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1. Let

() G=G0>G>G>... >G=I
be chain of subgroups of the group G. Following Klou]nine [1], we define
the stability group of the chain (1) to be the group A of 11 uutomorphisms of
G such that

(2) x

holds for ll x e G_ nd for each i 1, 2, m.
If the subgroups G re ll normal in G, then it is easy to show that A is

nilpotent nd of class t most m 1. But without some such ussumption of
normality, the nture of the group A is not so clear. In [1], however, Kloui-
nine proved that A is lwys ut least u soluble group, nd the length d of its
derived series cnnot exceed m- 1. He remarks of this result that it is
"whrscheinlich nicht endgiiltig." In fct, we shll find that A is still nil-
potent even in the general cse. This is stated in

THEOREM 1. The stability group A of any subgroup-chain (1) of length m is
nilpoent and of class at mos 1/2m(m 1).

It ws shown in [3] that nilpotent group A of derived length d must be of
class t least 2-. Thus Theorem 1 yields the bound

(3) d -< [logs m(m- 1)]

for the derived length of the stability group A. This bound never exceeds
m 1 and is smaller than m 1 for m > 5. Indeed, it is of a smaller order
of magnitude as m -- . Hence Kaloujnine’s theorem follows from (3).

For the class of A we have the bounds m 1 and 1/2m(m 1) which apply
in the normal case and the general case, respectively. These bounds first
differ when m 3. That the difference is significant we show by constructing
a group with a subgroup-chain of length 3 for which the stability group is of
class 3. It will also be proved that the subgroup of G generated by all the
commutators x-ix with x e G and e A is always locally nilpotent. This
commutator subgroup is known to be always nilpotent in the normal case:
cf. [1], Satz 4. We show by an example that this need not be so in the general
case.
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Let M be a nilpotent normal subgroup of G. If G/M is nilpotent, G is
soluble but need not be nilpotent. However, if G/M’ .is nilpotent, where M’
is the derived group of M, then as we shall show G is also nilpotent. These
results will be used to derive sufficient conditions for the join {H, K} of two
subgroups of a group to be nilpotent.

2. If we replace G in (1) by its regular representation (, the condition (2)
on the elements a of A becomes

(4) [(-1, A] =< ( (i 1, 2, ..., m),

where ( is the subgroup of ( corresponding to G. The notation here is the
standard one" if H and K are subgroups, then [H, K] is the subgroup generated
by all the commutators [x, y] x-ly-lxy with x e H and y e K. Since [y, x]
[x, y]-l, we have [K, H] [H, K]. As usual we also write x for y-xy.
However, when repeated commutations are needed, this notation is in-

convenient. Instead, we shall use a bracketless notation and write

(5) [g, K] HK,

the symbol /standing for the operation of commutation. For example,

[[H, g], L] ,yHKL; [... [[H, g], g], g] ,’HK;
n

the lower central series of a group G is

(6) G, "G G’, ,2G3, ..., ’-G, ...;

and so on. G is nilpotent of class less than n if and only if ,n-lGn I.
Since the operation of commutation is commutative, though not associative,
we have ,XY "YX and ,HKL .yKHL "yL,HK "L,KH for any
three subgroups H, K, and L. On the other hand the three subgroups
,HKL, ,KLH, nd ,LHK are usually distinct. It will be understood, of
course, that ,G3, for example, is an abbreviation for 7"GGG. In spite of
the absence of brackets, this symbolism is unambiguous.
The relations (4) now take the form -(_ A -< (; and since (0 (,
( 1, they imply that /(A 1. Theorem 1 therefore follows from

THEOREM 2. Let H and K be subgroups of a group, and suppose
that ,HK= 1. Then ,n+K’+H 1, where n 1/2m(m- 1).

For if we take H ( and K A in this theorem, we obtain ,B( 1,
where B ,A+. But this means that every element e B commutes
with every element of ( and therefore also with every element of G. Hence
B consists only of the identical automorphism of G, and the stability group
A is nilpotent of class at most n. However, Theorem 2 is more general than
Theorem 1 only in appearance.
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3. Before proving Theorem 2, we must recall a few well known facts about
commutators.

