THE IRREDUCIBLE REPRESENTATIONS OF A SEMIGROUP RELATED TO THE SYMMETRIC GROUP

by Edwin Hewitt and Herbert S. Zuckerman ${ }^{1}$

1. Introduction

A. H. Clifford [2] has studied the representations of a class of semigroups. His results lead to a complete classification of the representations of a particular class of semigroups having considerable independent interest. These semigroups are the semigroups \mathfrak{I}_{n} defined as follows.

Consider a finite set consisting of say n elements; for the sake of definiteness we may consider the set $\{1,2, \cdots, n\}$. Let \mathfrak{I}_{n} be the set of all singlevalued mappings of this set onto or into itself. For $f, g \in \mathfrak{T}_{n}$ let $f g$ be the element of \mathfrak{I}_{n} such that $f g(i)=f(g(i))(i=1, \cdots, n)$. With this definition of multiplication, \mathfrak{I}_{n} is obviously an associative system, i.e., a semigroup. The order of \mathfrak{I}_{n} is n^{n}; \mathfrak{I}_{n} contains the symmetric group \mathfrak{S}_{n}, properly if $n>1 ; \mathfrak{T}_{n}$ is noncommutative if $n>1$.

By the term (α, β) matrix, we shall mean a matrix with α rows and β columns and complex entries. A representation of a semigroup G is a homomorphism M of G into the multiplicative semigroup of all (α, α) matrices (α an arbitrary positive integer) such that $M(x) \neq 0$ for some $x \in G$. If the set $\{M(x)\}_{x \epsilon G}$ is an irreducible set of matrices (i.e., if every (α, α) matrix is a linear combination of matrices $M(x)$), then M is said to be an irreducible representation of G. The identity representation is the mapping that carries every $x \in G$ into the identity matrix.

In the present paper we give an explicit determination of all irreducible representations of \mathfrak{I}_{n}. The idea of studying \mathfrak{I}_{n} was suggested to us by D. D. Miller (oral communication). The problem of obtaining representations of semigroups as distinct from groups seems to have been first studied by Suskevič [6]. A. H. Clifford [2] has, as noted above, given a construction of all representations of a class of semigroups closely connected with \mathfrak{T}_{n}. Ponizovskiǐ: [5] has pointed out some simple properties of \mathfrak{I}_{n}. In the present paper we also relate the irreducible representations of \mathfrak{I}_{n} to the semigroup algebra $\mathscr{L}_{1}\left(\mathfrak{T}_{n}\right)$ (notation as in [3]).

2. Definitions

Let f be an element of \mathfrak{I}_{n}. Then f splits the set $\{1,2, \cdots, n\}$ into a number, p, of nonvoid, disjoint subsets, each of the form $\{x: f(x)=a\}$ for some a in the range of f. Obviously f is determined by these sets and the corresponding a 's. We will set down a unique notation for the elements

[^0]of \mathfrak{I}_{n}. For a nonvoid subset s of $\{1,2, \cdots, n\}$, let s^{*} be the least element of s. Now write the sets $\{x: f(x)=a\}$ in the order $s_{1}, s_{2}, \cdots, s_{p}$, where $s_{1}^{*}<s_{2}^{*}<\cdots<s_{p}^{*}$. We can represent f by the symbol $\left(\begin{array}{ccc}s_{1} s_{2} \cdots & s_{p} \\ a_{1} a_{2} \cdots & a_{p}\end{array}\right)$, meaning by this that every element of s_{i} is mapped by f into $a_{i}(i=1,2, \cdots, p)$. It is easy to see that every element f of \mathfrak{I}_{n} occurs once and only once among the $\left(\begin{array}{cccc}s_{1} & s_{2} & \cdots & s_{p} \\ a_{1} & a_{2} & \cdots & a_{p}\end{array}\right)$, where $1 \leqq p \leqq n$, the sets s_{1}, \cdots, s_{p} are a decomposition of $\{1,2, \cdots, n\}$ of the kind described, and $a_{1}, a_{2}, \cdots, a_{p}$ are any distinct integers lying between 1 and n. From now on, the expression $s_{1}, s_{2}, \cdots, s_{p}$ will always mean a decomposition of $\{1,2, \cdots, n\}$ into nonvoid, disjoint subsets with $s_{1}^{*}<s_{2}^{*}<\cdots<s_{p}^{*}$. The letters t and w will be used similarly. Also $a_{1}, a_{2}, \cdots, a_{p}$ will always mean any ordered sequence of distinct integers from 1 to n; the letters c and d will be used similarly

