this cuse. Thus, us
in (iii), we can allow a perturbation by

S B_D- + + BD -4- B0.

In this case we must take the space C to be the space of continuous func-
tions with period 1.

(v) In the cases where the boundary conditions allow multiple eigen-
values of Tfor example, D with u even and the boundary conditions
(5.2)our arguments hold as far as line 27 on page 92, at which point the
fact that A dim E is the (algebraic or generalised) multiplicity m of
causes trouble. We can conclude that the annulus between r_t and
(or, at a later stage, the contour ) contains a finite number of eigenvalues
of T + S whose generalised multiplicities add up to m, and obtain an ex-
pansion theorem, but we will know only the convergence of a suitable sub-
sequence of the partial sums, those corresponding to the contours r. The
cases where, say, Kn but lim inf 5h,,/n’- 0 are similar" we cannot
put useful contours through too narrow gaps in a(T).
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