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1. Introduction

A. H. Clifford [2] has studied the representations of a class of semigroups.
His results lead to a complete classification of the representations of a par-
ticular class of semigroups having considerable independent interest. These
semigroups are the semigroups defined as follows.

Consider a finite set consisting of say n elements; for the sake of definite-
hess we may consider the set l, 2, n}. Let 3; be the set of all single-
valued mappings of this set onto or into itself. For f, g e n let fg be the
element of such that fg(i) f(g(i)) (i 1, n). With this definition
of multiplication, n is obviously an associative system, i.e., a semigroup.
The order of 3:n is nn; 3: contains the symmetric group , properly if
n > 1; 3; is noncommutative if n > 1.
By the term (a,/) matrix, we shall mean a matrix with a rows.and/ col-

umns and complex entries. A representation of a semigroup G is a homo-
morphism M of G into the multiplicative semigroup of all (a, a) matrices
(a an arbitrary positive integer) such that M(x) 0 for some x e G. If the
set {M(x)}x is an irreducible set of matrices (i.e., if every (a, a) matrix is
a linear combination of matrices M(x)), then M is said to be an irreducible
representation of G. The identity representation is the mapping that carries
every x e G into the identity matrix.

In the present paper we give an explicit determination of all irreducible
representations of n The idea of studying was suggested to us by D. D.
Miller (oral communication). The problem of obtaining representations of
semigroups as distinct from groups seems to have been first studied by Suke-
vi5 [6]. A.H. Clifford [2] has, as noted above, given a construction of all
representations of a class of semigroups closely connected with . Poni-
zovskii: [5] has pointed out some simple properties of n. In the present
paper we also relate the irreducible representations of , to the semigroup
algebra 2(3) (notation as in [3]).

2. Definitions

Letfbe an element of 3;. Then f splits the set {1, 2,..., n} into a
number, p, of nonvoid, disjoint subsets, each of the form lx:f(x) a} for
some a in the range of f. Obviously f is determined by these sets and the
corresponding a’s. We will set down a unique notation for the elements
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of n. For a nonvoid subset s of {1, 2, n}, let s* be the least element
of s. Now write the sets {x:f(x) a} in the order sl, s2, sp, where

* * ( ), mean-s’ , s. < < s. We can representf by the symbol s s2 sp
al a2 ap

ing by this that every element of s is mapped by f into a (i 1, 2, p).
It is easy to see that every element f of occurs once and only once among

the(S1 s..., s,)a a2 a ’where 1 -< p _<_ n, the sets sl, s, are a decomposition

of {1, 2, n} of the kind described, and a, a2, a, are any distinct
integers lying between 1 and n. From now on, the expression s, s., s
will always mean a decomposition of l, 2,..., n} into nonvoid, disjoint
subsets with s* < s. < < s. The letters and w will be used similarly.
Also a, a, a will always mean any ordered sequence of distinct inte-
gers from 1 to n; the letters c and d will be used similarly
For p 1, 2, n, let p be the set of all elements of whose range

cntains just p elements" that is’ all (sl s2ala S)ap forafixedp. Strictly

speaking, p depends upon n as well as p. However, only one value of n
will be treated at any one time, unless otherwise specified. The set is
obviously the symmetric group n. The set is a semigroup with the
trivial multiplication fg f. No other !, is a subsemigroup of n. It
will be convenient to have the semigroup p u {z}, where multiplication is
defined by

zz fz zf z forall fe,

fg as in : if fg
fg z if fg non e .
3. Preliminary theorems

We make a first reduction of our problem by showing that irreducible
representations of must behave in certain special ways.

3.1. THEOREM. The two-sided ideals of are exactly the sets

(p 1, 2, n).

Proof. Let ( be a two-sided ideal in , that is, :, u C:: , and
0 . Let p be the largest integer such that l n , 0, andlet

f =(Saas... S)a be in . Let (tcct...tq)cq be any elemen of with

q p. Let w, w,..., wq be the sets {a}, {a},..., {aq_,
[a, a,... aq_}’ ( denotes complement in {1, 2, n}), ordered as pre-
scribed in 2. Finally, let d (i 1, 2, q) be defined as c, where j is
such that ai e w. Then we have

c c cq d d d, a a a/ks s* s
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(Recall that the product fg of transformations f and g is the transformation
obtained by carrying out g and then f.) Conversely, it is clear that every set
tJ = is a two-sided ideal in .

3.2 THEOREM. Let M be an irreducible representation of ,. The set

f:f ,, M(f) 0 is either void or one of the sets

tJ=. (p 1, n 1).

Proof. If the set If:f , M(f) 01 is ot void, then clearly it is a two-
sided ideal in :. The result now follows from Theorem 3.1.

3.3 THEOREM. Let M be an irreducible representation of n, and let p be
the least integer such that M(f) 0 for some f ,. Then the set of matrices
M(f) is irreducible.

Proof. Let m be the degree of M. Since M is irreducible, the set of all
matrices sn axM(f) (the a are arbitrary complex numbers) is the algebra
of all (m, m) matrices. Since [Jl " is a two-sided ideal in , the set A
of all matrices ’ c]M(f), summed over all f in [J=l ., is a. two-sided ideal
in the algebra of all (m, m) matrices. Since M(f) is different from 0 for some
f e p, A is not the zero ideal. Since the algebra of all (m, m) matrices is
simple, A is the algebra of all (m, m) matrices, and this proves the theorem.

