AMENABLE SEMIGROUPS!
BY MauLoN M. Day

1. Introduction

We begin with the definitions needed to formulate the results of this paper
and then survey the known results on existence and behaviour of invariant
means on semigroups. Then follow new results, among which are some cri-
teria for existence of invariant means; these are found in §4. In §5 it is
proved that an amenable semigroup is strongly amenable; this settles a ques-
tion that first arose in an earlier paper [10]. In §8 this result from §5 is ap-
plied to improve other results of the paper [10] on the relationships between
means and ergodicity. In §5 the semigroup algebra [,(2) is discussed; it is
used as the principal tool in the proof of the result on strong amenability.
In §6 is discussed the specialization to the semigroup algebra of a semigroup
of an idea of Arens [1]; Arens has given a construction which makes an al-
gebra out of the second conjugate space of a Banach algebra, and has con-
structed an example of a commutative algebra whose second-conjugate al-
gebra is not commutative. We show in §6 that the semigroup algebra of the
additive semigroup of positive integers has this pathological property; the
proof depends on showing that if an abelian semigroup has at least two in-
variant means, then they cannot commute in the second-conjugate algebra.

§7 discusses this necessary condition for commutativity in more detail.
The best result there is that an abelian group G has a unique invariant mean
if and only if @ is a finite group. For general torsion groups the question of
uniqueness and existence of invariant means is dependent on whether Burn-
side’s conjecture, that every finitely generated torsion group is finite, is true
or not.

§9 contains the proof that a theorem of G. G. Lorentz [17], about the set
where all invariant means are uniquely determined, carries over to amenable
semigroups.

§10 introduces the concepts of amenable and introverted subspaces of
m(Z) and shows how many of the preceding results have depended only on
these properties of m(Z). In §11 these results are applied to the space
C(Z) of bounded continuous functions on a topological semigroup.

2. Preliminary definitions

All of the present study will start from the relationships between a set Z,
which shall usually be a semigroup or group, and certain function spaces de-
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termined by =. These spaces are defined as follows; see Banach [2], pp. 11-12
for the case where X is countable.
L(Z) is the set of all those real-valued functions 6 defined on = for which

. [6] = ez 00) |
is finite.

m(Z) is the set of all bounded, real-valued functions « on 2 with norm
2]l = lubeez | 2() |-

1(Z) and m(Z) are Banach spaces.

As in Banach [2], p. 188, each Banach space B has a conjugate space B*
consisting of all the linear, real-valued functions 8 on B; B* is a Banach space
under the norm

[ 81 = lubyysa|B®) |

We shall be interested in certain elements of m(Z)*, but first we remark
that the proof of isometry of m(Z) with I,(Z)*, given in Banach [2], p. 67,
for countable Z, is valid in general; specifically:

For each z in m(Z) there is a £ = Tz defined for all 9 in [,(Z) by

E(o) = Zo’ez x(o‘)t?(tr)
such that

(a) for each z in m(Z), Tz is in L;(Z)*,
(b) T is linear; that is, additive, homogeneous, and continuous,
(¢) for each z, || Tz || = || = ||; that is,

Tubygy <1 | T2(6) | = lubees | 2(o) |,

(¢) T carries all of m(Z) onto all of [;(Z)*.

As in Banach [2], p. 100, each linear operator U from one Banach space B
to another such space B’ determings a conjugate or adjoint operator U* from
B'* to B* by means of the formula:

For each g’ in B'*, U*8’ is that element of B* for which

(U*g")(b) = B'(Ub) for all b in B.

Banach shows that U* is also a linear operator and that | U*| = | U |.
In the special case of the isometric operator T’ from m(Z) onto ;;(2)*, the ad-
joint operator T* is also an isometry from [;(Z)** onto all of m(Z)*.

The weak topology of a Banach space B is defined, for example, in Hille
[15], p. 23, by means of neighborhoods; for our purposes it will often be con-
venient to think of it in terms of convergence; for discussion of general, or
Moore-Smith, convergence see G. Birkhoff [3], Tukey [22], and Kelley [16];
we shall use the terminology of Kelley [16].

Derinrrion 1. If {b,}, where n runs over a directed system 9t, is a net of
elements in a Banach space B, then {b,} converges weakly to b (in symbols,
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w-lim, b, = b) means that lim,B8(b.) = B(b) for every 8 in B*. A dual
notion, weak* convergence, can be defined for nets of elements of a conjugate
space: If {8.} is a net of elements of B*, then {8,} converges weakly* to 8 (in
symbols, w*-lim, 8, = ) means that lim, 8.(b) = B(b) for every b in B.

The most important property of the w*-topology is

(A) Spheres in B* are w*-compact.

Expressing compactness in terms of nets this says:

(A) If {B.} is a net of elements in a sphere in B*, then there exists a
subnet {8} of {8,] such that {8} is w*-convergent to some element of the
sphere.

See Kelley [16], page 242, for a proof.

The following result is well-known (see Bourbaki [6], page 103) and is easy
to prove directly from the definitions.

(B) If U is a linear operator from one Banach space B to another B’, then
from the norm continuity of U follows also the weak-to-weak continuity;
that is, if w-lim, b, = b, then w-lim Ub, = Ub; and also the w*-w* continuity
of U*; that is, if w*lim, g, = @, then w*lim, U*8), =U*g".

Banach [2], page 189, also shows that there is a natural way to embed a
given B into its second conjugate space B¥*. To apply this to the case that
most interests us here, for each 6 in [;(Z), let Q' be that element of [;(Z)**
defined by

Q'0(8) = B(9) for all 8 in L(Z)*.

Banach observed that in general this operator @’ is a linear isometry of B
into B**; in this particular example where B = [;(Z), the range of @’ does
not fill up the space B**. However we do have a general density theorem.

(C) @Q'(B) is dense in the w*-topology in B**; even better, if S is the unit
sphere in B, then Q'(S) is w*-dense in the unit sphere of B**.

For one proof, see Day [8].

In our particular spaces, define @ = T*Q’; then @ is an isometry of [;(Z)
into m(Z)*. From the w*-w* continuity of T* in both directions follows:

(D) The image Q(S) is w*-dense in the unit sphere of m(Z)*.

In most of the rest of this paper we shall identify each z in m(Z) with its
image Tz in [;(Z)*, and use the symbol « for either one. Similarly we shall
identify an element g in L(2)** with T*u in m(Z)*, and identify @ with @’.

Following Banach’s terminology [2], page 23, we shall call an operator U
from one Banach space to another linear if U is additive and continuous.
Then, see Banach [2], page 54, the number

| Ul = lubjgys: || Uz ||

is finite. Under this norm the whole set £ of linear operators from B to B’
becomes a Banach space. In £ there are two analogues of the weak* topology
in B*; these are defined in terms of neighborhoods in Hille [15], page 33; we
describe them here in terms of convergence of nets.
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{U,} has the strong limit U in £ (in symbols, s-lim, U, = U) means that
lim, |U,x — U, || = 0 for every choice of z in B.

{U.} has the weak limit U in £ (in symbols, w-lim, U, = U) means that
lim, [8'(U. b) — B'(Ub)] = 0 for every choice of 8’ in B’* and b in B.

In the special case in which B’ = B, the set £(B) of linear operators from
B into B has still more structure; it becomes an algebra if we define multipli-
cation in £(B) as follows: For each S and T in £(B), ST is that element of
£(B) for which

ST(®) = S(Tb) for all b in B.

It is easily seen (Hille [15], page 33) that this multiplication is continuous
in the norm topology; in fact,

IS8T =18,

so £(B) is a Banach algebra.
Three other elementary processes will be useful in several later sections.
(1) Let = and Z’ be sets, and let f be a function carrying = onto all of 2.
This determines a linear operator, which we call F, from m(Z’) into m(Z):
For each 2’ in m(Z’), F2' is that element of m(Z) such that

(Fx') (o) = 2/ (fo) for every ¢ in Z.

It can be checked that F is a linear operator carrying m(2’) isometrically into
m(Z). Hence F*is a linear operator of norm one carrying m(Z)* onto m(2’)*,
(2) Let 2’ be a subset of =; then there is a natural mapping II of m(Z)
onto m(Z’) in which for each x in m(Z), Iz is that function on =’ which agrees

with z on 2/;
(Iz)(¢") = z(o’) for all ¢’ in 2’.

Then it can be verified that II is a linear operator of norm one and that II*
is an isometry of m(Z')* into m(Z)*.
(3) If ¢ is an element of 2, it determines an element Is of [;(Z) by the
formula
if ¢ =g,

IO' (T,=
Ua) () 0 if o #o0.

We shall often inject = in this way into /i(Z) and identify the image Io
with ¢ and use the same label for both. This simplifies the notation much
more than it adds to the confusion.

3. Means on m(3)

In the common usage of sophomore calculus, a mean value, or average
value, of a function is a number chosen in some reasonable fashion between
the least upper bound and greatest lower bound of the function. Here we
ask that the choice be made simultaneously for all functions in m(Z) and
made in a linear way.
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DeriniTION 1. A mean p on m(Z) is an element of m(Z)* such that for
each z in m(2)

glb,ez 2(0) = u(x) = lubyez z(0).

(A) Each mean u on m(Z) has the following properties:
(a) uisin the unit sphere in m(Z)*,
(b) If e is the function whose value is 1 at every point of Z, then
ule) = 1.
(¢) If 2(¢) = Ofor all ¢ in Z, then u(x) = 0.
@) lull=1
(B) If an element u of m(Z)* satisfies (a) and (b), or if u satisfies any
two of the conditions (a’), (b), and (c) of (A), then u is a mean on m(Z).
A useful corollary of this is
(C) The set of means on m(Z) is nonempty, convex, and w*-compact.