Let x, y, and z be elements of a group. Then we have the identities

[xy, z] [x, z][y, z];

Ix, yz] [x, z][x, y];

(7)

(8)

and

(9) [x, y-, z][y, z-, x][z, x-, y] 1.

In (9), we have used the convention [u, v, w] [[u, v], w]. Of these formulae,
(7) and (8) are immediate. To obtain (9), let a xzx-yx, and let b and c
be derived from a by cyclic permutation of x, y, and z. Then

[x, y-, z] a-b,
so that (9) becomes a-bb-cc-a 1.

Let H and K be subgroups of a group G, and let M .HK. If, in (7),
we take x and y in H, and z in K, we obtain M

_
M. Hence H normal-

izes M. Since M .KH, K also normalizes M. Therefore

(10) .HK < {H, g}.

Here, following Wielandt [4], we use M <:l J to mean that M is a normal
subgroup of the group J.
Now let L be a third subgroup of G. In (9), choose xeH, yeK, and

z e L;and write

(11) U .KLH, V "LHK, W .HKL.
The three factors on the left of (9) then belong, respectively, to W, U, and
V. Let N be a normal subgroup of G containing both U and V. Then
U -< N, V -< N; and so, since N is normal, (9) gives [x, y-, z] e N. As x
runs through H, und y through K, the commutators [x, y-] generate .HK.
Consequently, every element z of L commutes modulo N with every element
of .HK. In other words, W .HKL is also contained in N. This gives

LEMMA 1. Let H, K, and L be subgroups of a group G. Then any normal
subgroup of G which contains two of the three subgroups (11) contains also the
third.

COROLlaRY. If the subgroups (11) are themselves normal in G, then each of
them is contained in the product of the other two.

This result was first proved in [3] for the special case in which H, K, and
L are all normal in G, and this case is sufficient for many applications. How-
ever, we shall need the general case, as stated in Lemma 1. This is due to
Kaloujnine [2]; cf. the essentially equivalent Fundamentalhilfssatz of [1],
p. 165.



LEMMA 2. Suppose that L <__ J {H, K} and that .2HKL 1. Then
.2LHK .LKH, and this group is normal in J.

For, let C be the centralizer of /HK in J. Then C <:l J, by (10); and
L __< C, by hypothesis. Hence-LH C. LetxeH, yeK, and te’LH.
Then eC and Ix, y-l] e-HK; and so commutes with Ix, y-l]. But
y Ix, y-]y, und (8) gives [t, y] It, y]. Hence "LHK LHK. Since
x ell, we also have .LH (.LH), by (10). Therefore (.LHK)
"(’LH)K .LHK .LHK. Thus H normalizes .LHK. By (10), K
also normalizes .LHK. Hence .LHK is normal in J. Since /KHL
/HKL 1, we find similarly by interchanging H and K that .LKH is
normal in J. By noting that .LKH .KLH, Lemma 2 now follows from
the corollary to Lemma 1.
We now deduce Theorem 2 by induction on m. When m 1, n 0, and

the result is immediate. Let m > 1, and write H .HK. Then
m-H Km-I HK,’ , 1, by hypothesis. Therefore we may suppose

inductively that .+’K’+’H, 1, where n m+ 1 and n 1/2m(m 1).
Hence Kr ’r-lKr centralizes H1 for all r > l. Lemma 2 now gives
.K. HK .K,. KH .K,.+, H for r > l; and so

"’K,+I HK"- - HK-, Kz+ . K, HK "K,+, H.

Since K+ <- K, we have "K+I H <-_ .KH "HK; and so

But "’HK 1, and .K,+ H .’+IK’+H, so Theorem 2 follows.

4. We consider next, though without solving it, the problem of the least
upper bound c(m) for the class of the stability group A in terms of the length
m of the chain (1).