3.4 LEMMA. Let q be an integer such that 2 -< q <-_ n 1, and let g be any
element of q-1. Then there are elements f and h in such that hf g.

Proof. Let the rnge of g be /al, aq_}, so written that g-(a_)
contains more than one element" g-(a,_l) b} s, where s 0 nd b
nones. Letf be defined by

j if x e g-(a), <= j <= q 2,
f(x) q- lifx b,

q ifxes.
Let h be defined by

if1 _<x__< q-- 1,
h(x) a_ if x q,

c ifq+l <=x <=n,
where c is different from a ...,a_land] -< c_-< n. Theng hr.

3.5 THEOREM. Let M’ be an irreducible representation of the semigroup
p {z} (1 <= p < n) that is not the identity representation. Then there is one
and only one representation M of , such that M(f) M’(f) .for f 2. Fur-
thermore, M(g) 0 for g e UZ).

Proof. Suppose that M is such a representation, if g e _1, then, by
Lemma 3.4, g hf, where h, f e. Hence

M(g) M(h)M(f) M’(h)M’(f) M’(hf) M’(z) O,
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since it is clear that M’(z) must be 0. Repeated applications of Lemma 3.4
show that M(g) 0 for all g e U__- !3.

Since M is irreducible and M’(z) 0, there is a linear combination
_,], asM’(f) equal to the identity matrix I. Let g be any element of .
Then fg e U= if f e and M(g) IM(g) s% sM(fg). Since we
have just shown that M is completely determined by M’ on U= M, it follows
that M is unique if it exists at all.
We now show that there is an M of the kind required. Let M(f)

M’(f) for f e and M(f) 0 for f e Uj s. Obviously M is a repre-
sentation of the semigroup U=. Choose fixed linear combination

s asM"(f) that is equal to I. Now let M(g) s asi’(fg), for
all ge. Since fgeU=sfor fe and ge, M(g) is well defined.
To show that M is a representation of ., we need to know thut

3.5.1 M(g) % i"" e

To prove this, take e in . Then

,, azM" if)M" (ge) IM"(ge) M"(ge).

From this it follows that % aM(g)M"(e) %aM’(ge). Since
em, eM"(e) I, we have 3.5.1.
Now let g, h be any elements of ,. Using 3.5.1, we have

M(g)M(h) s asM"(fg) aM"(he)

 i"(foh) (e)

i(eh).

Hence M is a representation of ,. Finally, if g e, then

M(g) a]i"(fg) %,i"(f)i"(g) Ii’(g) i’(g).

This completes the proof.
The next theorem is not strictly necessary but may be of some interest.

3.6 TnEOnEM. Let M be any representation of , and let f, g be in ,
1 p n. Then rankM(f) rankM(g).

Proof. We may suppose without loss of generality that M() is non-
singular for e,. Let {a, a:,..-, a} be the range of f, and let
{ui, uz,..-, u} be elements of {1, 2,.-., n} such that f(u)
a (i 1, 2,..-, p). Let {av+,..., a,} be {a, a,-.., av}’, and simi-
larly {u,+a,.-., u,} {u, u:,.-., u}’. Let be the element of ,
such that (i) u. (i 1, 2, n) and the element of , such that
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b(ai) i (i 1, 2,..., n). Let f’ bf*,. Then

iifl <_i<=p,
f’(i) j, forsomej(i), 1 <=j <__ p, if p + 1 =< i N n.

We define a g for the element g in the same way. The equalities f’’ ’,
gf’ f’ are easy to verify. I-Ienee rank M(g’) =< rank M(") and rank M(f’)
=< rank M(’), and so we have rank M(f’) rank M(g’). The matrices
21//(,,) and M(g,) are nonsingular, since *, and are in the symmetric group
3. Therefore rank M(f) rank M(f’) and rank M() rank M(’).
This completes the proof.

.6.1 Noe. Theorem a.6, Lemma g.4, and Theorem g.5 show that if M is
any representation of 5g, as in g.5, then all matrices M(f) are singular for
’e3, (1 < p < n).
We now summarize the results of this section.

3.7 THEOREM. Let M be an irreducible representation of .. Then there is a
(1 -_< p _< n) such that M(f) 0 for all f e U j (U5=1 is void) and

M(f) 0 for some f e The matrices {M(f)}sp are an irreducible set, and
all have the same nonzero rants. If 1 < p < n, all M(f) for f e are singular.
Setting M(z) O, we obtain from M an irreducible representation of , u {z}.
Conversely, every irreducible representation of u {z} that is not the identity
representation determines a unique irreducible representation of .,, that is 0
on U

3.8 The semigroups u z} are completely simple, and Clifford [2] has
given a general method for obtaining the representations of such semigroups.
Since we wish to write the irreducible representations of u {z} s explicitly
as possible, it seems advisable to write out all of the details.