DerFINITION 2. An element 6 of [; (2) is called a countable mean on Z if
8(c) = 0 for all ¢ in = and if ) ..z 6(¢) = 1. A countable mean ¢ is called
a finite mean on 2 if, in addition, the set {s |¢(s) > 0} is a finite set.

Clearly the set of finite means is norm-dense in the set of countable means.
This nomenclature is a slight abuse of language, since the image, Q6 or Qe,
should, perhaps, more properly be called the countable or finite mean. See
Day [10] for the next result.

(D) If ® is the set of finite means on Z, then @® is w*-dense in the set
of means on m(2).

Consider next the operations between sets which were introduced in §2
and their effect on means.

Lemma 1. If f maps = onto Z', then F* maps M, the set of means on m(Z),
onto M’, the set of means on m(2').

If wisin M and p/ = F¥u,then || p' || £ || F*|| || n] = 1. Also F(¢’) = e,
so u'(e) = (F*u)(¢') = u(Fe') = u(e) = 1. By (B), u’ is a mean, so

M S M.

If 4’ is a mean on m(Z’), let me = {Fa’ | 2’ em(Z’)}, and let po be defined
on my by m(xo) = w' (F o) for each xo in mo. Then puo is a linear func-
tional on me of norm one; by the Hahn-Banach theorem (Banach [2], page
27) o has at least one extension p of norm one. Also

pe) = m(e) = w'(e’) = 1;
by (B), u is a mean on m(Z). But
(F*u)(a') = w(Fa') = wo (Fa') = W/ (FF2') = /(')
for all &’ in m(Z’); hence F*u = u/, and F* maps M onto M’.
Lemma 2. If 2’ is a subset of Z, then I*M' & M.



514 MAHLON M. DAY

IT* is a linear operator from m(Z’)* into m(Z)* which preserves norm, so
for each u’ inm(Z')*, *y’ is of norm one. But *u'(¢) = u'(Ile) = u'(¢') = 1;
by (B), IT*y’ is a mean on m(Z).

4. Semigroups. Invariance of means

A semigroup Z is a set in which an associative, binary operation is defined;
we shall generally write it by putting the elements to be combined next to
each other with no further symbols. Precisely,

(a) If ¢ and ¢’ are in 2, then oo’ is an element of 2.

(b) If g, o/, and ¢” are elements of Z, then o(¢'¢”) = (c0’)o”.

In addition to groups some examples of semigroups are:

(1) The set of integers, or the subset of positive integers, under ordinary
addition as the rule of operation.

(2) The set of n-by-n matrices, under matrix multiplication.

(3) The multiplicative semigroup in the operator algebra £(B) over
any Banach space B.

(4) Any set = in which the product of two elements is defined to be the
second element of the pair; oo’ = ¢’ for all ¢, ¢’ in Z.

Example (4) seems a most artificial and uncommutative semigroup, but
examples arise, as we shall show in §6, even when the only original intent is
to study the semigroup of integers and its invariant means.

If = is a semigroup, then in m(Z) many new operations become possible;
for example, it is possible to embed £ homomorphically into £(m(Z)) by
the following device.

For each ¢ in = let 7, be that element of £(m(Z)) defined for each z in
m(Z) by

(rs 2)(¢") = x(d’a) for all ¢’ in Z.
Similarly we define
(s 2)(¢") = x(ad’) for all ¢/ in 2.

It is easily verified that the correspondence of ¢ with 7, is a homomorphism
of 2 into £(m(Z)), and-that the correspondence of ¢ to I, is an antihomo-
morphism, that is, it reverses the order of factors:

Togr = Ty Tor and leor = lp 5.

Also||rz| < | x| ,andre = ¢, 50| 7 || = 1foreacho; similarly, || I, || = 1
for each . It should be noted that these maps may not be isomorphic;
for example, in the semigroup of example (4) every [, is the identity operator.

DerFiNiTioN 1. An element u of m(2)* is called left [right] ¢nvariant if
uwlo 2) = @) [u(sz) = wp(x)] for all z in m(Z) and ¢ in 2.

This can easily be rephrased in terms of adjoint operations in the algebra
L(m(Z)*).
w is left [right] invariant if and only if for every ¢ in 2

Gu=u [riu=u.
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DermviTioN 2. A semigroup 2 is called amenable if there is a mean u on
m(Z) which is both left and right invariant. In case only a left [right] in-
variant mean exists, 2 is called [-[r-] amenable.

We give in this section the many properties of invariant means which had
been announced with or without proofs before this paper and give references
to at least one source for each. These are listed in order with capital letters
to label them; the results called lemmas and theorems later in the section
are new.

The first two properties simplify many calculations.

(A) If = is both I- and r-amenable, then it is amenable.

This was proved for groups by Day [10]. To prove it for semigroups is
easiest after §6 of this paper; if X and p are, respectively, left and right in-
variant, it will be shown in §6, Corollary 2, that N © p is both left and right
invariant.

(B) An I-[r-] amenable group s also r-[I-] amenable; and therefore is ame-
nable.

This also was proved in Day [10]; basically it depends on the fact that the
operation g — ¢~ transposes the order of products, and therefore inter-
changes left and right.

One of the earliest studies of invariant means is that of von Neumann
[18]. The groups which he calls measurable can be seen to be those which
are called l-amenable here; (A) and (B) show that this class coincides with
the class of amenable groups, which shows that many of the results in Day
[10] are consequences of results in von Neumann [18].

An example, (4) at the beginning of this section, shows that nothing like
(B) is true for semigroups in general. In that semigroup,

(s 2)(o") = x(o0’) = z(c’)

so every [, is the identity and every mean is left invariant. (Means always
exist.) But (r, 2)(¢") = z(¢’0) = z(o) for all ¢/, s0 7, = x(o)e, and if u
is right invariant, then u(r, €) = u(x) = z(o)u(e) for all ¢ and x. Therefore
x is a constant function for all  in m(Z), or else u(e) = 0 and u(z) = O for
all z in m(Z). But if £ has more than one element in it, then m(Z) has non-
constant functions in it, so a semigroup of the type in example (4) has no
right invariant linear functionals on it unless it has but one element.

Next come techniques for creating new amenable semigroups from given
ones.

(C) If 2 is an (I-)[r-] amenable® semigroup and f a homomorphism of =
onto Z', then 2" s (I-)[r-] amenable.

2 In (B) two possibilities, left or right, are considered. In (C) and in §5, three choices
left or right or both, are possible, the same choice to be used all the way through the
sentence.
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One proves that 4’ = F*u is left invariant on m(Z’) if u is left invariant
over 2, and similarly for right invariant means. See Day, [12] for groups.

(D) If d s a (I-)[r-] amenable group, so is every subgroup.

See Day [12]. Also this has been published recently by Fglner [14].

The proof will be given in connection with a stronger result in §7, Theo-
rem 2. It has not been published before.

This result too may fail for semigroups. As an example let 2’ be any
non-amenable semigroup, and let = contain 2’ and one new element 0 such
that 0¢’ = 6’0 = 00 = 0, and 2’ is a subsemigroup of . 2 has an invariant
mean: u(x) = x(0). The subsemigroup Z’ has not.

(E) Let H be a normal subgroup of a group G such that H and G/H are
amenable; then G is amenable.

See von Neumann [18] for left amenable; (B) and (A) complete the proof
(see Day [10]).

(F) Suppose that {Z,} is a set of amenable subsemigroups of a semigroup
Z such that (a) for each m, n there exists p with Z, 2 Z, u Z,, and (b) T =
U, Z,. Then Z is amenable.

von Neumann [18] has this for a well-ordered system of subgroups of a
group. In the present generality it is in Day {10].

To be sure these methods of construction have some value, we need ex-
amples. We know already a non-amenable semigroup but we need also

(G) A free group on 2 generators is not amenable.

This can be gotten from von Neumann [18]; it is also in Day [10]. Used
with (D) it asserts that

(G" A free group on 2 or more generators is not amenable. No amenable
group has a free subgroup on more than one generator.

We have two basic families of amenable semigroups.

(H) Every abelian semigroup s amenable.

For groups this is in von Neumann [18]; for semigroups in Day [9].
(I) Every ﬁm’te group is amenable.

More precisely, for later use note that there is exactly one invariant mean
(left or right) on a finite group; if G has n elements, then

ulzx) = n"’zgeg x(g) for all z in m(G)
is that mean.
A finite semigroup need not have any invariant mean. If Z is a finite
semigroup in which ¢¢’ = ¢/, = is not amenable if it has more than one ele-
ment.
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These known results have many corollaries, some of them not printed
before.

(J) A solvable group is amenable.

See von Neumann [18]. This follows from (H) and (E) by induction.
The same technique yields

(J") If the chain of commutator subgroups of G ends at the identity in fi-
nitely many steps, then G is amenable.

See von Neumann [18]. Day [10] has a generalization to semigroups.
The example of the descending chain of commutator subgroups of the free
group on two generators, which ends at the identity only after countably
many steps, shows that some restriction on the chain is pertinent. In terms
of the notions of direct limit and inverse limit of groups, (F) can be used to
prove that

(F") A direct limit of amenable groups is amenable.

Consider as an application an index set S, a family Z,, s ¢ S, of amenable
semigroups, and the full and weak direct products: ] J.s Z. is the set of all
functions f defined on S such that f(s) € 2,, and the product operation is
defined coordinatewise; in case each Z, has an identity ¢, , the weak direct
product J]ts . is the subsemigroup of those elements f of [[.s =, such
that the set {s:f(s) # 4,} is a finite set. For S finite [ = ][ and, by
(E), IT.es = is amenable; hence (F) implies for every S

(B”) If all Z, are amenable, then |v.s =, is amenable.