Let H and K be subgroups of a group G, and let

(12) H H0_-> H >__ H >__

be a series of normal subgroups of H such that

(13) .KH <= H+I (i O, 1, 2,...).

Then we have

vKH <= H+
For, by (12) and (13), K normalizes each H and

(14)

for alli >= 0and j_>- 1.
since H <:l H, by hypothesis, we have Hi<:l {H, K}. Forj 1, (14) reduces
to (13). Assume (14) for a given j -> 1 and all i, and apply Lemma 1 with
H, K, and Kj ,-IK; for H, K, and L. By (13) and (14), HKK <__
,H+ Kj KH+ -< H++ and ?K. H K _-< ,H+. K _-< H+j+.
Since H++I is normal in {H, KI, Lemma 1 gives KKH <- H++, or

/’+IK+Hi __< Hi+j+1. Thus (14) holds generally by induction on j.
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In particular, if Hm 1, we obtain ,rmKmH 1. This gives the result
already mentioned which is stated in

LEMMA 3. The stability group of a chain of normal subgroups of length m
is nilpotent of class at most m 1.

It is also well known that this bound m 1 is best possible. For example,
let G be an elementary Abelian p-group of order pm with a basis al, a.,
am, and let Gi {ai+l, a+., am }. The sts,bility group A of this chain
(G) contains the elements r (i 1, 2, m 1), where

a aia+, a a (j i);

and [, , rm- maps a into a am so that the class of A is at least
m 1, and therefore equal to m 1 by Lemma 3. In fact,

A r,

and is a Sylow p-subgroup of the group of automorphisms of G. Also it is
easy to see that A Tin(p), the group of all unitriangular m X m matrices
with coefficients in the prime field of p elements.

This example, in conjunction with Theorem 2, yields

(15) m- 1 __< c(m) <- 1/2m(m- 1),

so that c(1) 0 and c(2) 1. We shall now show by another example that
c(3) 3, so that there is a genuine difference between the normal case and
the general one.

First, it will be convenient to have
commutator group.

LEMMA 4. Let H {X} and K {Y} be subgroups of a group J; and let
T be the set of all elements of J of the form [x, y]U, with x X, y e Y, u H,
and v e K. Then’rHK

Since Ix, y] e "rHK, which is normal in {H, K} by (10), we have T} -< ,HK.
Thus we need only show that every commutator [a, b] with a e H and b e K
is expressible in terms of elements of T. This may be done by using a "col-
lecting process" represented by the formula

(16) a] 51 a2 52 a, b, al a2 a,, b b b,
where b b"i+lai+2"’’an. Here, the ai and bj are arbitrary elements of any
group. Since H IX}, every element a of H is expressible in the form

,r ,ra lx ..xm,whereeachxeXandtherareintegers. Then

b-lab II(xi [x b]).
Applying (16), we obtain

(17) [a, b] t t t,,
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where r r] + r] -l- -t- r I, and each t is either the transform by
an element of H of some [x, b], or else the inverse of such a transform. If
b e K, we have b yly y, where each y. e Y and the s are integers.
Then

--1
xi bxi

Applying (16) again, and noting that [x, b] [b, x ]- and [x, y]
[y, x]-, we obtain [x, b] zi z z,, where s [s + s + +
s[ and each z is either the transform by an element of K of some [xi, y ],

or else the inverse of such a transform. Substituting for the [x, b] in (]7),
we find the required expression for [a, b] in terms of elements of T.

(19)

(20)

(21)

and

5. We now prove

TEOREM 3. There exists a nilpotent group G of class 2 with a subgroup-
chain of length 3 whose stability group is of class 3.

We define G to be the group generated by the elements

(18) x, xl, x, x., xl

subject only to the following defining relations"

All commutators of weight 3 in the generators (18) are equal to 1;

[xl., x21] 1;

Ix1, X12 [Xl, X21 Cl Ix2, X12 IX2, X21] C2

(22) c c 1.