For $p=1,2, \cdots, n$, let \mathfrak{B}_{p} be the set of all elements of \mathfrak{I}_{n} whose range contains just p elements: that is, all $\left(\begin{array}{ccc}s_{1} s_{2} \cdots & s_{p} \\ a_{1} a_{2} \cdots & a_{p}\end{array}\right)$ for a fixed p. Strictly speaking, \mathfrak{B}_{p} depends upon n as well as p. However, only one value of n will be treated at any one time, unless otherwise specified. The set \mathfrak{B}_{n} is obviously the symmetric group \mathfrak{S}_{n}. The set \mathfrak{B}_{1} is a semigroup with the trivial multiplication $f g=f$. No other \mathfrak{B}_{p} is a subsemigroup of \mathfrak{T}_{n}. It will be convenient to have the semigroup $\mathfrak{B}_{p} \cup\{z\}$, where multiplication is defined by

$$
\begin{gathered}
z z=f z=z f=z \text { for all } f \in \mathfrak{B}_{p}, \\
f g=\left\{\begin{array}{l}
f g \text { as in } \mathfrak{T}_{n} \text { if } f g \in \mathfrak{B}_{p} \\
z \text { if } f g \text { non } \epsilon \mathfrak{B}_{p}
\end{array}\right.
\end{gathered}
$$

3. Preliminary theorems

We make a first reduction of our problem by showing that irreducible representations of \mathfrak{T}_{n} must behave in certain special ways.
3.1. Theorem. The two-sided ideals of \mathfrak{I}_{n} are exactly the sets

$$
\bigcup_{j=1}^{p} \mathfrak{B}_{j} \quad(p=1,2, \cdots, n)
$$

Proof. Let \mathfrak{F} be a two-sided ideal in \mathfrak{I}_{n}, that is, $\mathfrak{S}_{n} \cup \mathfrak{T}_{n} \Im \subset \mathfrak{J}$, and $0 \neq \mathfrak{F} \subset \mathfrak{I}_{n}$. Let p be the largest integer such that $I \cap \mathfrak{B}_{p} \neq 0$, and let $f=\left(\begin{array}{ccc}s_{1} & s_{2} & \cdots\end{array} s_{p}, ~\right.$ in \Im. Let $\left(\begin{array}{ccc}t_{1} t_{2} & \cdots & t_{q} \\ a_{1} & a_{2} & \cdots\end{array} a_{p}, ~\right.$ be any element of \mathfrak{I}_{n} with $q \leqq p$. Let $w_{1}, w_{2}, \cdots, w_{q}$ be the sets $\left\{a_{1}\right\},\left\{a_{2}\right\}, \cdots,\left\{a_{q-1}\right\}$, $\left\{a_{1}, a_{2}, \cdots, a_{q-1}\right\}^{\prime}$ (' denotes complement in $\{1,2, \cdots, n\}$), ordered as prescribed in §2. Finally, let $d_{i}(i=1,2, \cdots, q)$ be defined as c_{j}, where j is such that $a_{j} \in w_{i}$. Then we have

$$
\left(\begin{array}{cccc}
t_{1} & t_{2} & \cdots & t_{q} \\
c_{1} & c_{2} & \cdots & c_{q}
\end{array}\right)=\left(\begin{array}{cccc}
w_{1} & w_{2} & \cdots & w_{q} \\
d_{1} & d_{2} & \cdots & d_{q}
\end{array}\right)\left(\begin{array}{cccc}
s_{1} & s_{2} & \cdots & s_{p} \\
a_{1} & a_{2} & \cdots & a_{p}
\end{array}\right)\left(\begin{array}{cccc}
t_{1} & t_{2} & \cdots & t_{q} \\
s_{1}^{*} & s_{2}^{*} & \cdots & s_{a}^{*}
\end{array}\right)
$$