The full direct product of amenable groups need not be amenable. For
example, let G be the free group on two generators and let {G.} be the upper
commutator chain for G; that is, Gy = G and G441 = [G, G4], the normal sub-
group on those commutators fgf "¢ ~" with fin G and g in G;. Then G./G.n
is abelian, so, by (J'), G/@, is amenable for all n» in N, the set of positive
integers. Consider H = []..v (G/G.); the inverse limiting system of
groups G/@G, under the homomorphisms onto; Ums (gGm) = ¢G» f m = n
and g € @, is a subgroup of H; hence H contains a subgroup isomorphic to
this limit. This particular inverse limit group is isomorphic to G, because
Nuew G, = {1}. By (G’) inverse limits and full direct products of amenable
groups need not be amenable.

(K) A group G is amenable if and only if every finitely generated subgroup
of G is amenable.

Sufficiency comes from (F), necessity from (D). For a semigroup we have
only sufficiency. For groups we have another result.

(K'Y Every locally finite group is amenable.
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(Locally finite means that every finite subset of G generates a finite sub-
group of @) (Day [10].)

R. Baer calls a group @ ‘“supersolvable” if every nontrivial homomorphic
image of G has a nontrivial, abelian, normal subgroup; we shall use the
term Baer group for a group such that every nontrivial homomorphic image
of G has a nontrivial normal, amenable subgroup.

TaeoreM 1. Every Baer group is amenable.
This depends on

Lemma 1. Every group G contains a normal, amenable subgroup Gy which
contains all other normal, amenable subgroups of G.

Let {H} be the family of normal, amenable subgroups of G. The family
is closed under the process of taking unions of increasing simply ordered sub-
sets, so Zorn’s lemma (see Kelley [16], page 33) applies to give a normal,
abelian Gy not included in any other H in {H}. If, now, H ¢ {H} and H is
not a subset of Gy, let ¢ = smallest subgroup of G spanned by G; and H;
then Gy is normal in & and G'/G, is isomorphic to H/Gy n H. Hence G,
and G'/G; are amenable. By (E), G’ is amenable.

But if ¢’ is a word in G’ and ¢ € @G, gg'g " is a word in G’ too, since Gy and
H are both normal. Hence G’ is a normal, amenable subgroup of G which
contains G; ; this contradiction shows that H & G, .

To prove Theorem 1 we suppose that G is a Baer group and that G; C G.
Then G/G; contains a normal, amenable subgroup A # {1}; also @, the in-
verse image of A, is an extension of G; by A. Because 4 and G, are ame-
nable, (E) asserts that G’ is amenable. @ is also normal. This contradicts
Lemma 1.

Note again how the free group furnishes an example to prevent the as-
sumption that a group must have a largest amenable subgroup. If ¢ and b
are the generators of a free group G, then the infinite cyclic subgroups on
these generators are both amenable. But G is the only subgroup of G' con-
taining both a and b, and G is not amenable.

Since not every subsemigroup of an amenable semigroup is amenable,
the following partial results add some information.

TuroreEM 2. Let T be a semigroup with a left invariant mean u. Suppose
that = is a subsemigroup of T such that u(x) > 0, where x is the characteristic
Sfunction of Z. Then 2 s left amenable.

Proof. Let N\, denote the left translation operator in m(Z), and for each
v in T define I, from m(T) into m(T) by

lyx = (Iy2)x for all z in m(T").
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Define T from m(Z) into m(T) by

xly) if yeZ,
(Tz)(y) = {0 i yes

and let v = T*u/u(x). Then » is a mean on m(Z). It can easily be checked
that for each ¢ in 2 and z in m(Z)

(2) T\ z) = I, (Tz).

Now let us fix a ¢ in 2. Letv = lex — I x, s0 v(y) = x(ov) — x(ev)x(r)-
This shows that »(y) can either be 0 or 1 and takes no other value, and,
therefore, that v is the characteristic function of a set E. It is clear that

(b) E = {y|yel, oveZ, ve¢I}.

Let us take any v in T' and consider the sequence {c"y |7 = 0}. If possible,
suppose that there exists 0 < k < j such that ¢’y and ¢’ both are in E.
It follows from (b) and "y € E that ¢’y € =, which again with (b) shows that
o’y ¢ E, and this is a contradiction. Thus, either no o% belongs to E, or
there is exactly one j such that ¢’y e E. Now let » > 0 be an integer, and
let us consider
Wy = 20§i§n lﬂ" V.

Then for each v in T'

wa (¥) = D ogizav(@y) = 0orl
by our previous considerations; therefore,

[wall =1,
thus
(n + Du@) = p(w.) = L.
As this is true for every n, u(v) = 0. Now if we take any z in m(Z) such
that || z || =< 1, then we can easily check that

-y £ I, (Tz) — I,(Tx) < v,
and therefore
p(ls Tx) — p(l, Tz) = 0,
or
uwlle Tz) = u(l, Tx) forf|z| =1,

and by homogeneity it follows that
w(l; Tz) = u(l, Tx) = u(Tz)
for all zin m(Z). From (a) this can be written as

u[T (N 2)] = u[Tx],
and this is the same as
(A ) = v(x).
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This shows that » is left invariant and we already know that it is a mean on
m(Z), so Z is left amenable,

The amenability, or lack of it, of finite semigroups was settled in the thesis
of Rosen [19]. (See also [20].)

TaEOREM 3. A finite semigroup = has an invariant mean if and only if it
has just one minimal left ideal, and just one minimal right ideal; then these
tdeals coincide, and the resulting two-sided ideal, the kernel of Z, is a finite
group G. The unique invariant mean on m(Z) is that of G; if n = number
of elements of G, then

u(@) = 2w 2(9)-

Rosen [20] also discusses left and right amenability of finite semigroups
and the corresponding results in compact semigroups.

The lemmas above show that the family of amenable groups is closed under
four standard processes of constructing groups from given groups: (a) sub-
group, (b) factor group, (c) group extension, (d) expanding unions (or direct
limits).

Also finite groups and abelian groups are amenable. Let EG, for ele-
mentary groups, be the smallest family of groups containing all finite groups
and all abelian groups, and closed under the processes (a)-(d). Then EG &
AG, the family of amenable groups. Also define NF to be the family of
groups with no free subgroup on two generators. It is easily seen that NF
is also closed under the processes (a)-(d). It follows from (a) and (G) that
AG & NF.

It is not known whether EG = AG or AG = NF or both.

5. Finite means and the semigroup algebra of a semigroup

In §3 we noted that the set of finite means is w*-dense in the set of means.
It is also useful to recall from Day [10] how this combines with invariance.

DermviTion 1. Say that a net {u,} of means is w*- [norm-] convergent to

right invariance if
W*"limn [’r:f Mn — IJ«n] =0 [hmn ” 7‘:‘ Mn — Mn ” = 0]
The dual definitions can be made for left invariance.

(A) If {u,} is any net of means which is w*-convergent to u, then {u.}
is w*-convergent to right [left] invariance if and only if u is right [left] in-
variant.

By w*-continuity of 75

lim, (77 pa(®) — ua(®@)) = (7 w(z) — u(@)).

(B) If {us} is a net of means w*-convergent to right [left] invariance,
then every w*-cluster point of {u,} is a right [left] invariant mean on m(Z).
Every w*-cluster point u of {u,} is the limit of a subnet {»,} or {u.}.
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For every o in 2 and z in m(Z), s vm(x) — vm(x) is a subnet of 7 u,(z) —
un (x); hence it also tends to zero. By (A), u is right invariant.

In Day [10] it was proved that

(C) A semigroup 2 is (I-)[r-] amenable if and only if there exists a net
{¢n} of finite means such that the net {Qg,} is w*-convergent to (I-)[r-]
invariance.

This follows from (A) and (B) of the present section and (C) and (D) of
§3

Observe that {Q6,} is w*-convergent to zero in m(Z)* if and only if {6,}
is w-convergent to 0 in [;(2); hence we can convert this to
(C") A semigroup is (I-)[r-] amenable if and only if there exists a net
{on} of finite means such that {¢,} converges weakly to (I-)[r-] invariance.
A condition formally stronger than amenability was used in Day {10] and
was named, for groups, in an abstract of that period, Day [11].

DEeriNtTiON 2. 2 is called (r-)[l-] strongly amenable if there exists a net
® = {p,} of finite means convergent in norm to (right) [left] invariance;
that is such that for each ¢ in =,

(hmn ” r;k Qen — Qon “ = 0) [lim, ” l: Qen — Qon ” = 0]

The notation was so unwieldy that while many properties of amenable
groups could be shown to have analogues for strongly amenable groups, it
was not then possible to decide whether every amenable group is strongly
amenable, nor was it convenient to discuss strong amenability of semi-
groups. This can be handled by changing the problem to one stated in
L(Z), and this in turn requires a discussion of a multiplication operation
which makes a Banach algebra out of [;(£). This definition of multiplica-
tion is a familiar one in the classical case where Z is a finite semigroup; see,
for example, van der Waerden [23], page 49.

Dermnirion 3. For each choice of 6, and 6, in [;(Z), define 6; 6, by the
formula
(6162 )(0) = 2 0103m0 B1(04)82(0).
If each element ¢ in = is identified with the vector Io in [;(2) (see defi-
nition in §2, (3)), then it is easy to check that for all ¢;in =

I(a’l 0'2) = (Ial)(Ia'z).

Hence if we drop the I, it will cause no confusion in the multiplication in
2, since I is an isomorphism of 2 into [;(Z). Hereafter we shall use the
symbol ¢ both for ¢ in 2 and Io in [;(2). This gives the formula
0 = Z“E 0(o)o
for every 6 in [,(Z).
Then this multiplication in [;(2) also determines right and left transla-
tion operations s and o8 in Li(Z);

(@0)(0") = 2oosme 0(2) and  (00)(0") = 2ssomor 8(0).
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Direct calculations with the definitions prove

(D) r¥(Q6) = Q(60) and I3 (Q) = Q(s6) for all ¢ in = and 6 in L(Z).