4. Necessary conditions for an irreducible representation of u {z}
Throughout this section, n and p are arbitrary but fixed. For general

n nd p, is complicated object. To render it tractable, we consider
elements of two special kinds.

4.1 DEFINTION. Let

u(al a, ..., a) [ {p 1/

a a2

and let

Thus u(a a

{p,p-F 1, ,n/,
/a

a a2 a,, and v(s, s2,
on the sets s, s2, s.

2

a) is n element of that depends only on the numbers
s) is an element of , that depends only
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4.2 We now have:

4.2.1 u(al a2 a,)v(sl s2 sv) (s
4.2.2 u(al, a2, ..., ap)u(1, 2, ..., p) u(al, a., ..., a;);

4.2.3 u(1, 2, p) u(1, 2, p);

4.2.4 u(1, 2, p)v(sl s2, s) v(sl s., s,);

u(1, 2,..-, p) if s* p,
4.2.5 V(Sl,S,...,s,)u(1,2,...,p) .z ifsp > p.

Equalities 4.2.1-4.2.5 can be checked directly from 4.1.
4.3 We now suppose that we are given a fixed but arbitrary representation
M of ! u {z}. Irreducibility will not be assumed until needed. The repre-
sentation M may have many equivalent forms. Since u(1, 2,..., p) is
idempotent (4.2.3), M(u(1, 2, p)) is an idempotent matrix, and hence
can be put into the form

Without loss of generality, we may suppose that M((1, 2,..., p)) has
ghis form. Let/ be ghe degree of he identity matrix I in 4.a.1, and let
be such ha he matrix 4.3.1 has degree/ -t-- 1. We now write

(A (al a ap) B(a a a))4.3.2 M(u(al a, a,))
\C(a a2, a) D(a a, a,)

where A is a (]c,/) matrix, B is a (/c, l) matrix, C is an (1,/) matrix, and D is an
(1, l)matrix. From 4.2.2, we see that M(u(a ,... a,))M(u(1, 2, p))
M(u(a, a)). Since

it follows that B(al a) 0 and D(a a) O. We next write

(A (s s,) B(s
4.3.3 M(v(sl,... s))=

\C(s,... s) D(s, s)]’
From 4.2.4, we
Equality 4.2.5

where the sizes of the blocks in 4.3.3 are just as in 4.3.2.
find that C(s, s) 0 and that D(sl, s,) O.
shows that

4.3.4 A (sl .... s,) 4.’ I,
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4.5.1 u(al

This is easy to verify.

4.5.2 C(a(1)

and equivalently

where 88;.T is the Kronecker 8-function. From 4.3.1, we see that

4.3.5. C(1,2,..-,p) 0, B({1}, 12}, "", {p- 1}, {p, ...,n}) 0.

4.4 If and are 1-to-1 mappings of the set {1, ..., p} onto itself
(i.e., elements of (R)T), then 4.1 implies that

4.4. u((), ..., (p))u((1), ..., (p)) u(((1)), ..., ((p))).

Then, as in 4.3, we see that

4.4.2 A(g(1), ..., (p))A(k(1), ..., k(p)) A((k(1)), .-., ((p))).

Thus the matrices A(al,..., a,) for which {a, ...,
produce a representation of
For a positive integer a, let a’= rain (a, p). Then, for 1 -< a -< n,

u(1, p) carries a into a’. From this it is easy to see that

a) if al a
4.4.3 u(1, p)u(al, aT) are all different,

z otherwise.

In the usual way, 4.4.3 implies that

f4.4.4 A( aT) A(a’I a’T) if al are all different,
0 ogherwise.

The matrices A (el, eT) were defined in 4.a.2 only for sequences
wigh no repegitions. We now define A(el, %) as 0 if e e. for some
disineg i and j. Wigh ghis convention, 4.4A becomes

4.4.5 A(a, a,) A(a’l, a,),

and 4.4.2 can be extended to

4.4.6 A (a aT)A (c c,) A (a:l a:’).
4.5 We now discuss the matrices C(a, aT) defined in 4.3.2. If is

a 1-to-1 mapping of /1,--’, p} onto itself, then

aT)u((1), ..., (p)) u(a,(),... ,a,(p)).

Our usual steps give us

a,(T) C(al, aT)A((1), (p))

4.5.3 C(a aT) C(a,(l) ,a,(,,) )A(-I(1), ..., -(p)).

For each ordered sequence a al, a., aT, we define the i’unction p,,(i)
(i 1, 2,--., p)so that apa() < apo() < < a(T). Since the a are
11 distinct, we can do this. Plainly p is uniquely defined. Now we hve

4.5.4 C(a, ..., aT) C(a,(),... ,a(T) )A(p(1), p-(p)),
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which follows immediately from 4.5.3. Thus, if the representation
A(e(1), e(p)) of (R)p is known, and if C(al, a,) is known for mono-
tonically increasing al, ap, the matrices C(al, a) are known for
all al, ap.

4.6 We now discuss the matrices B(sl,..., s,) defined in 4.3.3.
every family of sets s sl, s2, s, we define the function

For

8(i) (i 1, 2, n)

so that i e so(). The equality

u((al),..-, z(av))if all z(ai)
4.6.1 v(sl, ..., sv)u(al, .-., av) are different,

z otherwise,

is not hard to verify. Forl =< bl < b2 < <bp_-< n, 4.6.1and our usual
steps give us

.B(sl, sp)C(bl b)
4.6.2

-i.A(b’l,..., b,) --k A((r(bl),..., a(b)).