(Recall that the product $f g$ of transformations f and g is the transformation obtained by carrying out g and then f.) Conversely, it is clear that every set $\mathrm{U}_{j=1}^{p} \mathfrak{B}_{j}$ is a two-sided ideal in \mathfrak{I}_{n}.
3.2 Theorem. Let M be an irreducible representation of \mathfrak{T}_{n}. The set $\left\{f: f \epsilon \mathfrak{I}_{n}, M(f)=0\right\}$ is either void or one of the sets

$$
\bigcup_{j=1}^{p} \mathfrak{B}_{j} \quad(p=1, \cdots, n-1) .
$$

Proof. If the set $\left\{f: f \in \mathfrak{I}_{n}, M(f)=0\right\}$ is not void, then clearly it is a twosided ideal in \mathfrak{I}_{n}. The result now follows from Theorem 3.1.
3.3 Theorem. Let M be an irreducible representation of \mathfrak{I}_{n}, and let p be the least integer such that $M(f) \neq 0$ for some $f \in \mathfrak{B}_{p}$. Then the set of matrices $\{M(f)\}_{f \in \mathbb{P}_{p}}$ is irreducible.

Proof. Let m be the degree of M. Since M is irreducible, the set of all matrices $\sum_{f \in \mathcal{I}_{n}} \alpha_{f} M(f)$ (the α_{f} are arbitrary complex numbers) is the algebra of all (m, m) matrices. Since $\bigcup_{j=1}^{p} \mathfrak{B}_{j}$ is a two-sided ideal in \mathfrak{I}_{n}, the set A of all matrices $\sum \alpha_{f} M(f)$, summed over all f in $\bigcup_{j=1}^{p} \mathfrak{B}_{j}$, is a two-sided ideal in the algebra of all (m, m) matrices. Since $M(f)$ is different from 0 for some $f \epsilon \mathfrak{B}_{p}, A$ is not the zero ideal. Since the algebra of all (m, m) matrices is simple, A is the algebra of all (m, m) matrices, and this proves the theorem.
3.4 Lemma. Let q be an integer such that $2 \leqq q \leqq n-1$, and let g be any element of \mathfrak{B}_{q-1}. Then there are elements f and h in \mathfrak{B}_{q} such that $h f=g$.

Proof. Let the range of g be $\left\{a_{1}, \cdots, a_{q-1}\right\}$, so written that $g^{-1}\left(a_{q-1}\right)$ contains more than one element: $g^{-1}\left(a_{q-1}\right)=\{b\}$ u s, where $s \neq 0$ and b non ϵs. Let f be defined by

$$
f(x)=\left\{\begin{aligned}
j & \text { if } x \in g^{-1}\left(a_{j}\right), \quad \leqq j \leqq q-2 \\
q-1 & \text { if } x=b, \\
q & \text { if } x \in s
\end{aligned}\right.
$$

Let h be defined by

$$
h(x)=\left\{\begin{array}{c}
a_{x} \text { if } 1 \leqq x \leqq q-1, \\
a_{q-1} \text { if } x=q, \\
c \text { if } q+1 \leqq x \leqq n,
\end{array}\right.
$$

where c is different from a_{1}, \cdots, a_{q-1} and $1 \leqq c \leqq n$. Then $g=h f$.
3.5 Theorem. Let M^{\prime} be an irreducible representation of the semigroup $\mathfrak{B}_{p} \cup\{z\}(1 \leqq p<n)$ that is not the identity representation. Then there is one and only one representation M of \mathfrak{T}_{n} such that $M(f)=M^{\prime}(f)$ for $f \in \mathfrak{B}_{p} . \quad$ Furthermore, $M(g)=0$ for $g \in \bigcup_{j=1}^{p-1} \mathfrak{B}_{j}$.

Proof. Suppose that M is such a representation. If $g \in \mathfrak{B}_{p-1}$, then, by Lemma 3.4, $g=h f$, where $h, f \in \mathfrak{B}_{p}$. Hence

$$
M(g)=M(h) M(f)=M^{\prime}(h) M^{\prime}(f)=M^{\prime}(h f)=M^{\prime}(z)=0
$$

since it is clear that $M^{\prime}(z)$ must be 0 . Repeated applications of Lemma 3.4 show that $M(g)=0$ for all $g \in \cup_{j=1}^{p-1} \mathfrak{B}_{j}$.

Since M^{\prime} is irreducible and $M^{\prime}(z)=0$, there is a linear combination $\sum_{f \epsilon \mathfrak{B}_{p}} \alpha_{f} M^{\prime}(f)$ equal to the identity matrix I. Let g be any element of \mathfrak{I}_{n}. Then $f g \epsilon \cup_{j=1}^{p} \mathfrak{B}_{j}$ if $f \epsilon \mathfrak{B}_{p}$, and $M(g)=I M(g)=\sum_{f \epsilon \mathfrak{B}_{p} \alpha_{f} M(f g) \text {. Since we }}$ have just shown that M is completely determined by M^{\prime} on $\cup_{j=1}^{p} \mathfrak{B}_{j}$, it follows that M is unique if it exists at all.