Therefore the elements rf Qp, — Qe, and ¥ Qp, — Qp, which were dis-
cussed in the definitions of weak and strong amenability are images under @
of the elements ¢, ¢ — ¢, and oo, — ¢, . Under the mapping @, norms are
preserved and weak convergence to zero in [;(2) is equivalent to weak*
convergence to zero of the images in m(Z)*. This proves the following re-
formulation of the preceding amenability conditions.

Lemma 1. A semigroup = is amenable (strongly amenable) if and only f
there exists a net ® = {p,} of finite means such that for every o in =

lim, (pn 0 — ¢ ) = 0 = lim, (d@n — @n )
in the weak (norm) topology of Li(Z).

This displays clearly that strong amenability is not less of a restriction
on a semigroup than is amenability. The purpose of this section is to prove
these two conditions equivalent, but we now turn aside from the main stream
of that proof to give some information about the semigroup algebra which
will be needed.

LemMA 2. Suppose that 6, and 0, are in (), or are countable means, or
are finite means; then the same property s possessed by 6, 6.. Hence o6 and
8o have for each o in Z the same of these properties as has 0. Also multiplica-
tion in 1,(Z) 1s associative, so (¢0)d’ = o(00’). Finally, || 61 62| < || 6. ]| 62 ||
and

010 = D ez 01(0)00y = D ez 02(0); 0.

Proof.

[ 6102 || = 2ves | 01 02(0)] = D0 | 2oroamo O1(01)62(0)]
S 20D riorms | 01(01)] | 62 (o2)]
=2 oez | 01(01)| Xapez | 02 ()]
= [l oulll 6] .

Hence 0, 6, is an element of [,(Z) if the 6; are, and [;(Z) is a Banach algebra,
possibly without unit. When the numbers 6,(s) are all nonnegative, then
the only possible proper inequality in the above chain is prevented from
occurring, and then || 6; 6; || = || 6: |||| 62 ||; in particular, 6; 6; is a countable
mean if the 6; are countable or finite means. When the 6, are finite means,
6, 0:(c) = 0 except in the finite set

{0'1 a2 I 01(0'1) > 0 and 02(0’2) > 0}

CoROLLARY 1. The set of countable means and the set of finite means are
subsemigroups in the multiplicative semigroup of the Banach algebra ;(Z).
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This technical matter settled, we turn now to averages and nets of aver-
ages of elements of a linear space.

DeriniTion 4. If L is a linear topological space and E is a subset of L,
then an element z is called an average of E if it is in the closure of the convex
hull of E; z is a finite average of E if it is in the convex hull of E; that is, if
there exists a real-valued function ¢ on E such thato(y) = 0if y e E, o(y) = 0
except for a finite set of y in B, Dy e(y) = 1, and & = 2z 0(y)y.

For example, the finite means in /;(Z) are the finite averages of the set =
of basic means, and the countable means are the averages of Z. Using the
w*-topology of the space m(Z)* the set of all means is the set of averages of

Q).

DerintTioN 5. If D = {d.} is a net of elements of a locally convex linear
topological space, say that C = {¢;} is a net of finite averages far out in D
if (a) each c; is a finite average, ¢; = D _nev 0i(n) dn, of values of the func-
tion D, and (b) for each ny in N, there is an 7, in I such that, for each ¢ = 4,
and each 7 such that ¢;(n) > 0, it follows that n = n, .

LemMA 3. Let L be a locally convex linear topological space, and let D = {d,}
be a net of elements of L converging to an element z of L. If C s a met of
finite averages of elements far out in D, then C also converges to the limit z.

Take a convex neighborhood U of 2, and take ny so that d, e Uif n = ny .
Choose 7y by (b) of Definition 5 so that ¢+ = 7y and ¢,(n) > 0 imply
n = ny. Then all d, for which ¢;(n) > 0 are in U, so, by convexity of U,
¢i = Donew0i(n) dn e U when ¢ = iy ; that is, lim;¢; = 2.

We need also a result well-known for sequences to be a consequence of
Mazur’s theorem. (See Mazur [24]; see Bourgin [7] for the general case.)

LEemMmA 4. Let L be a locally convex linear topological space, and let
D = {d.} be a net of elements weakly convergent to an element z. Then there is a
net C of finite averages of elements far out in D such that C converges to z in the
topology originally given in L.

Let K, = closed (in L) convex hull of {d.|m = n}. Then by the Ascoli-
Mazur-Bourgin theorem (Bourbaki’s “geometric form of the Hahn-Banach
theorem”, [5], page 69), each K, is weakly closed; hence z is in each K, .
Let 9 be the Cartesian product of the directed system 9 with the directed
system of neighborhoods of 2, ordered by &; that is, (U, n) = (V, m) means
that U & V and n = m. Then for each ¢ = (U, n) there is a ¢; in U which
is a finite average of the d, , m = n, because z is in K, , the closure in L of
this set of finite averages. Then C = {c;} has the desired properties.

With this machinery we are prepared to prove the main theorem of this
section.
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THEOREM 1. A semigroup 2 is amenable if and only of it vs strongly ame-
nable.

The characterizations of Lemma 1 show that a strongly amenable semi-
group is amenable. If, on the other hand, 2 is amenable, Lemma 1 asserts
the existence of a net ® = {p,} of finite means such that in the weak topol-
ogy of [;(Z) we have for each ¢ of =

lim, (pn 0 — ¢u) = 0 = lim, (c@r — ¢n).

Let 6 be any finite subset of Z, and enumerate the elements of § in some

order as o1, 02, - -+, ox. Then o190, — ‘o, tends to zero weakly in Li(Z);
by Lemma, 4 there is a net ®; of finite averages of elements far out in ® such
that limy, || o1 ¢1m — ¢1m || = 0. By Lemma 3 the weak limit of ¢; ¢1m — @1m
is zero forj = 2, - -- |, k; hence there is a subnet ®, = {pz,} of ®; such that
lim, || oj0 — @2 || = 0 forj = 1, 2, while ;2 — @2, still tends weakly
to zero for j = 3, ---, k. Continuing by induction there exists a subnet

®;, = {¢1,} such that
limg [| 05 @rg — @ugll = 0 forl ==k

If = is finite, this net will do to show one side of strong amenability if
§ = Z. If Z is infinite, let 9 be the cartesian product of N, the directed
system of integers, with A, where A is the net of all finite subsets of 2 or-
dered by 2, s0 (n, 8) = (n/, &) means n = n’ and § =2 §'. Then for each
1 = (n, 8) let ¥(¢) = ¢(n, 8) be so chosen that

(1) ¢(n, 6) is a finite average of elements ¢, , m = n, and

(2) for each element o of &

| ew(n, 8) — ¢¥(n, 8)|] < 1/(number of elements in §).

Such an element ¢(n, §) can be chosen from the net ®; associated to 5 by the
construction of the preceding paragraph, for each ¢, is a finite average of
finite means ¢, , and is therefore a finite mean itself, and, once § is chosen
and n given as well, ¢, for ¢ large enough uses only elements ¢,, with m = n
and can be taken as close to zero in norm as may be desired.

This net ¥ = {;} is a net of finite averages of elements far out in ®, and
lim; || ¢ — ¢¥: || = O foreach s in =. By Lemma 3 the weak limit of ¥; ¢ — ¢
still is zero for each ¢ in =. Hence the argument just used will yield a
net ¥ which is norm convergent to right invariance as well as to left in-
variance. This proves the theorem by displaying a net with the charac-
teristic property which Lemma 1 says is equivalent to strong amenability.

It is worthy of note that there is truly something that needed proof in
this theorem. It is well-known (Banach, page 137, gives the case where 2
is countable, but the proof does not depend on that property of Z) that for
sequences in [;(Z) weak convergence to an element is equivalent to strong
convergence to the same element. But this is a theorem for sequences; for
nets in general the facts that (a) weak and norm topologies are distinct in
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L(2) if Z is not finite, and (b) these topologies can both be determined by
convergence of nets, show that a net {6,} might converge weakly to zero
while at the same time it need not converge to zero in norm.

A recent theorem of Fglner [14] gives two new characteristic properties of
amenable groups.

THEOREM OF FGLNER. Amenability of a group G is equivalent to each of the
following conditions:

(a) For each number k such that 0 = k < 1 and each finite subset v of G,
there is a finite subset E of G such that for each g in «.

(no. of elements common to E and to gE)/(no. of elements in E) > k.

(b) There is a number ko, 0 < ko < 1, such that for each choice of finitely
many, not necessarily distinct, elements g1, g2, - -+, ga € G there is a finite set
E = @ such that

1Y i<n (0. of elements common to E and g; E) = ko(no. of elements in E).

For groups this yields another proof that left amenability is equivalent to
strong amenability. For a given finite subset v of G and a given ¢ > 0,
take E by Fglner’s condition (a) with k = 1 — ¢; then set ¢,..(9) = 1/| E |
if geE, = 0if g¢ E. This net converges in norm to left invariance.

It is not now clear whether Fglner’s condition can be derived from strong
amenability in general. A related question is: How much tampering can a
net of means strongly convergent to invariance take before it loses its de-
sirable property. In this vein we have two results

LemMma 5. If {¢n} 15 a net of finite means which is weak [norm] convergent
to right {left} invariance, then for each 6 in 1,(Z) such that e(8) = 1,

hmn (San 0 — Wn) =0 {hmn (090"' - ‘Pﬂ) = 0}
in the weak [norm] topology in ,(Z).