The condition that the sequence bl, b be monotonic increusing is not
required in 4.6.2. However this special case of 4.6.2 is all that will be needed.
We agree that bl, b will always mean a monotone strictly increasing
sequence of integers lying between 1 and n.

4.7 Combining formulas 4.2.1, 4.3.2, 4.3.3, 4.3.4, 4.4.5, and 4.5.4, one can

a)B(s,

-1
p (p))B(s,

obtuin the equulity

4.7.1 M(sial 82a a

|;. C(al), aa())A(p71(1), p(p))

C(a(1) a,a(,))A (pl(1),

4.8 Suppose now that M is an irreducible representation of /z}. Since
every (] -t- l,/ - l) matrix is in this case a linear combination of matrices
4.7.1, the form of 4.7.1 and 4.4.2 show that matrices A(al, ..., a,), where
{a,’ a}’ {1, 2, p}, produce an irreducible representation of .

5. Sufficient conditions for a representation
In this section, we will show that conditions 4.4.6, 4.6.2, and 4.3.5 are

sufficient for the mapping defined by 4.7.1, along with M(z) O, to be a
representation of u lz}.

5.1 We suppose that we have (/,/) matrices A (c, cp) defined for all
integers c1, % between 1 and p. We suppose that we have (/c, l) matrices
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B(st,..., sp) defined for all sl, sp. We suppose that we have (/, k)
matrices C(b, bp) defined for ll monotone strictly increasing sequences
b, b of integers between 1 nd n. We will show that the mpping
M of {z} defined by

5.1.1 M(slat Sa a
;.,A(a’ ..., a,) A(a a,)B(s,

s;,pC(aa(D, a(p))A(pa (1), Pa (P))

C(apa(1) a())A(p (1), p(p))B(s s)/
M(z) O,

is representation of u {z} provided that the following conditions re
stisfied. If and re 1-to-1 mppings of {1, 2, p} onto itseff, then

5.1.2 A((1), ..., (p))A((1), ..., (p)) A(((1)), ..., ((p)));

A is not identically zero; nd if there re ny repetitions among the numbers
c,.--,cp,then

5.1.3 A(o, %) 0.

From 5.1.2 nd 5.1.3, one cn easily infer the equMity

5.1.4 A (e e)A( f,) A (ez ez ez),
which is vlid for ll allowable vMues of o, e nd f, f.
For s, s nd b, b, let the mtrix function be defined by

5.1.5 7, . -.A(D’, ..., b’) + A(z(D), z(b)).

Then the mtrices B nd C re to stisfy the condition

" Sp5.1.6 B(s s)C(b ,..., b) ,. ,
for M1 s, s nd b, b, as well as

5..7 c(, 2, ..., p) 0

nd

5..8 B({1}, {}, ..., {p- }, {p,-..,n}) 0.

The sufficiency proof that we wish to give will be simplified by being broken
up into series of steps.

5.2 LEMMA. Let a, ..., a and s,..., s be given. Let b
where Pa i8 defined as in 4.5 (i 1, 2, p). Let be as in 4.6. Tn

;.A(a a) + A(p(1),
5.2.1

A((a), (a)).
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Proof. Multiply both sides of 5.1.5 on the right by A (pl(1), p’(p))
and apply 5.1.4.

5.3 LEMMA. Let al a cl c and sl s be given. Sup-
pose that the numbers a,(ai) are all distinct. Write d Co(a,) (i 1, 2, p).
Then we have

5.3.1 dp(i) cpc) (i 1, .-., p)

and

5.3.2

Proof.
equality

pl(qs(ai))-- p(i) (i 1,..., p).

Equality 5.3.1 follows from the definitions of d and p. The

5.3.3 pc(i) a,(ap())

follows at once from 5.3.1 and the definition of d. Equality 5.3.2 becomes
obvious upon replacing i by p(i) in 5.3.3.

5.4 First step. From 5.1.1, and using 5.1.7, 5.1.8, and 5.1.2, we find that

(p))

Multiply the two mutrices on the right side of 5.4.1; apply 5.1.6; then apply
5.2.1. This gives

(: ’:) (M M
/1} "-{p 1}

al ap_l

{P’ ""a
[A((a) (a))

0

5.5 Second step. As in 5.4, it follows from 5.1.1 that

( A(c’,... c’) -C(cp, c(,))A(p’[(1), ..., p, (p))
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Multiply both sides of 5.5.1 on the right by

M({1} {p- 1}

\ ai ap_l

use 5.4.2, multiply the resulting matrices, and use 5.1.4. This yields

Ci cp/ ai an-1

A (Crs(al) Crs(ap))
--1C(c,o(1) c,o(,,))A(p-i(as(ai)), pc

If there are any repetitions among the o(ai), then the right side of 5.5.2 is
zero. If not, we can apply Lemma 5.3 and find, in the notation of Lemma
5.3, that

el""" Cp al a,_i a,

C(dpd(1) dpd(,))A (p-1(1), "-’, p2’(p))
if the a,(a) are all distinct,

0 otherwise.