We now show that there is an M of the kind required. Let $M^{\prime \prime}(f)=$ $M^{\prime}(f)$ for $f \in \mathfrak{B}_{p}$ and $M^{\prime \prime}(f)=0$ for $f \epsilon \bigcup_{j=1}^{p-1} \mathfrak{B}_{j}$. Obviously $M^{\prime \prime}$ is a representation of the semigroup $\cup_{j=1}^{p} \mathfrak{B}_{j}$. Choose a fixed linear combination $\sum_{f \in \mathfrak{B}_{p}} \alpha_{f} M^{\prime \prime}(f)$ that is equal to I. Now let $M(g)=\sum_{f \in \mathfrak{B}_{p}} \alpha_{f} M^{\prime \prime}(f g)$, for all $g \epsilon \mathfrak{I}_{n}$. Since $f g \epsilon \cup_{j=1}^{p} \mathfrak{B}_{j}$ for $f \in \mathfrak{B}_{p}$ and $g \epsilon \mathfrak{I}_{n}, M(g)$ is well defined. To show that M is a representation of \mathfrak{I}_{n}, we need to know that
3.5.1

$$
M(g)=\sum_{e \epsilon \mathfrak{B}_{p}} \alpha_{e} M^{\prime \prime}(g e) \quad g \in \mathfrak{T}_{n}
$$

To prove this, take e in \mathfrak{B}_{p}. Then
$M(g) M^{\prime \prime}(e)=\sum_{f \in \mathfrak{B}_{p}} \alpha_{f} M^{\prime \prime}(f g) M^{\prime \prime}(e)=\sum_{f \in \mathfrak{B}_{p}} \alpha_{f} M^{\prime \prime}(f g e)$

$$
=\sum_{f \in \mathcal{B}_{p}} \alpha_{f} M^{\prime \prime}(f) M^{\prime \prime}(g e)=I M^{\prime \prime}(g e)=M^{\prime \prime}(g e)
$$

From this it follows that $\sum_{e \epsilon \mathfrak{F}_{p}} \alpha_{e} M(g) M^{\prime \prime}(e)=\sum_{e \epsilon \mathfrak{B}_{p}} \alpha_{e} M^{\prime \prime}(g e)$. Since $\sum_{e \in \mathfrak{P}_{p}} \alpha_{e} M^{\prime \prime}(e)=I$, we have 3.5.1.

Now let g, h be any elements of \mathfrak{T}_{n}. Using 3.5.1, we have

$$
\begin{aligned}
M(g) M(h) & =\sum_{f \epsilon \mathfrak{B}_{p}} \alpha_{f} M^{\prime \prime}(f g) \sum_{e \epsilon \mathfrak{B}_{p}} \alpha_{e} M^{\prime \prime}(h e) \\
& =\sum_{f \in \mathfrak{B}_{p}} \sum_{e \epsilon \mathfrak{B}_{p}} \alpha_{f} \alpha_{e} M^{\prime \prime}(f g h e) \\
& =\sum_{f \epsilon \mathfrak{P}_{p}} \alpha_{f} M^{\prime \prime}(f g h) \sum_{e \epsilon \mathfrak{F}_{p}} \alpha_{e} M^{\prime \prime}(e) \\
& =M(g h)
\end{aligned}
$$

Hence M is a representation of \mathfrak{I}_{n}. Finally, if $g \in \mathfrak{B}_{p}$, then

$$
M(g)=\sum_{f \in \mathfrak{P}_{p}} \alpha_{f} M^{\prime \prime}(f g)=\sum_{f \in \mathfrak{ß}_{p}} \alpha_{f} M^{\prime \prime}(f) M^{\prime \prime}(g)=I M^{\prime \prime}(g)=M^{\prime}(g)
$$

This completes the proof.
The next theorem is not strictly necessary but may be of some interest.
3.6 Theorem. Let M be any representation of \mathfrak{T}_{n}, and let f, g be in \mathfrak{B}_{p}, $1 \leqq p \leqq n$. Then rank $M(f)=\operatorname{rank} M(g)$.