For one typical case of the proof assume that w-lim, (pro — ¢z) = 0
for each ¢ in . Then for each finite mean ¥ we have

on¥ — on = Zvlp(a)?’n g = ¢n = Zv"l/(a)(ﬁon‘f = @n);

therefore ¢, ¥ — ¢, tends weakly to zero. But each mean 6 in [;(Z) can be ap-
proximated arbitrarily closely in norm by a finite mean ¢, and for all ¢, in
dwehave || ooy — a0 = || — 6] . Foreach x inm(Z) and each ¢ > 0,
take ||¢ — 0|| < & and then take ¢, so that | z(p.¥ — ¢a)] < & Then

| 2(en 0 — on)] S |2(en 0 — @n¥)| + [ 2(en¥ — @) < (L + |2 |De;

hence {¢, 8 — ¢} tends weakly to zero. Similar proofs yield the corre-
sponding results for {6, — ¢} and for norm convergence.

Lemma 6. If 2 s a semigroup and ® = {¢,} 1s a net of finite means con-
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verging in norm to right invariance, then each of the following nets converges in
norm to right tnvariance:

(1) The net {Yn on}, where (¥} is any other net of finite means defined on
the same directed system 9.

(2) Any right multiple of {en} by a single countable mean, {p, 0}.

() Any net of finite (or countable) averages of elements far out in {p.}.

Dual results hold for left invariance.

Proof of (1).
” Ynn o — Ynn “ = ”‘pn “” Pn 0 — ©On ” — 0.
Proof of (2).
l@nbs —enb| < lonbs —onll+1leat —enll.

Both terms tend to zero by Lemma 5.

Proof of (3). If ¢, is an average, finite or countable, of elements {¢,},
then ¢, 0 — ¥ is the same average of {p, 0 — ¢.}. Hence {Ym o — ¥um}
is a net of averages of elements far out in {p, 0 — ¢,} and, by Lemma 3,
has the same limit, zero, as the latter net.

A related result is

Lemma 7. Under the hypotheses of Lemma 6, let K(n, 0) be the closure of
{Yen 0 — vyou | v a mean}; then for each 6 the diameter of K(n, 6) tends to zero.

Proof.
“'W’no - 7&07&” = ll¢n0 - ¢n”

which tends to zero by (2) of the preceding lemma.

6. The second-conjugate algebra of a semigroup algebra

This section contains an application of an idea of Arens to semigroup
algebras, and in turn applies what we now know about invariant means to
construct examples of interest for Arens’s own work.

Arens [1] showed how to define a multiplication in the second-conjugate
space of a Banach algebra B. The process works in three steps:

For each 8 in B* and b in B, define 8 © b in B* by

(8 © b)) = BObY) for all b’ in B.
For each v in B** and 8 in B*, define » © @ in B* by
(» © B)B) = »(8 O b) for all b in B.
For each p in B** and » in B**, define u © v in B** by
(kO »)(B) = u» O B) for all 8 in B*,

If for B we choose [;(Z), where = is a semigroup, if we make the identifi-
cations of ;(Z)* with m(Z) and of [;(2)** with m(Z)*, then for z in m(Z)
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and 6 in [;(Z), the first definition gives for all ¢’ in [,(Z),
( © 0)(0) = 2(00) = z(D vez 8(c)08") = D oex 0(c)z(c8’)
=D ez 0(0)(@ © o) ()] = [Zoez 0(c)z © o](8").
This shows that for each z and 6,
OO0 =2 0z0)r Oo.

But
(@ © o)(0) = a(at) = X, a(r)ab'(r)
= Zf x(T)ZW’ﬂ 0'(0")
= Z,' 2(aa’)0' (0") = (I, x)(#).
S0
Qo =1z
Hence

(» © 2)(o) = v O o) = vl x) = I v(z).

‘We take this as our basic definition, now that we have checked that it agrees
with Arens’s definition; that is, we rewrite the definitions for our case as:

20 o =luz
O 2)(o) = »& O o) = rvl,z) = (IF »)(x).
(n © »)(@) = ul O 2).
We add two new definitions
lh =203 0o s To =20z 6(0)rs .

We are now ready to describe the properties of this multiplication in m(Z)*
and to show how invariant means appear.

I

Lemva 1. (Arens) © s associative and distributive; also, the norm of the
product is not greater than the product of the norms.

For each 2

O (kO W) = MmO ) O]
and

(kO »O(e) = WO »(EOo) =urO (®Ooa)]=ur0Ola

for all z and ¢. Also

[(AOw Oz =NOwWroOz)=»Nu® (» O )],
and

kO (O 0)e) = ulllr © )]

for all  and ¢. But for all ¢/, z, and o

L © )@ = (v © 2)(00’) = vl ) = vl L, x) = (v O L, 2)(d").
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Hence for all ¢ and x
LvOx)=1v 0O (x).

Hence the last expressions in the second and fourth equations of this proof
are equal for all  and ¢; hence the last expressions in the first and third
equations are equal for all z. Hence © is associative.

For distributivity we check first that (u + ») O 2 = u © 2 + » © z for
all u, » in m(Z)* and x in m(2); this is true because for all ¢ in =

[k +v) ©2](e) = (b + ¥)(& O o) = ulx © o) + 2@ O o)

= wOx)o) + (O 2)(0) =[u O+ rO (o).
Then for all =

N O (b + v

It

M+»)Oxl=NpOzxz+»O 2|
Ap © ) + Nr O 2)
A O wkE) + 0o
=N O u+ 20 @)
To prove the boundedness, if u, » em(Z)* and x e m(Z), then

kO @ =[prox) sullroz],
and for each o

o)) | =[vla)| = vl = vl
Henceif |2 | < 1, then|[v O | = [ v ], so
feov|=lullrl
LemMa 2. If 0 eli(2) and v em(Z)*, then QO © » = lgv, and » O QO =

3
rov.

I

For each x in m(Z)
Iv)() = v(loz) = v(Zo 000l 2) = D0 0(0)r(ls )
=22 0@ © o) = 2 0(@)(» © 2)()]
= (QO)(» © 2) = (Q O »)(2).
For the other conclusion, start with » in m(Z)* and 6 in [,(Z); then
y O Q0 =D . 0(c)v © Qo.
Then for each ¢ in 2 and z in m(Z)

(v © Qo)(x) = »(Qo O 2),

and for each 7in =

Qo © 2)(7)

Qo)(x © 1) = (o)l x) = (I 2)(o)
x2(re) = (r, x)(7).

I
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Hence for each ©

Qo © z =1z,
and
(» © Qo)(@) = »(Qo O z) = »(r,x) = (r7¥)(x);
hence
v O Qo = rfv,
and

(r © QO) = Za’ 0(c)riy = (Zo 0(0)7«;“)(,,)
= (20 0(0)r)*(») = r3v.

CoroLLARY 1. If 0 is fized, then Q8 © v is w*-w* continuous in the second
variable, and u © Q6 is w*-w* continuous in the first variable.

Proof. Ewvery adjoint operation is w*-w* continuous by §2, (B).

COROLLARY 2. If v and u are means, then v © u ts left tnvariant if v is left
variant, and v O p s right tnvariant if u vs right tnvariant.

For one of these proofs we have from Lemmas 1 and 2
Boow=QQ O (r0ou=Q O Ou
= () Ou=1r0np

CoroOLLARY 3. @ is an isomorphism of the algebra [,(Z) into m(Z)*; that s,

Q8 © Qb = Q6 6,).

We already know that @ is isometric into m(Z)* and is linear. For all
z in m(Z)

Q61 © Q) (@) = (15, Q0)(2) = (Q02)(lg,2) = Deyes Oa(02)lo, (o)
= Zagez 02(0'2)[Z¢1e2 01(a1)ls, x(02)]
= Z,l Z.,2 02(02)01(a1) (01 02) = ZaZvyxgw 01(01)02(02)x (o)
= 20 01 62(0)2(0) = [Q(6: 6)](2).

LemMa 3. The operation © s w*-w* continuous in the first variable if
the second variable is fixed.

Let {u.} be a net of elements of m(Z)* such that lim, u.(y) = u(y) for
all y in m(Z); then

(B © P)(@) = pa(r © ) > u(» © ) = (u O »)(2)
for all x in m(Z); that is,
w*lim, (un, O ») = n QO v if w*-lim, p, = u.

Continuity in the other variable may not be present; see Corollary 5 of
Theorem 1 of this section or Arens [1]. This limited weak*-continuity in the
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second variable found in Corollary 1, is due to the asymmetry of our defini-
tion of multiplication; 7, and I, do not enter into it together.

We have now gathered together the elementary properties of the algebra
m(2)*, and we know that @ is an isometric isomorphism of the algebra [;(Z)
into the algebra m(Z)*. To connect what we know about amenable semi-
groups with Arens’s results, we prove

TaeorEM 1. If v is an element of m(Z)* which is fixed under all the operators
1Y, then for every u in m(2)*
wOv= “(6)V7
where e s the function constantly one on 2.
For all 6 € [,(Z)
liv =>4 0(c)lEy
(220 6(0))v = (Q6(e))».

But for each u in m(2)*, there is a net {6,} in [;(2) such that w*-lim, @0, = pu.
By Lemma 3

Qo O v

[7NON7

Il

w*-lim, (@0, © v) = w*-lim, (Q6,(e)v)
(lim, Q8,(e)]y = ule)v.

COROLLARY 4. If v is a left invariant mean, then u © v = v for every mean .

u(e) = 1if pis a mean.

COROLLARY 5. If 2’ is the set of all left invariant means on m(Z), then Z’
is a semigroup in which the product of two elements is always the second element
of the pair.

COROLLARY 6. If 2 45 a left amenable semigroup and if m(Z)* <s a commuta-
tive Banach algebra when © s used as the multiplication, then there is only one
left invariant mean on m(Z).

For 2’ can be both commutative and nonempty if and only if it has just
one element; if there were two, Corollary 5 would assert that p © » = » &=
g = v O u, which would prevent commutativity.