It is easy to see that

(81Cl CpSP)({l’al {p --1}{P,ap_l "’’ap ,t})
({1}--. [p--1}{p,--.,n} if thea,(a)are all distinct,
\ di d_i d !
[ z otherwise.

Equalities 5.5.3 and 5.5.4, together with 5.1.1 and 5.1.8, show that

s ll} /P-- 1}{p,.-. n}
M M

cl c a ap-i ap

s, {1}-.-{p-- ll{P,"" n}
M

el c a ap_i
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5.6 Third step.
that

From 5.1.1 and direct multiplication of matrices, we find

al a C(apa(1) apa())A (pT(1), pl(p)
B(t

0 0

The first matrix on the right side of 5.6.1 is clearly equal to

M( {1}al {p--1}{P,a_ ""a’n})"
We therefore have

cl cp al ap

Formula 5.5.3 now shows that the right side of 5.6.2 is equal to

(d’ d’,) A (d’ d’,)B(t
--15.6.3 lt;,C(dp(), dp())A(pl(1), o (P)) -C(d(1) d())A (p-(1), o (p))B(t

if all the as(a) are distinct and is zero otherwise. We also have

/
t td

c c al a
d

z otherwise.

Formula 5.1.1 shows that 5.6.3 is equal to

Therefore 5.6.4 and 5.6.2 imply that M is a representation of !8 u {z}.
We now summarize the results of this section.

if all as(a) are distinct,
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5.7 THEOREM. Let A, B, C be matrix functions as described in 5.1 that
satisfy conditions 5.1.2, 5.1.3, 5.1.6, 5.1.7, and 5.1.8. Then the mapping M
defined in 5.1.1 is a representation of p u z}.

6. Construction of certain representations
In this section, we will exhibit a class of representations of p u {z}. These

representations are in general reducible. They will be used in 7 to find all
of the irreducible representations of p u /z}. Throughout this section, we
suppose that we have a matrix function A satisfying the conditions of Theo-
rem 5.7. We will obtain matrix functions B and C satisfying the conditions
of Theorem 5.7.

6.1 In order to write condition 5.1.6 in compact form, it is convenient to
order all of the sequences bl, b and all of the families of sets st, sp.
Let there be u 1 families of sets st, s and v - 1 sequences bt, b.
Let {1}, {2}, {p 1}, /P, n} correspond to the index 0, and order
all remaining st, s in any way at all in a sequence with indices from 1
to u. WriteBi B(st, ..., s) if st,..-, s, has indexj (0 -<_ j =< u).
Similarly, let the sequence 1, p correspond to the index 0, and order all
remaining sequences bl, b in any way at all in a sequence with indices
fromltov. WriteC= C(bt, ...,bp) ifbt,...,bhasindexi(O_-< i_-< v).
Finally, write , for "’"’b...b, if sl,..., s,hasindexj and b_,.., bphas
index i (0 =< j _-< u, 0 _-< i <_- v). Condition 5.1.6 in this notation is

6.1.1 BCi =, (0 =<j =< u, 0 =< i =< v).

6.2 We first prove

6.2.1. ,g 0, 0 (0 =<j_-< u, 0 -< i =< v).

If j 0, then clearly z (b) b[ (1 <- h <= p). Formula 5.1.5 shows at once
h!

,
thatT 0. Ifi 0, thenb b h(1 < h < p). Then ifs p,
it isclearthas h(1 -<_ h < p), and hence (b) h(1 <_- h =< p). It is
clear from 5.1.5 tht 0in this case. If s* p, thenti4., 0 and
A(z(bl), z(b)) 0 because there is necessarily repetition mong
the numbers z,(b), -.., z,(b,).

6.3 We now define B0 0 and Co 0. (This choice is of course dictated
by 5.1.8 and 5.1.7.) Equalities 6.2.1 show that condition 6.1.1 is satisfied
ifi 0 orj 0. The matricesB,..-, B and C,-.., C are now to
satisfy the condition

BC B
6.3.1

We writ F for the matrix on the right side of 6.3.1. It is a (ku, k,) matrix.
6.4 Let r be the rank of I. Let a nd be any positive integers greater
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than or equal to r.
matrix

(Note that r is positive.) Let J(a, fl) be the (a, fl)

1 0 0
0

6A.1
0 lrr)

0

having l’s in the first r places of the main diagonal and 0’s elsewhere. We
write J(lcu, tcv) as J, J(lu, r) as J1, and J(r, lv) as J2. Obviously

6.4.2 J J1 J2

It is a familiar fact that there exist a nonsingular (lu, ku) matrix P and a
nonsingular (kv,/v) matrix Q such that

6.4.3 PrQ J.

If we define the (/, r) matrices B. by

B1
B26.4.4 P-JI

and the (r, k) matrices C by

we see that

B
B6.4.6 (CC:... Cv)-- p-jjQ-l__ p-ijQ-._ F.

Condition 6.3.1 is then obviously satisfied. By Theorem 15.7, we have ob-
tained a representation of 3 u/z} for which r.