Proof. We may suppose without loss of generality that $M(\varphi)$ is nonsingular for $\varphi \in \mathfrak{B}_{n}$. Let $\left\{a_{1}, a_{2}, \cdots, a_{p}\right\}$ be the range of f, and let $\left\{u_{1}, u_{2}, \cdots, u_{p}\right\}$ be elements of $\{1,2, \cdots, n\}$ such that $f\left(u_{i}\right)=$ $a_{i}(i=1,2, \cdots, p)$. Let $\left\{a_{p+1}, \cdots, a_{n}\right\}$ be $\left\{a_{1}, a_{2}, \cdots, a_{p}\right\}^{\prime}$, and similarly $\left\{u_{p+1}, \cdots, u_{n}\right\}=\left\{u_{1}, u_{2}, \cdots, u_{p}\right\}^{\prime}$. Let φ be the element of \mathfrak{B}_{n} such that $\varphi(i)=u_{i}(i=1,2, \cdots, n)$ and ψ the element of \mathfrak{B}_{n} such that

$$
\begin{aligned}
\psi\left(a_{i}\right)=i(i=1,2, \cdots, n) . \text { Let } f^{\prime}=\psi f \varphi . \text { Then } \\
f^{\prime}(i)=\left\{\begin{array}{l}
i \text { if } 1 \leqq i \leqq p, \\
j, \text { for some } j(i), 1 \leqq j \leqq p, \text { if } p+1 \leqq i \leqq n .
\end{array}\right.
\end{aligned}
$$

We define a g^{\prime} for the element g in the same way. The equalities $f^{\prime} g^{\prime}=g^{\prime}$, $g^{\prime} f^{\prime}=f^{\prime}$ are easy to verify. Hence rank $M\left(g^{\prime}\right) \leqq \operatorname{rank} M\left(f^{\prime}\right)$ and rank $M\left(f^{\prime}\right)$ $\leqq \operatorname{rank} M\left(g^{\prime}\right)$, and so we have rank $M\left(f^{\prime}\right)=\operatorname{rank} M\left(g^{\prime}\right)$. The matrices $M(\varphi)$ and $M(\psi)$ are nonsingular, since φ and ψ are in the symmetric group \mathfrak{B}_{n}. Therefore rank $M(f)=\operatorname{rank} M\left(f^{\prime}\right)$ and rank $M(g)=\operatorname{rank} M\left(g^{\prime}\right)$. This completes the proof.
3.6.1 Note. Theorem 3.6, Lemma 3.4, and Theorem 3.5 show that if M is any representation of \mathfrak{T}_{n} as in 3.5 , then all matrices $M(f)$ are singular for $f \in \mathfrak{B}_{p}(1<p<n)$.

We now summarize the results of this section.
3.7 Theorem. Let M be an irreducible representation of \mathfrak{T}_{n}. Then there is a $\mathfrak{B}_{p}(1 \leqq p \leqq n)$ such that $M(f)=0$ for all $f \in \bigcup_{j=1}^{p-1} \mathfrak{B}_{j}\left(\bigcup_{j=1}^{0} \mathfrak{B}_{j}\right.$ is void $)$ and $M(f) \neq 0$ for some $f \in \mathfrak{B}_{p}$. The matrices $\{M(f)\}_{f \in \mathfrak{B}_{p}}$ are an irreducible set, and all have the same nonzero rank. If $1<p<n$, all $M(f)$ for $f \in \mathfrak{B}_{p}$ are singular. Setting $M(z)=0$, we obtain from M an irreducible representation of $\mathfrak{B}_{p} \mathbf{u}\{z\}$. Conversely, every irreducible representation of $\mathfrak{B}_{p} \cup\{z\}$ that is not the identity representation determines a unique irreducible representation of \mathfrak{T}_{n} that is 0 on $\bigcup_{j=1}^{p-1} \mathfrak{B}_{j}$.
3.8 The semigroups $\mathfrak{B}_{p} \cup\{z\}$ are completely simple, and Clifford [2] has given a general method for obtaining the representations of such semigroups. Since we wish to write the irreducible representations of $\mathfrak{B}_{p} \cup\{z\}$ as explicitly as possible, it seems advisable to write out all of the details.