The relations (19) by themselves would define the free nilpotent group F
of class 2 with (18) as a system of free generators. F’ is then a free Abelian
group with the ten commutators Ix, x ], [x, x. ], [x., x. as a system of
free generators. F’ is also the centre of F. Consequently, in the group G
obtained by imposing the additional relations (20), (21), and (22), the ele-
ments cl and c are actually of order 2. In particular,

(23) c 1.

The defining relations of G are easily seen to be invariant under the two
transformations which map (18) into

(24) xx, x, xx., x., x.

and

(25)

respectively.

XX2 Xl X12 X2 X12 X21

Hence these ,ransformations define two endomorphisms and
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n of G. Clearly, G’ G’ G. In fact, v and are automorphisms of
G; for y has an inverse which maps (18) into

--1 --1(26) xx, x, xx, x., x,

and similarly for .
Let K {., }. We shall suppose G identified in the natural wy with

its regular representation, so that G and K can be considered as subgroups
of the holomorph of G. Let J {G, K}, so that GK J by (10); and
GK contains the group

(27) G {G’, x, x, x, x },

since[x,] x,x [x,]andx [x,]. ButGJ, andJ/G
is the direct product of G K/G and G/G. Hence

(28) G GK.
To calculate G GK GK, we use Lemma 4. By (27), G is gener-

ated by the set X consisting of x, x, x, x together with the commutators
of these four elements with x; while K is generated by y and . Let be
one of x, x, x, x. Since G is of class 2, we have Ix, ]’ [xx,
Ix, "][x, "]. If x, then ’ , and so Ix, , ] [x, ]. But

Ix, x ,] Ix, x][x x x] Ix, x][x x]c

Similarly, if x, then ’: $ and Ix, $, y] [x, ]; while

Ix, ,] Ix, x,][x x,]c

It now follows from Lemma 4 that G is generated by the transforms of the
six elements

(29) x, x, c, c,

by the elements of the product KG, where

But the defining relations of G show that the elements (29) all commute with
and and hence with every element of K. Since the c’s and t’s belong to

the centre of G and x xc, x: x: c, it follows that G: is generated
by (29) and

GK GK 1.

Hence K is contained in the stability group of the chain of subgroups (G) of
G, where G0 G and Ga 1.

Using (24), (25), and (26) to transform x successively by y7, v, , , we
obtain the sequence

x; XXl XX2 X2 x XXi X2 XX2 X; XX2 X Xi2 X2 X2 X
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Using (19)-(22), this gives

(30) [x,[,, y]l x x[x, x].

Similarly,

X
-1(31) [x,[,. ]] x [x, x].

Since G G, Lemma 3 applied to the chain G, G, 1 shows that [,, ]
commutes with every element of G. Using (24), (26), (30), and (31) to
transform x successively by [v, v], v[, [, v], and w, we find the sequence

-[, - x[x, x];x; xxx x]; xx x x][x
--1 --1 --1- x]x x xxXXl2 X21 Ix2

In this calculation, we have used the defining relations of G, from which it
--1follows that [x, x] c and that x commutes with x x. The final term

xc shows that [x,[, , ]] c and so, by (23), K is of class at least 3. By
Theorem 1, the class of K must be exactly 3. Thus Theorem 3 is proved.
The group G used in this example is infinite. If we impose additional de-

fining relations to make G, for example, a group of exponent 4, the above
calculations are unaffected, but G becomes a finite 2-group of order 2. No
doubt smaller groups could also be found with the relevant property.

6. We return now to the case of general m as in Theorem 2. Let H and K
be subgroups of any group G, and let J {H, K}. We write

(32) H HK (r 1, 2, 3, ),

and

(33) g KH.
Since K normalizes H, the product K is a subgroup of J. In particular, K,
is the normal closure of K in J; and

(34) / HH
is the normal closure of H in J. It is clear that

(35) H %,HK "),IK.

In considering the consequences of the relation H 1, there would therefore
be no loss of generality in replacing H by//; this would be equivalent to
assuming H normal in J, or H _>_ H.