6.15 For use in 7, we need two facts. Let Y be an arbitrary (/, r) matrix.
Then there are (/, /) matrices M, M such that Y -’. MB.
To see this, we note that

B1
B26.5.1 YJ(r, lcu)P Y,

and that the left side of 6.5.1 has the form .= MjB. Similarly, let Z
be an arbitrary (r,/c) matrix. Then we have

6.5.2 (C C. Cv)QJ(kv, r)Z Z,
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and it follows that every (r, t) matrix can be written in the form :’=1 CiNi,
where the Ni are (/,/0) matrices.

7. The irreducible representations

Condition 5.1.2 implies that the matrices A appearing in 5.1.1 yield a
representation of (R)p. We will establish in this section a 1-to-1 correspond-
ence between the irreducible representations of , and those representations
5.1.1 of p u Iz} that are irreducible.

7.1 A glance at 5.1.1 shows that if the representation M of p u {z} is
irreducible, then the representation A of , must be irreducible. Con-
versely, suppose that A is an irreducible representation of ,. From 5.1.1,
we hve

1 p-1 p

If X is any (, ) magfix, ghen X can be wrigen as a linear eombinagion

(,,..., A(a, ). Then

7.1.2 (: :)fl(a.....a)M({1} {P--1}{p,-..,}) (: :)a ap_ ap

Since M is representation, the left side of 7.1.2 is linear combination of
mtrices 5.1.1.

Next, consider n rbitmry b, b, nd let be 1-to-1 mpping of
[1, p} onto itself. Then 5.1.1 shows that

M({1} {p 1}p, ,n})b() b(,_ b()
7.1.3

C(b b,)A ((1), ,(p))

where H is some (/c, k) matrix. Since A is irreducible, we can, for every
(/, lc) matrix N, find a linear combination of matrices 7.1.3 that has the form

C(bl b)N

Then 6.5 shows that for an arbitrary (r, to) matrix Z, there is a linear combina-
tion of matrices 5.1.1 that has the form
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Next consider an arbitrary s, s,, and let be as above.
and 5.1.7 show that

Then 5.1.1

7.1.6 M/sl(1) (P)SV)/H"= A((1), ...,(p))B(sl,...,sV))O
As before, we apply 6.5 and see that, for an arbitrary (l, r) matrix Y, there
is a linear combination of matrices 5.1.1 having the form

From 7.1.2, 7.1., and 7.1.7, i is clear hag linear eombinagions of ghe matrices
5.1.1 give arbigrary matrices

(:
Leg Ni(, ) be an (, ) magrix wigh 1 in he i row and j column and

O’s elsewhere. hen

7.1.9
E(r, k) 0 Ei(r, r)

From 7.1.8, 7.1.9, and the fact that M is representation, we now see that
M is irreducible.

7.2 We next show that equivalent irreducible representations of , pro-
duce equivalent representations of {z}. If A and are equivalent irre-
ducible representations of by (, ) matrices, then there is nonsingular
(, ) matrix R such that ((1), (p)) RA((1), (p))R- for
all as in 5.1.2. Let M and M be the irreducible representations of , {z}
obtained from A and respectively by applying 5.1.1 and 5.1.3. Writing

A for the entry in the i row and j column of A, and similarly for , M,
and M, we now have

for all 1-to-1 mappings of {1, p} onto itself.
that

Condition 5.1.3 shows

for all integers c, % lying between 1 and p.
that

Now 5.1.1 and 7.2.2 show
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Also

ll(Z) 0 __,j TijMij(Z).

Consequently the function Mll is a linear combination of the functions
Mij (1 _-< i -< lc, 1 _-< j =< l). Theorem 5.18 of [3] implies that the repre-
sentations M and M are equivalent.

7.3 We will now show that inequivalent irreducible representations of p
produce inequivalent representations of , u /z}. Suppose that A and fi_
are irreducible representations of p by (k,/) and (], ) matrices, respectively,
and that M and M are the corresponding representations of ! u {z} ob-
tained by 5.1.3 and 5.1.1. We may obviously suppose that/ >= k. Let I,
denote the (s, s) identity matrix (s 1, 2, 3,... ). Now suppose that M
and M are equivalent. There exist (k -[- r,/c -t- r) matrices

(written in (k, k), (k, r), (r, lc) and (r, r) blocks) that are inverses of each
other and have the property that

for all

Putting

(Sls,)=aa
in 7.3.1, and using 5.1.1, we have

We also have

V’ al a

SS’ I
From 7.3.2, we have

7.3.4

Hence

:)(:,

US’ O,

Ik+r.

7.3.5 U 0, T’ O.
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From 7.3.5 and 7.3.3, we infer in turn

7.3.6 VV’ I,., U 0, T 0.

The left side of 7.3.2 is therefore equal to

and this implies that ]c ]. Let e be a 1-to-1 mapping of /1, p} onto
itself. Consider 7.3.1 forsl,...,s {1},-.., {p- 1}, P,"’,n} and
al,...,a- e(1),...,e(p). We obtain

(J (*( ), m(P))00)
so that

SA((1), ..-, (p))S-1 fi((1),-.., (p)).

Hence the representation A of (R)p is equivalent to the representation fi of (R).
We have therefore proved the following.