An example pertinent to Arens’s work is

COROLLARY 7. Let = be the semigroup of nonnegative integers; then Li(Z) s,
but its second-conjugate algebra is not, commutative.

The sequence of finite means {¢,} defined by
o) =1/n if 1 =27=n,

(@) =0 if >,
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converges in norm to invariance, for
“ enk — on “ = 2k/n.

By taking a function z in m(Z) so that there are longer and longer blocks of
consecutive zeros and ones, it is easy to construct a sequence such that

lim sup, Qe.(x) = 1 > 0 = lim inf, Qp.(x).

By §5, (B), every w*-cluster point of this sequence {Q¢,} is an invariant mean.
By w*-compactness of the set of means, there is at least one w*-convergent
subnet {¢m] of {p,} with lim, en(z) = 1, and at least one w*-convergent
subnet {om} with lim, gm(z) = 0. Then px = w*lim, on and p = w*
lim,, ¢m are distinct invariant means. By Corollary 6, m(Z)* is not commu-
tative.

Due to the asymmetry of our definition of multiplication in m(Z)*, the
dual conditions for right invariant means may fail, and indeed do fail for
most abelian groups. For example, in the situation of Corollary 7, where =
is the semigroup of nonnegative integers, I, = r, for all o, but the product of
two right invariant means is not necessarily the first one, while it must be the
second one.

7. Uniqueness of invariant means on m(Z)

From the preceding section we saw that a necessary condition for commuta-
tivity of m(Z)* is that there exist only one invariant mean on m(Z). We
devote this section to a proof that the behaviour of the semigroup of integers
is typical of the behaviour of abelian groups; on every infinite abelian group
there are many invariant means.

We begin with the observation that by §5, (B) we want a net of means on
m(Z) which is w*-convergent to invariance but is not actually w*-convergent.

LemmA 1. If {u.} is a net of means on m(Z) which is not w*-convergent but
1s w*-convergent to right [left] invariance, then there is more than one right [left]
mwvariant mean on m(Z).

By w*-compactness of the set of means (§3, (C)) {u.} must have at least
one cluster point; since it is not w*-convergent it has more than one cluster
point, so it has subnets converging to at least two different points; these
subnets both converge to the same-sided invariance as that possessed by {ua.},
so the limits, by §5, (B) are invariant on that side.

To reduce the class of semigroups requiring special investigation we give
two simplifying results.

TarvoreM 1. (I. S. Luthar) Let f be a homomorphism of a left [right] ame-
nable semigroup = onto a semigroup Z', and let F be defined from m(Z'") into
m(Z) as i §2, (1); Fa'(c) = 2'(fo) for all ¢ in =. Then F* carries the set
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M, [M,] of left [right] invariant means on m(Z) onto the set M1 [M)] of left [right]
tnvariant means on m(Z’).

We already know from Lemma 1 of §3 that F* carries the set of all means
on m(Z) onto the set of all means on m(2’). That it carries left invariant
means to left invariant means is easily verified; it is, indeed, the proof of (C)
of §4.

To refine that proof slightly, as in the proof of §3, Lemma 1, set mg =
{Fz' | 2’ e m(Z")}, and define uo on mo by po(w0) = u'(F o), so that u(Fz') =
w' (') for all ' in m(Z').

LemMMA 2. my ¢s carried into diself by all I, and all 1, .
For each 2’ in m(Z’) and each o, 7 in Z,
(s F2')(r) = (Fa')(o7) = 2/(f(or)) = 2'((fo)(f7))
= (e 2)(fr) = [F(l 2))(r);
that is, for each o and 2’
L(Fz') = F(ly ).
Hence it is an element of m,. A similar caleulation gives
1.(Fz') = F(rs, 2').
LeMMA 3. o s left invariant on my .
For all ¢ in 2 and 2’ in m(Z’)
wolls Fz') = po(F(lfs 2)) = w' (Yo ')
= ¥'(@') = n(Fz").

We could now use a theorem of Hahn-Banach type for extension of functions
invariant under groups of transformations; see the thesis of R. J. Silverman
[21]. However, a check of the proof there shows that the second-conjugate
algebra gives us a technique for proving this in the framework in use here.

By the classical Hahn-Banach theorem, Banach [2], page 27, there is an
extension w; of uo defined on all m(Z) with

ol =lml=1[s]=1

Also w(e) = wmo(e) = w'(e’) = 1, so uy is & mean. 2 is left amenable, so
choose any left invariant mean » on m(Z) and let p = v © w1 .

Then by Corollary 2 of §6, u is a left invariant mean on m(Z). To see
that u is also an extension of uo, take z, in mo ; then

w(@o) = (v © u)@o) = »(um O 20),
and for every o

(w1 © z0)(0) = m@o © o) = wmls ) = mo(ls o) = wo(o),
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S¢]

(u1 © o) = mo(o)e,
and

u(@o) = v[uo(o)e] = wo(xo)v(€) = wo(%o)-
Hence p is a left invariant extension of uo. Then for every z’ in m(Z’)
Fru(a’) = p(Fa’) = w(Fa’) = 4'(2'),

so F*u = u’. Therefore F* carries the set of left invariant means on m(Z)
onto the set of left invariant means on m(Z’).

For right invariance we pass to the transposed semigroup =’ in which prod-
ucts are taken in the other order from that used in =. This interchanges
I, and 7., and a left invariant mean on ' can be constructed as above, and
the result transposed back to get a right invariant mean on =. As Arens has
emphasized, and as these examples continue to emphasize, this repeated
transposition need not return one to the original product operation in the
second-conjugate space.

Using the operation (2) of §2, we are able to give a reduction in the case of
groups.

THEOREM 2. Let G be an amenable group, and let H be a (not necessarily
normal) subgroup of G. Suppose that u is a mean [left invariant] on m(G) and
that v' is a left invariant element of m(H)*. Define I, as in §2, (2), from
m(@) onto m(H) by Mx(h) = x(h) for all h in H, and set v = I*y'. Then
le vl =17, land u © v s left invariant).

We have already seen (§3, Lemma 2) that vy = II*y/ is in m(G@)*, and, by
Corollary 2 of §6, u © v is left invariant when u is. We need now to use the
construction which proves that H is amenable (§4, (D)). Let K be a set of
representatives for left cosets of H in G so that every g in G has a unique repre-
sentation as a product, g = kh, with ¥ in K and hin H. Define U from m(H)
into m(@) by '

(Uy')(kh) = y'(h) for all k, h.
Then U is an isometry of m(H) into m(@), and Uy’ = 3’ for all ¥ in m(H).
Now choose ¢ > 0, and then choose 2’ in m(H) with || ' || = 1 and

Y'(@') > ||v| — e Letxz = Ux’. Then

(w © 7)) = uly O x),
and

(y ©2)(g) =@ O g) = vl x) = (W), x)

= v/(Ill, x).
But, setting ¢ = kh,

(I, 2)(h') = (L, x)(h') = (gh’) = x(khh')
= (U")(khh') = &'(h) = (")),
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S0
H(lkh Ux') = l},,, .”L',.
Hence
(v © 2)@g) =¥ a) =) for all g in G.
Therefore
vy Oz =7'(a)e
)

(u © M@ = p@'()e) = ¥'@ule) = ¥'@) > || — &

Hence || u © v || > || || — ¢ for every & > 0; it follows that || u © v || =
|+ |, since, by §6, Lemma 1, [[x @ v | = (|7 |-

CoROLLARY 1. For each mean ¢ the operator Z defined by Zv' = ¢ © (II*Y')
from m(H)* to m(@)* is an isometry of the set of left invariant elements of m(H)*
ko m(G@)*. If also ¢ is left invariant, then Z carries the set of left invariant
means on m(H) isometrically into the set of left invariant means on m(G).

These results imply

TurorEM 3. If a left amenable group G has either a subgroup or a factor
group with more than one left invariant mean, then G has more than one left
mvariant mean.

If f is a homomorphism of G onto ¢, and if u1 # us are left invariant ele-
ments of m(G’), then there exist, by Theorem 1, u; and u, such that F*u; = u; ;
each u; is left invariant, and w1 # u, .

If H is a subgroup of @ and { is left invariant on m(G), and if u1 # w3 are
left invariant means on m(H), then by Theorem 2 each Zu; is left invariant,
and Zui — Zus = Z(us — ws) % 0, since Z is an isometry on left invariant
elements.

This is our first main result, and with the known structure theorems for
abelian groups it enables us to prove

THEOREM 4. An abelian group G has only one invariant mean if and only if
@G is a finite group.

If an abelian group has finite order, then its mean is unique. If the group
is of infinite order, then either there is or there is not an element of infinite
order in G. If there is an element of infinite order, it generates a cyelic sub-
group which, by Corollary 7 of §6, has more than one invariant mean; by
Theorem 3, G also has more than one invariant mean.

If G has only elements of finite order, we observe that this implies that there
exists in G an expanding sequence of finite subgroups H; Cc H, C --- C
H, -

LEvmMa 4. LetH = U, H, , where H, s O H, , each H, is a finite subgroup
of Huy1, and where the number of elements in H,y is more than ten times the
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number of elements in H, . Then there is more than one invariant mean on
m(H).

Define  in m(H) by x(h) = 1 if heHpp — Ha and 2(h) = 0 if
h € Hy, — Hyy—y for any n. Let k, be the number of elements in H,, and
define ¢, in [;(H) by

ou(h) = 1/k, if heH,,

oah) =0 if heH,.

Then {g.} converges in norm to invariance, for as soon as h e H, then
onh — ¢, = 0. But lim inf, p.(z) = .1, and lim sup,e.(z) = .9, s0 {¢n}
is not weakly convergent. By Lemma 1, m(H) has at least two invariant
means.

Now return to the proof of Theorem 4. By taking a subsequence if neces-
sary, the finite subgroups there can be chosen to have all the properties of
Lemma 4, so H = U, H, has more than one invariant mean. Hence G has
more than one invariant mean.