According to Theorem 2, the relation H 1 implies 7+K+H 1 with
n 1/2m(m 1). But (35) shows that H 1 is equivalent to ,/K" 1;
therefore it implies +K+/ 1, which represents a limitation on the
class of the group of automorphisms induced by K in/. In this way, we
recover Theorem 1 from Theorem 2.
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We shall now show that H 1 implies that the group H1 is locally nil-
potent. More precisely, the result is

THEOREM 4. Let H and K be subgroups of a group G such that .’HK 1.
Let HI ,HK, and let I HH and K1 KH be the normal closures of H
and K, respectively, in J H, K }. Let C be the centralizer of I:I in K Then
the groups K/C and HI are locally nilpotent.

It should be noted that C <:] J, since both/ and K are normal in J. It
will be sufficient to consider the group K/C. For if this is locally nilpotent,
so is its subgroup CH/C --- H/C n HI. Since C n H is contained in the
centre of H, it then follows that H itself is locally nilpotent.
To prove Theorem 4, we need an important result due to Hirsch [5]. This

is stated in

TEOREM 5. In any group G, the join h(G) of all normal locally nilpotent
subgroups of G is itself locally nilpotent.

Obviously, (G) is u characteristic subgroup of G.

COROLLARY. If K is a subnormal subgroup of G, then h(K) h(G) K.

For, to say that K is subnormal in G (nachinvariant in the sense of Wielandt
[4]) means that there is a finite chain of subgroups

K K<:] K-<:l <:l Kl<:l K0 G

stretching from K to G, each member of the chain being normal in the next.
Since Lr ),(Kr) is characteristic in K, it is normal in K_. Since L is
locally nilpotent, by Hirsch’s theorem, it follows that L =< L_. Hence
),(K) =L_-<M=(G)K= L0K. But ),(G)<G and so M<:IK.
As a subgroup of k(G), M is also locally nilpotent. Hence M =< ,(K). Com-
bining, we find M h(K) as required.

In the proof of Theorem 4, we shall use the notations (32) and (33), so that
H 1 and K K. By (10), K normalizes H, and so H+ =< H and
then H+I <:l H, again by (10). Hence

(36) 1 H< H__<:I <:l H<:I J.

We shall show that

(37) K K K_<:I <:l Kl<:l J.

For (36) shows that K+ =< K. Let y and yl be elements of K, let x e H and
since K and H bothxeH+. Then y yeK, and x.=x eH+,

normalize H+. Hence (y x) y x. y. [y., x]x. Since therefore
[y., x] e ,KH. H,.+I we have (y xl)’’e KH+ K,.+. But yx and y x
are arbitrary elements of K and K+, respectively. Thus K+< K for
r 1, 2, m 1, and (37) is proved.
As already noted, H 1 implies ,+1K+1/ 1, so that .K+ is con-
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tained in C. Hence CK/C

_
K/C n K is nilpotent. It follows from (37)

that CK/C is subnormal in J/C. By the corollary to Theorem 5, we now
have CK/C (CK/C)_ (J/C)= L/C, say. Then K-< L< J, and
consequently L contains the normal cIosure K1 of K in J. Since L/C is locally
nilpotent, it follows that K1/C is locally nilpotent. This concludes the proof
of Theorem 4.

7. It follows from Theorem 4 that, if ,’HK 1, then "HK is nilpotent
provided that it is finitely generated. This will certainly be the case if
{H, K} is finite. We shall now show by examples that ,HK need not be
nilpotent in general; and that even when {H, K} is finite, and so "HK is nil-
potent, there is no bound for the class of "HK in terms of m provided that
m > 2. This is stated in

THEOREM 6. There exists a group H, K} such that fHK 1 and ,HK is
not nilpotent. Given any integer n, there exists a finite group H, K} such that
.aHKa= 1 and ,HK is nilpotent of class at least n. On the other hand,
,2HK 1 implies that "HK is Abelian.