7.4 THEOREM:. Let the representation A of , as described in 5.1.2, run
through a complete set of inequivalent irreducible representations of . The
corresponding representations M of u z} defined by 5.1.3 and 5.1.1 are all
irreducible and inequivalent. Furthermore, every irreducible representation of

u z} is obtained in this way.

7.5 Theorems 7.4 and 3.7 show that we have a method for obtaining all
irreducible representations of . To write down any of these representa-
tions, begin with an irreducible representation of . These representa-
tions are well known, and a method for their construction can be found, for
example, in Ch. IV of [1]. The construction in 6 gives the matrices B
and C.. Formula 5.1.1 gives the associated irreducible representation of

u z}. Theorem 3.5 shows how to extend this representation over all of
A numerical example is given in 8.6.

8. Special results

We here give the special forms of the irreducible representations of that
correspond to certain special values of p and A. We also work out some
numerical examples.

8.1 The case p 1. The semigroup !1 has the simple multiplication rule
fg f. The only irreducible representation of 1 is the 1-dimensional iden-
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tity representation. By Theorem 3.5, the only irreducible representation of
not zero on 31 is the 1-dimensional identity representation. This also

fits into the general theory of 5-7, since u + 1 1 if p 1, and the matrix
F does not appear at all. Note also that z is an adjoined zero in the semi-
group 31 u lz}.

8.2 The case p n. It is clear that an irreducible representation of
that is zero on [J .=1 3j must be an irreducible representation on the group
3 . Conversely, every irreducible representation of 3n can be ex-
tended to an irreducible representation of 3:, by being defined as 0 on U -_-1 3j.
Thus we know all irreducible representations of c that vanish on U
in terms of the irreducible representations of the symmetric group 3. This
fits into the general theory of 5-7: for p n, we have u -t- 1 v -t- 1 1,
and the matrix F does not appear.

8.3 The case in which A is the identity. If the representation A of ap-
pearing in 5.1.2 is the 1-dimensional identity representation, then the cor-
responding irreducible representation of can be written in a simple form.
Suppose that 1 < p < n. Consider the semigroup algebra 2(3p u lz}) as
defined in [3]. We may think of 21(3, u {z}) as consisting of all formal
complex linear combinations a:f, the sum being taken over all
f 3 u {z }, with (_.: aft) (g gg) _,:, a:fg. For every sequence
bl, b (recall that 1 <= bl < < bp -<_ n), let Fb...b, be the element

8.3.1 F,, ,, ,%({1} {2} ..-{p-l} {p,...,n}) p!z.
\b() b() b(,_) b,)

F... are linearly independent, and span an (:)-dimensionalThe elements

subspace 8 of( o {z}). For every f e , let

({1}-.. {p-- l}e f"
\b() b(_l)

8.3.2 T]F... b
if :(b)

{p, ,n}_
!

f(b) are all distinct,

otherwise.

It is easy to see that T: F... F,... ,, where c, c is the sequence
J(bl), .-., f(b) arranged in increasing order, if f(b),..., f(b) are all dis-
tinct. Extend the transformations T: over by linearity. It is easy to see
that they form a representation of 3: by linear transformations on $. The
set {T}x, of linear transformations can be shown to be irreducible on .
Choose a new basis for "

{Fe...,} u Fl2. .p-lx Fl2. .p p<x_<n u

Consider the matrices N(f) corresponding to the linear transformations T: in
this particular basis (f e 3). It is easy to see that the upper left corners of
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these matrices are the same as the upper left corners of the matrices 5.1.1
for A the identity. Hence the irreducible representation of u zl de-
fined by

f-+N(f) for fe,

Z "--> O,

is equivalent to the representation 5.1.1 with A the identity. This follows
from Theorem 5.18 of [3]. Formula 8.3.2 thus defines in one step the irre-
ducible representation of n corresponding to A the identity and any fixed
value of p, 1 p n. We see that the representation is by means

of ((), ()) matrices. ]?urthermore it is easy to show that the rank of the

matrix corresponding to Tf for f e +j is (P -t- j) (j 0, 1 n p).
P

8.4 The case p 2. In view of 8.1, 8.2, and the general theory, we have
on y one more irreducible representation of n not vanishing on . the
representation 5.1.1 for p 2 and A the alternating representation of
Consider the semigroup algebra 21(n), and let Hb e 21(n) be defined by

8.4.1 H, ({i,2,...,n})({i, 2,.’.,n}) b- 2,3, ,n.
1 b

For every f e n, let

8.4.2 Uf H fHb.
Clearly

Uf Ub Uf(b) Uf(1).

Just as in 8.3, one can show that the UI produce linear transformations (also
written as U]) on the linear subspace of 1(n) spanned by H, H.
These linear transformations yield an irreducible representation of which
on {z} is equivalent to the representation 5.1.1 with p 2 and A the
alternating representation of 2. Hence the matrices M of 5.1.1 are in this
case (n 1, n 1) matrices. It is not hard to see that the rank of the
matrix corresponding to U] is p 1 for f , (p 1, 2, n).