CoroLLARY 2. If G is an abelian group, then the second-conjugate algebra
m(G)* 1is commutative if and only if G is finite.

If @ is finite, then [;(G) and [(G)** are isomorphic, and are, therefore,
both commutative with G. If G is infinite, Theorem 4 asserts that there
are many invariant means; Corollary 6 of §6 asserts that m(G)* is not commu-
tative.

CoRrOLLARY 3. Let G be an infinite group; then each of the following con-
ditions is sufficient that G have more than one invariant mean:
(1) The commutator chain G D Gy D --- D G, = 1 ends at the identity
n o finite number of steps.
(ii) G s amenable and contains an element of infinite order.
(iii) G s locally finite; that is, every finite subset of G generates a finite sub-
group of G.

(1) and (iii) are already known to be sufficient conditions for amenability of
G. (i) and (iii) yield many means by Theorem 2 and Lemma 4. If (i)
holds, we have first that every G;/G;. is abelian, by the definition of com-
mutator groups. At least one of these groups must be infinite, since an ex-
tension of a finite group by a finite group is always finite. By Theorem 4
that group G%/Gr+1 has many means. But G4/Gy41 is a factor group of Gy,
50, by Theorem 1, G, has many means. By Theorem 3, G itself has many
means.

It should be observed that the case not covered by the theorem brings us
directly up against one of the outstanding important problems of group theory.
A group is called a torsion group if every element is of finite order.

Burnside’s conjecture. Every finitely generated torsion group is a finite
group.
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If Burnside’s conjecture is true, then all infinite torsion groups are ame-
nable, and indeed come under (iii) of the last theorem, so they have many
means. It should be remarked that the set of left [right] invariant means
over any semigroup is comvexr; hence a semigroup with more than one in-
variant mean must have at least a continuum of invariant means.

8. Means and ergodicity

We take advantage of the results of §4 on strong amenability of amenable
groups to improve some of the results of the paper [10] on the relationships
between mean values and ergodicity. First we need some definitions:

If B is any Banach space, we let £(B) be the Banach algebra of all linear
operators from B into B. § is called an operator semigroup over B if § is a
subsemigroup of the multiplicative semigroup of £(B). A linear operator
A is an average of the subset 8 of £(B) if and only if for each b in B the point
Ab is in the closed convex hull of the set of Sb, s 8. A is a finite average of
8 if A is in the convex hull of §; that is, if there exists a finite mean ¢ on §
such that 4 = >_s¢(8)8S.

A bounded operator semigroup 8 is called weakly, strongly, or uniformly
ergodic under a net {A,} of averages of $ when for each S in §

lim, A.(8 — I) = 0 = lim, (S — 1A,
in the appropriate topology of £(B); that is,
(weak) B[A.(S — I)b] >0 and B[(S — 1)4,.b]—0
for each b in B and 8 in B¥,
(strong) || A.(S —Db||—0 and | (S — DA,b||—0
for each b in B, or
(uniform) || A.(S = I)|| =0 and | (S — D4.| —0;

respectively.

For an ergodic operator semigroup 8 over B, we define two closed linear
subspaces of B.

§ = (8) is the set of common fixed points of all the elements of §; that is,
b e if and only if Sb = b for all Sin 8.

UV = V(8) is the smallest closed linear subspace of B containing

{Sb — b|beBand Se8}.

For convenience, for each b in B we also set K(b) for the closed convex
hull of {Sb| S e8}.

Eberlein [13] has shown that if a semigroup § is strongly ergodic under a
net of averages {A,}, then the following conditions on an element b in B are
equivalent:

(a) The net {A,b} has a weak cluster point b in B.
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(b) There is a by in & such that b — by € V.

(¢) K(b) n & has in it exactly one point by .

(d) lim,A,b = bo.
From these and the rest of the ergodic theorem come other results (see Day
[9] and [10] for references); let & = &(8) be the vector sum of § and V;
& = {bo+ bllboeg, b1€”0}. Then

(e) U n F contains only the point 0.

(f) Pb = norm-lim, 4, b exists if and only if b ¢&.

(g) &is a closed linear subspace of B.

(h) P is the projection of & on F along U; that is, PPb = Pbifbe& Pb=1b
if and only if b ¢ ¥, Pb = 0 if and only if b € .

(i) PS = SP = Pforall Sin 8.

(3) P is a linear operator whose norm is not greater than lubs.g || S Il

We recall more definitions from Day [10]. A right [left] representation of a
semigroup Z over a Banach space B is a homomorphism p [antihomomorphism
A\] of = onto an operator semigroup over B; that is, for each o in Z, p, [A;] is
in £(B), and per = pepor [Aer = AorAs] for each o, ¢’ in Z. The right [left]
regular representation of T is the representation r [l] already defined over
m(Z) by (r.2)(¢") = z(d’c) [(I, )(¢’) = x(o¢’)] for all o, ¢’ in T and all z
in m(Z).

Hereafter we shall use p for a right representation, X for a left representa-
tion, and = for a representation which may be either right or left.

Attached to each bounded representation = of the semigroup, is a represen-
tation of the algebra [;(2) over B defined for each 6 in [,(Z) by

o = Zores 0(0")mor.

LemMA 1. Each representation  of the semigroup = determines a representa-
tion of the same kind of the semigroup algebra I,(Z) by the definition above; then
@) lml = (Qubs [l D e ll,

(1) wore = mo + m if 0 and o eL(2),
(iii) mep = cmy #f ¢ 73 a scalar,
(iv) pee = Popo, S0 pop = PsPp ONA  Ppr = Py o,
(V) Nop = Ao Mg, 80 Aoy = Mo Ae GNA Npr = As Ay .
For an example we give a proof of one such relation.
Pop = Zuz B‘P(U)Pa = Zoz:cwgab 0(0’1){0(0’2)1)0‘,2
= ZHMA‘E 0(0'1)90(0'2)P¢1Pvz
= (o1 0(01)p0,) (osez 2(02)00s) = popy -

In the paper [10] (essentially in Theorem 2 and Corollary 4) the following
properties of an absiract semigroup were proved equivalent:
(1) Z is an amenable semigroup.
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(2) There exists a net {o.} of finite means which converges weakly to in-
vartance.

(3) Every bounded (right or left) representation = of = over a Banach space B
is weakly ergodic under a net {r,,} of finite averages of the m, .

(4) The right and left regular representations, r and | of Z over m(Z) are
weakly ergodic under nets of finite averages, {r,,} and {l,,}.

In this section we show that these conditions are also equivalent to the
(formally stronger) conditions obtained from the last three by replacing weak
by norm convergence. The only cost is in the extra care required in con-
structing a new system of finite means from the original system of means which
is assured by (2).

TaeorEM 1. The following statements are equivalent to the conditions (1) to
(4), above:

(2s) Z is strongly amenable, under a net {o,} of finite means.

(3s) Every bounded right or left representation = of = over a space B is uni-
Sformly ergodic under a net {m,,} of finite averages of the =, .

(4s) The right and left reqular representations, r and 1, of Z over m(Z) are
uniformly ergodic under nets of finite averages, {r,.} and {l,}.

From §5, Theorem 1, we know that (2) implies (2s). For the next step,
if ® = {p,} is a net of finite means converging in norm to invariance, then
by Lemma 1, {m,,} is a net of finite averages of the =, such that

[ 7o o —=Ton | = || Tono—en | = [l 0n o — 0a | M,

where M is a bound for || =, ||. The other relations follow in the same way,
8o 7m(Z) is uniformly ergodic under the net {=,,}. (3s) clearly implies (4s),
and (4s) implies (4); this completes the proof of equivalence of these new
conditions with the earlier ones.

9. A theorem of G. G. Lorentz on almost convergence

We observed in Day [10] that Lorentz® [17] had proved that when 2 is the
semigroup of integers, certain conditions on an element x in m(Z) are equiva-
lent; in this section we state these conditions for amenable semigroups and
prove that they are still equivalent.

DeriniTioN 1. Let £ be an amenable semigroup. An element  of m(Z)
is called almost convergent if all invariant means on m(Z) coincide at z.

As in Day [10] let ® and £ be the operator semigroups 7(Z) and I(Z) in
L(m(Z)), and let ® = ®L = {RL|Re®, LeL}. It is observed in [10]
that ® and £ commute, so ® is also a semigroup. If = is the transposed
semigroup of =, then & is a homomorphic image of 2, so @ is a homomorphic

3 The referee has remarked that some of Lorentz’s results can be found in the lec-
tures of von Neumann on invariant measures, The Institute for Advanced Study, 1940
41.
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image of £ X ='. But ='is amenable along with 2, and the direct product
of two amenable semigroups is amenable, so @ is a representation of an
amenable semigroup, and all of the ergodic theorem of §8 applies. First,
@ is uniformly ergodic under some net of finite averages {w,} of the elements
of ®, and second, an element x of m(Z) is in the ergodic subspace & of @® if
and only if 72 = norm-lim, =, x exists.

Now & = F + U and 7 projects € on F along V. If uis an invariant mean
on m(Z), then

w(rz) = lim, u(r, ) = lim, u(z) = u(x).

But (®) = {ie |t real} (see [10]), so for each z in &, there is a ¢, such that
u(mx) = p(t, €) = &, ; hence for each = in &, u(x) is independent of the in-
variant mean u. Let uo be the linear functional defined in & by we(x) = ¢,
for each z in &.

For y in m(Z) define pi(y) by

Pi(y) = glb{ue(z)| = € 8(®) and = = y}.
(The notation ¢ = y means that x(s) = y(o) for all ¢ in Z.) Set

p2(y) = —pi(—y); then pu(y) = lub {uo(2) | 2 € &(®) and y = 2}.