The last remark was already noted by Kaloujnine in [1]. If ,2HK 1,
then K centralizes H1 "HK. Since H1 <:] J {H, K I, it follows that the
normal closure K1 of K in J also centralizes H1. But K1 KHI, so that in
this case H1 is contained in the centre of

Let V be a vector space over the prime field of p elements, and let
n 0, :i:1, 2, ,beabasisofV. We takeHtobe {l, whereisthe
linear transformation of V defined by

(38) v, .+
for all n. We take K to be {7}, where is defined by

(39) v0y=v0Wvl; v,y= v. if n0.

The normal closure K1 of K in J {, 7} is then the group generated by the
conjugates -ny. of y (n 0, :i:1, +/-2, ...). Hence vk yk v -t- v+l
and v v. if j k. If V is the subspace of V spanned by the vectors
vk, v+l, v+, then K leaves each V invariant.

Let A be the group of all elements of K1 which transform identically both V
and V/VI. Then K _-< A by (39), and A < K1. Obviously A is Abelian.
But H=-HK<__.K, and so H2=,H1K_,K1K__<A. Since A is
Abelian and contains K, we have "HK ,H. K 1. Now H1 contains the

-1 say. Sinceelements [7, n] ,
)1 [’1, ’2, "’", ’n] )I "- Yn+l,

and n is arbitrary, H cannot be nilpotent. This proves the first statement of
Theorem 6.
To prove the second part of the theorem, we must proceed rather differently.
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Let Ln be the group generated by n elements xl, x, xn subject only to
the defining relations which express that

(i) x 1 for all x e L ,where p is a given prime > n; and
(ii) x commutes with all its conjugates in L for each i 1, 2, n.
We show first that L is nilpotent of class n. We recall a well known

theorem of Fitting [6]"

LEMMA 5. Let XI and X be normal subgroups of a group G. If X1 is nil-
potent of class cl and X. is nilpotent of class c. then X1 X is nilpotent of class
at most cl c.

Now let X be the subgroup generated by the conjugates of x in L,. Then
X<:I Ln for each i, and L. XX X. By (ii), the X are all Abelian.
Hence L is nilpotent of class at most n, by Lemma 5. To show that the
class of L is actually equal to n, we compare L with the group
Y {1, ., "--, n of linear transformations of V, where y -and, are defined by (38) and (39). It is easy to verify that each commutes
with all its conjugates in Yn and so, as for L, Y is nilpotent of class at most
n. Also 1 for each i. Since n < p, by hypothesis, it follows from the
theory of regular p-groups developed in [3] (the relevant theorems are 4.13,
p. 73 and 4.26, p. 76) that y 1 for all y e Yn Hence the mapping x -.
(i 1, 2, ..-, n) defines a homomorphism of L onto Y. But
[/, /., maps v onto v A- vn+ and so Y is of class at least n. Conse-
quently, the class of L, cannot be less than n.
Now Ln has an automorphism permuting the generators x, x, xn

cyclically. Hence L may be embedded in a group G {L,, t} such that
x x+ for i<n and x xx. Define H= {t} and K= {xl}. Then
HI=’rHK <- L, since K_-<L<3G. And H=3,H1K_-<X, since
K _-< Xx <3 L. So .raHK /H2 K 1, since X is Abelian. But Hx con-
rains the elements Ix1, -] x x (i 2, 3, n). Hence XH L.
But L,/XI

__
L,_, which is a group of class n 1. Since H/X [3 H ---L,/X, it follows that H is of class at least n 1. This concludes the proof

of Theorem 6.
For the sake of completeness we note the very simple result which is related

to Theorem 4 in much the same way as Lemma 3 is related to Theorem 1.
This is

LEMMA 6. Let K and L be subgroups of any group, and suppose that there
exists a chain of subgroups L Lo >- LI >= >= L 1, all normal in L
and such that "rL_ K <-_ L for each i 1, 2, m. Let M .ILK, and let

KM be the normal closure ofK in J {K, L}. Let C be the centralizer of
L in [. Then the groups /C and M are nilpotent of class at most m 1.