8.5 The case p n 1. Carefully chosen transformations of the matrix
F lead to the following results for p n 1. Let the degree ]c of the repre-
sentation A of ,_ be greater than 1. Then the rank of F is ]c(n 1),
and hence the degree of the corresponding representation of is ]n. If
k 1 and A is the alternating representation of (R)_1, then the rank of F
is n 2. Thus the degree of the corresponding representation of is
n 1. If A is the identity representation of _, then the rank of F is
n 1, and the degree of the corresponding representation of is n. (This
last follows also from 8.3.) The calculations are long, and we omit them.

8.6 As an example of the general theory, we consider the case n 4, p 3.
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We order the sl, s, s3 and the bl, b, ba
{1} {2} {34}
{1} {23} {4}

{12} {3} {4},

{1} {2} {3}
{14} {2} {3}
{13} {2} {4}

Using 5.1.5 and the definil .ion of F in 6.3, we find

I I 0

0 I

-I A(1, 3, 2)

-I 0

I 0

123

124

134

234"

0

A(2, 3, 1)

A(2, 1, 3)

we obtain

I

A(2, 1,3)

0 0 0 0

I 0 0 0

-I A(1,3,2) I 0 0

-I I 0

-A(2,1,3) A(2,3,1) I I

0

A(2, 1, 3)

o -1/2/

PFQ1

I 0 0

0 I 0

0 0 1/2(I - A(1,3,2))
0 0 1/2(I-A(2,3,1))

0 0 0

where we have used the equality A(2, 1, 3)A(1, 3, 2) A(2, 3, 1).

and

Now if we take

where the A’s form an irreducible (lc, ]) matrix representation of a and I is
the (/, It) identity matrix. We have used the equalities A(1, 2, 3) I and
A(c, c, ca) 0 if there is a duplication among the c’s.
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There are two nonequivalent irreducible representations of (R) by (1, 1)
matrices and one by (2, 2) matrices. Now (R) is generated by the elements
corresponding to A(1, 3, 2) and A(2, 1, 3), so we need list only these two
matrices. We have the three cases

(i) A(1, 3, 2) A(2, 1, 3) (1),

(ii) A(1, 3, 2) A(2, 1, 3) (-1),

(iii) A(1, a, 2) A(2, 1, 3)

In ease (i), we have/ 1 and

P11Q1

0 0

1 0

0 1

0 0

0 0

In case (ii), we have 1 and

1 0 0

0 1 0

PrQ= 0 0 0

000

000

In case (iii), we have 2 and

P1 rQ

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

00001--1/2

0000 0 0

oooo1/21/2

oooo-1/2

0 0 0 0 0 0

0 0 0 0 0 0
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To bring this matrix to our standard form, we multiply on the left by

1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

o o o o - o o o o
0 0 0 0 0 0 - 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

0 0 0 0 1 0 --1 1 0 O

PPrQ

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

in all three cases, we have

P P2P1, Q Q1, r 6.

el;Q-l= Q-It= 0 I

o 0 -2I

o o o 6
0 I 0 0 0

--I I + A(1,3,2) I 0 0

--I I 0 I 0

(2,1,3) --I I
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1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

o o o o - o o o
0 0 0 0 0 0 1. 0 0 0

o o o o , -’ o o o-- 0 0 0 -0 0 0 0 :

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0

In cases (i) and (ii), we have p-t PT’, and in case (iii) we have p-1 pl-lp2-1.
3:he irreducible representations of a u {z} can be obtained from the matrices
P-* and Q-l, and they can be then extended over g. We will not do this,
but we will carry one case a little further.

In case (ii), we have/ 1, r 2,

and

From this we find

0 0 0 01
0 0 0 0

-1 0 0 0

--l 0 0

--1 --1.

Q--= 1

o o --2t

using the ordering 8.6.1. These matrices can. be used in 5.1.1 to find the
corresponding irreducible representations of !3a u {z}. For example, we find
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M({1}1 {23}3 {4})4
0 0 0 0 0 0

CB
1

M({1}2 {23}3 {4})4
0 0 0 0 0 0

CB
1

M({12}2 {3}3 [4})4
We also have

M ({1}1 12}2
and hence

0 0 0 0 0 0

CB
0

1 0 0

M ({1}1 {2}2
1 0 0

M({1} {23} {4})_bM({12 {3} {4}) 1
2 3 4 2 3 4

0

from which we can read off the values of the a] for use in Theorem 3.5.
8.7 The matrix F has ku rows and kv columns. The number v is obviously

The number u is not as easy to find. We write u u(n, p) 1. Consider
the set of all sl, s counted by u(n 1, p). If we replace any si by
si u {n}, we obtain an sl, s counted by u(n, p). We will also get an
sl,..-, s counted by u(n, p) if we take an sl,-.., sp_ counted by
u(n- 1, p- 1) andchangeittos,...,s_,swiths [n}. It is easy
to see that there are no duplicates and that this enumeration is exhaustive.
Thus we have

u(n, p) pu(n 1, p) q-- u(n 1, p 1), 2<p<n--1
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Since u(n, 1) u(n, n) 1, we obtain the following table.

1
3
7
15
31

1
6
25
90

1
10
65

1
15

It can be shown that
p

u(n, p) E -(--1)-J
.= !(p j)!
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