For the special case in which Z is the set of positive integers, Lorentz [17]
proved that (1) and (3) below are equivalent; he also uses a function p defined
in a somewhat different way than our p; as an aid in his proof.

TavoreM 1. Let = be an amenable semigroup; then the following conditions
on an element x of m(Z) are equivalent:

(1) =z 7s almost convergent.

(2) pu(@) = pa(2).

(8) There exist finite averages of transforms of x under ® which are arbi-
trarily near some constant function.

(4) =z is in the ergodic subspace &.

That (4) implies (1) is proved in defining wo ; that (4) implies (2) is trivial,
for pi(x) = po(x) = po(x) if x €& Hence, if « does not satisfy (2), then
2 ¢8&. By the Hahn-Banach theorem, Banach [2] page 27, there exist at least
two extensions u; of o such that pi(y) = u(y) for all y, because for each value
of r with pi(x) = r = pa(x) there is an extension y, of uo such that u, is domi-
nated by p; and . (x) = 7.

But if u is any one such extension, u(x — Pz) = u(x — Pz) = 0 because
x — Px eV. Hence p is invariant under ®@; that is, u is both right and left
invariant.

Since # = || z |le which is an element of &, pi(z) < ||z ||, so [|[u] = L
Also u(e) = uoe) = 1, so uis a mean. Hence (1) fails for x if (2) does; that
is, (1) implies (2).

If (2) holds for x, take ¢ > 0, and take y, z in & such thaty = 2 = 2z and

w(y — 2) < e. Then by the ergodic theorem (§8) there is a finite average
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7, of elements of ® such that

7oy — m@e |l < e,
S0

Te2 S T2 S oy S (oY) + e

Then there is a 7y such that

“ my e 2 — po(m, 2)e “ <eg

but
po(my 2) = po(2),
80
(mo(y) — 2¢e)e = (mo(z) — €)e S mympz S mymex
S (uo(y) + mymee = (w(y) + €e.
Hence

| m mp 2 — mo(yle || < 2e.

This proves that (2) implies (3). (3) implies (4) is part of the ergodic theo-
rem quoted in §8.

10. Amenable subspaces of m(Z)

A subspace of m(Z) may behave better under translations than does the
full space; an extreme example is the subspace of constant functions on 2.
We shall assume throughout this section that X is an invariant linear closed
subspace of m(Z) such that e ¢ X. Occasionally it will be useful to have X
a sublattice, and for many results we also wish to have X iniroverted; this
means that for every z in X and £in X*, the function §; z, defined by £, z(0) =
£(l, x) forevery o in 2 (the function on = denoted by £ © x in §6), and the dual
function &, z, defined by &, z(¢) = £(r, x) for every ¢ in Z, are in X.

In §3 the definition of means can be copied in X, and 3(A), (B) proved as
before. Writing J for the injection map of X into m(Z), it is easy to see that
J* carries the set of means in m(Z)* onto the set of means in X*. 3(C), (D)
follow at once with J*Q replacing Q. Lemma 3.1 must be restated as:
If f maps = onto Z', if X and X' are in m(Z) and m(Z') respectively and such
that F(X') & X, and if M and M’ are the sets of means in X and X', then
F*(M) = M’'. To get isometry in Lemma 3.2 requires X to be a vector lat-
tice.

Paralleling §4 we define: X is amenable if there is a mean u in X* such that
u(ez) = u(x) = ull, z) forall zin X and ¢ in =. 4(A) need not hold unless
X is introverted (see discussion of §6). 4(B) requires X to be inverse-in-
variant. 4(C) becomes: f a homomorphism of Z onto =’ and X amenable in
m(Z) smply F(X) amenable in m(Z'). 4(D) suggests the true result: If X
is amenable, so is every invariant subspace of X. We skip 4(E) through (K)
except to remark that (F) has a parallel:
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Lemma 1. If {X.,} is an increasing net of amenable subspaces of m(Z), then
X, the closure of the union of the {X.,}, is amenable.

This and the existence of amenable subspaces allow us to use Zorn’s Lemma
to prove that every m(Z) has maximal amenable subspaces. It does not tell
whether there can be more than one such subspace. The formulas at the
end of the proof of Lemma 7.2 also allow us to prove

Lemma 2. If f maps £ homomorphically onto Z', if X' 1s contained in m(Z’),
and if X = F(X'), then X has in m(Z) the same ones of the following properties
as has X' in m(Z'): (a) Contains constant functions. (b) Right (left) invariant.
(c) Right (left) introverted. (d) Amenable. (e) Sublattice of m(--).

As an application of these lemmas, let G be a group, and let G, where s
runs over S, be the family of all amenable homomorphic images of G. For
each finite subset o of S, let Gy = I1... G., and let f, be defined from @ into
G, coordinatewise using the original homomorphisms f, mapping G onto G, .
Then each G, is amenable by 4(F), so the subgroup G, = f,(G) is also ame-
nable. Let X, = F, m(G,); then each X, hasall of the properties of Lemma 2.
If ¢ 2 o/, then X, 2 X, , so the sets X, are expanding with 0. By Lemmag
1 and 2, X, the closure of the union of the X, , is amenable; indeed, it can be
shown to have the other properties discussed in Lemma 2. Since the full
direct product I1..s G, need not be amenable, it is by no means sure that X
is itself determined by a homomorphism of G. If G is the free group on two
generators, the calculations at the end of §4 show that X is at least large
enough to separate points of G.

In §5 we make no use of introversion. If we modify Definition 5.1 to con-
sider means in X*, then 5(A), (B), (C) hold, and (C") must be modified by
using X-convergence of finite means in place of weak convergence: that is, we
use in };(Z) the topology that Bourbaki ([6], p. 50) calls ¢(l;(Z), X). The
corresponding relatively strong or Mackey topology, (li(Z), X) (see [6], p.
70), must then be used in the definition of strong amenability of X and in the
later lemmas. J*Q must replace @ in 5(D) and elsewhere. Then every-
thing goes swimmingly through the main theorem of §5.

In §6 we must assume that X is left introverted as this returns £ © z to
X where 9(¢ © z) can be computed for y in X*. J*Q replaces @ in Lemma 2
and Corollary 3, and the latter requires that X be a lattice; the rest down to
Corollary 6.6 holds as before, with m(Z) replaced by an introverted X.

We have already had use for the extension of Lemma 7.2. The rest of
Theorem 7.1 extends if X is an amenable subspace containing F(X'), X' &
m(2’). Theorem 7.2 is yet unadapted to this situation.

For §8 we concentrate our attention on X-representations; that is, represen-
tations = of = over B such that for each 8 in B* and b in B the function 8, b,
defined by B:b(¢) = B(m b) for all ¢ in Z, is in X. Clearly the right and
left regular representations of T over X are X-representations if and only of X
is tntroverted. The conditions (1)—(4) of §8 can be rephrased as:
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(X1) X is an amenable subspace of m(Z).

(X2) There exists a net {pn} of finite means X-convergent to invariance tn
L(Z).

(X3) Every bounded (right or left) X-representation w is weakly ergodic under
a net {m,,} of finite averages of the m, .

(X4s) The right and left regular representations of Z over X are weakly ergodic
under the nets {r,,} and {l,,} respectively.

The theorem quoted from Day [10] becomes now: (X4) tmplies (X,) tmplies
(X,) tmplies (X3); if X is introverted, (X;) implies (X,). The proofs go as in
[10]: see also Rosen [19] for the case where X is the space of continuous func-
tions on a topological semigroup.

Theorem 8.1 goes with the strong topology on £(B) replacing the uniform
topology and with the Mackey topology in [;(£). This is a consequence of
two facts for each b in B: (a) If a net {8,} in the unit sphere U of B* is w*-
convergent to 8, then in m(Z), Bnr b is w*-convergent to 8, b. (b) U is w*-
compact, so its image in X is w*-compact and therefore determines a
r-neighborhood of 0 in [,(Z).

§9 goes through, with m(Z) replaced by an amenable, introverted subspace
X, though the proof looks back a little farther than does §9 into the proof
of the ergodic theorem in [10] and [13] to get the appropriate information
about ®, the product of 7(£) and I(Z). Applying this to the discussion of
of §7 gives: If X is an.amenable introverted subspace of m(Z), then there is just
one tmwariant mean in X* if and only if the ergodic subspace of the corresponding
® s all of X.

Theorem 8 and Corollary 11 of Day [10] and the similar theorem of Dixmier
[4] for topological semigroups have the following common generalization:
Let G be a group and let X be an amenable subspace of m(G); then every bounded
X-representation of G over o Hilbert space H is equivalent to a unitary representa-
tion.

11. Topological semigroups

In case there is a topology in 2 in which multiplication is continuous, a
natural choice for X is the space C(Z) of continuous real-valued functions on
2. (C(2) is a lattice, is invariant, and contains e, but it is not always intro-
verted or amenable.

DerintrioNn 1. A topological semigroup is called WCR (for weakly con-
tinuously representable) if the regular representations over C(Z) are C(Z)-
representations.

This happens if and only if C(Z) is introverted, and if and only if £ z and
£, x are continuous for every x in C(Z) and £ in C(Z)*. As Rosen [19] points
out, discrete semigroups and compact semigroups are WCR; it is easily seen
that the additive group of real numbers is not WCR. Looking back now
through §10, we find Rosen’s result that in a WCR semigroup, C(Z) is amena-
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ble if and only if all of the bounded weakly continuous representations of =
are weakly ergodic, and if and only if the regular representations over C(Z)
are weakly ergodic. Also Lorentz’s theorem carries over to an amenable,
introverted C(Z). Rosen [19] also observes that if there is an invariant mean
only on the space of uniformly continuous functions on a group @, then
Eberlein’s results [13] on weak almost periodicity carry over almost intact
to the continuous wap functions on G.
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