For in this case the groupsL are all normal in J; and thereforeL_ K _-< L
implies L_x K _-< L for 1 =< i -< m. It now follows from Lemma 3 that
L =< L+ for i + j _-< m. Hence /-/ centralizes L, so that /C is
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nilpotent of class less than m. Also ,m-2/m-1 centralizes L1. But M -<
/ n L1. Hence 5,m-im-i is contained in the centre of M, so that M also is
nilpotent of class less than m. Cf. Satz 4 of Kaloujnine [1].

8. We conclude with a criterion for nilpotency of a rather different kind
from those considered above. This is based on

LEMMA 7. Let K and L be subgroups of any group, and suppose that K
normalizes L and that ?"LK" <_ L’ 7L, the derived group of L. Then
rnLrKr,n-r+ .rL+,/ <_ for r 1, 2, 3, ....
The case m 1 states that, if K centralizes the first factor group L/L of

the lower central series of L, then K centralizes all the factors ,r-L"/,"L"+I of
that series; this is well known.
To prove the lemma, we form the series L L0 >_- L -> >= L L

where L L’. (.LK). Then each L is normal in L, and L_I K -< L for
each i 1, 2, .-., m. As in the proof of Lemma 6, it follows that
Li_ [ <- Li for each i, where/ is the normal closure of K in J {K, L}.
Hence ,),’L[C" <__ L’. Therefore there will be no loss of generality if we
assume K, as well as L, to be normal in J. Thus Lemma 7 is really a theorem
about normal subgroups.
For any normal subgroup X of J, we write X0 X and X, ,’r’XK for

n > 0. Assuming K< J, X. is then also normal in J. The corollary to
Lemma 1 then gives

(40) (XL)I <= (.Xo L,)(.X Lo).

By induction on n we deduce that

(41) (XL), <= II0 (,x L,_).

For let P P P2 P, where each P is normal in J. Then by (7), we
have PK Q Q: Q,, where Q ,P K. Taking Pi X_ L,,_
we have Q =< R-I R by Lemma 1, where R XL_. This gives the
induction step from n 1 to n in (41),
We prove Lemma 7 by induction on r, the case r 1 being true by hy-

pothesis. Assume that the result holds for a given r __> 1, and take X
-r-L and n= (r 1)m r in (41). By the induction hypothesis,
X,_,+I <- .XL. Of the factors on the right of (41), those for which i > n m
hve X <- .XL; and since L_ -< L, each of these factors is contained in
.XL. In each of the remaining factors we have n- i-> m, so that
L,_. <- L’; nd since X <= X, each of these factors is contained in XL’
.LX. But "LX <= XL by Lemma 1. Hence (.XL), <= XL, which
is the result required for the next value of r. This concludes the proof of the
lemma. An immediate corollary is
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THEOREM 7. Let L be a normal subgroup of a group K. If L is nilpotent of
class c and K/L’ is nilpotent of class d, then K is nilpotent of class at most

For ,K+1 <= L’, and so "LK <= L’. Using the notation X, ,’XKn,
Lemma 7 gives r-lTr 7rL+ 2, 3, Since L)-r+l < for r 1, ,L,
we obtain ()K()+ -< ,L+ for i 1, 2, 3, by induction on i, owing to
r(i)-f(i- 1) =id-i-l. But L+= 1, and so ()K()+= 1, so
that K is nilpotent of class at most f(c).

COROLLARY 1. If H is a normal subgroup of G such that H’ G’, then
7-IH 7r-G for all r > 1. If H and M are normal subgroups of G such
that ,HM and H’ are both contained in M’, then "-IH is contained in 7-M
ror all r > 1.

For N "yr-lHr< G. Applying Theorem 7 with d--1 to the groups
L H/N and K GIN gives the first part of the corollary. If J HM,
then J’ H’M.,HM M’ and so -H _-< -J -M by the first
part.
A discussion of the question whether the bound f(c) in Theorem 7 is the

best possible one for given c and d would probably be rather tedious, and we
shall not attempt it here. Instead, we note the following criterion for the
nilpotency of the join of two subgroups"

COnOLARY 2. Let H and K be subgroups of any group, let J {H, K} and
M .HK. If J/M and M are both nilpotent, and if there exist integers m and
n such that ."MH <= M’ and ,MK <- M’, then J is also nilpotent.

It is clear that these conditions are necessary if J is to be nilpotent. Note
also that JIM is in any case a homomorphic image of the direct product of
H and K, so that JIM will certainly be nilpotent if both H and K are nilpo-
tent.
Let/ HM be the normal closure of H in J. Suppose first that M’ 1

so that M is Abelian. If u and v are in M and x in H, we then have [u, vx]
[u, x]; and so ,M/ .’MH 1. Hence M is contained in the mt term
of the upper central series of/. Since I/M is a subgroup of J/M, it is nil-
potent. Hence /, and similarly / KM, are both nilpotent. Thus
J =// is the product of two normal nilpotent subgroups. So J is nilpotent
by Lemma 5. In the general case where M 1, we conclude that JIM’ is
nilpotent. By hypothesis, M is nilpotent; and since M <:] J by (10), it follows
from Theorem 7 that J is nillotent in this case also.
The criterion of Corollary 2 may be compared with the following criterion

which follows easily from Hirsch’s Theorem 5.

THEOREM 8. Let H and K be subgroups of any group such that ,’H.K"
,’KH 1 for suitable integers m and n. If H and K are both locally nilpo-
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tent, then so is J {H, K}. If H and K are both finitely generated nilpotent
groups, then so is J.

The second statement follows immediately from the first. As we saw in
proving Theorem 4, the equation .’HK 1 implies that K is subnormal in
J, equation (37). Consequently, if K is locally nilpotent, we have K
(K) <= )(J) by the corollary to Hirsch’s theorem. Hence the normal closure
/ of K in J is contained in ),(J). Similarly, if nKH 1, and if H is locally
nilpotent, the normal closure/7 of H in J is also contained in h(J). Hence
J =/// ),(J) is locally nilpotent.

In Theorem 8, no use has been made of our main result, Theorem 2. Ac-
cording to this theorem, if C is the centralizer of/ in K, then ’HK 1
implies that K/C is nilpotent. Consequently, K will be itself nilpotent, if
we assume in addition that 7rCK <- 7HK for some r. Similarly, if D is the
centralizer of H in , then 7nKH 1 and 78DH <= 7HK together imply
that H is nilpotent. Thus we may state

LEMMA 8. Let I and [{ be the normal closures of the subgroups H and K in
J {H, K}; let C and D be the centralizers of 1 in K and of in H, respec-
tively; and let M 7HK. Then, if 7’HK 7nKH 1, and if 7rCK and
8DK7 are both contained in M for suitable integers m, n, r, and s, it follows that
JIM is nilpotent.

We could infer at once that J itself is nilpotent, by Corollary 2 to Lemma 7,
provided we knew that M was nilpotent. By Theorem 4, the equation
m//Km7 1 by itself already implies that M is locally nilpotent. It seems

reasonable to think that the equations .r’HK"= .rKH= 1 taken to-
gether should enable us to show that M is in fact nilpotent. But we have
not been able to prove this. The doubt disappears when J is finite. Hence
we may state the

COROLLARY. If J is finite, the hypotheses of Lemma 8 are sucient to ensure
that J is nilpotent.

Indeed, in this case, the condition "KH’= 1 may be weakened to
nKH M’./ _< For the similar condition ."HK"= 1 already ensures the

nilpotency of M; and that being so, "’KHn= "’-IMH’-I<= M’ implies
.’KH’ 1 for some p, by Lemma 7.
On the other hand, the conditions "rCK <-_ M and "/DH <- M of Lemma 8

cannot be omitted. For example, if G is the icosahedrM group, and if we
form J* J X G, K* K X G and H* H, then J* {H*, K*} fulfils
all the hypotheses of Lemma 8 except the one involving C* C X G, the
centralizer of- B in K*. And obviously M* "rH*K* M, so that
J*/M* --- G )< JIM and is not nilpotent.
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