4. Necessary conditions for an irreducible representation of $\mathfrak{F}_{p} \cup\{z\}$

Throughout this section, n and p are arbitrary but fixed. For general n and p, \mathfrak{B}_{p} is a complicated object. To render it tractable, we consider elements of two special kinds.
4.1 Defintion. Let

$$
\left.u\left(a_{1}, a_{2}, \cdots, a_{p}\right)=\left(\begin{array}{cccc}
\{1\} & \{2\} & \cdots & \{p-1\}
\end{array}\right)\{p, p+1, \cdots, n\}\right)
$$

and let

$$
v\left(s_{1}, s_{2}, \cdots, s_{p}\right)=\left(\begin{array}{llll}
s_{1} & s_{2} & \cdots & s_{p} \\
1 & 2 & \cdots & p
\end{array}\right)
$$

Thus $u\left(a_{1}, a_{2}, \cdots, a_{p}\right)$ is an element of \mathfrak{B}_{p} that depends only on the numbers $a_{1}, a_{2}, \cdots, a_{p}$, and $v\left(s_{1}, s_{2}, \cdots, s_{p}\right)$ is an element of \mathfrak{B}_{p} that depends only on the sets $s_{1}, s_{2}, \cdots, s_{p}$.
4.2 We now have:
4.2.1 $u\left(a_{1}, a_{2}, \cdots, a_{p}\right) v\left(s_{1}, s_{2}, \cdots, s_{p}\right)=\left(\begin{array}{cccc}s_{1} & s_{2} & \cdots & s_{p} \\ a_{1} & a_{2} & \cdots & a_{p}\end{array}\right) ;$
4.2.2

$$
u\left(a_{1}, a_{2}, \cdots, a_{p}\right) u(1,2, \cdots, p)=u\left(a_{1}, a_{2}, \cdots, a_{p}\right)
$$

4.2.3

$$
u(1,2, \cdots, p)^{2}=u(1,2, \cdots, p)
$$

4.2.5 $\quad v\left(s_{1}, s_{2}, \cdots, s_{p}\right) u(1,2, \cdots, p)=\left\{\begin{array}{cc}u(1,2, \cdots, p) & \text { if } s_{p}^{*}=p, \\ z & \text { if } s_{p}^{*}>p .\end{array}\right.$

Equalities 4.2.1-4.2.5 can be checked directly from 4.1.
4.3 We now suppose that we are given a fixed but arbitrary representation M of $\mathfrak{B}_{p} \cup\{z\}$. Irreducibility will not be assumed until needed. The representation M may have many equivalent forms. Since $u(1,2, \cdots, p)$ is idempotent (4.2.3), $M(u(1,2, \cdots, p))$ is an idempotent matrix, and hence can be put into the form
4.3.1

$$
\left(\begin{array}{ll}
I & 0 \\
0 & 0
\end{array}\right)
$$

Without loss of generality, we may suppose that $M(u(1,2, \cdots, p))$ has this form. Let k be the degree of the identity matrix I in 4.3.1, and let l be such that the matrix 4.3 .1 has degree $k+l$. We now write
4.3.2 $\quad M\left(u\left(a_{1}, a_{2}, \cdots, a_{p}\right)\right)=\left(\begin{array}{ll}A\left(a_{1}, a_{2}, \cdots, a_{p}\right) & B\left(a_{1}, a_{2}, \cdots, a_{p}\right) \\ C\left(a_{1}, a_{2}, \cdots, a_{p}\right) & D\left(a_{1}, a_{2}, \cdots, a_{p}\right)\end{array}\right)$,
where A is a (k, k) matrix, B is a (k, l) matrix, C is an (l, k) matrix, and D is an (l, l) matrix. From 4.2.2, we see that $M\left(u\left(a_{1}, \cdots, a_{p}\right)\right) M(u(1,2, \cdots, p))=$ $M\left(u\left(a_{1}, \cdots, a_{p}\right)\right)$. Since

$$
\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)\left(\begin{array}{ll}
I & 0 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
A & 0 \\
C & 0
\end{array}\right)
$$

it follows that $B\left(a_{1}, \cdots, a_{p}\right)=0$ and $D\left(a_{1}, \cdots, a_{p}\right)=0$. We next write
4.3.3

$$
M\left(v\left(s_{1}, \cdots s_{p}\right)\right)=\left(\begin{array}{ll}
A\left(s_{1}, \cdots s_{p}\right) & B\left(s_{1}, \cdots s_{p}\right) \\
C\left(s_{1}, \cdots s_{p}\right) & D\left(s_{1}, \cdots s_{p}\right)
\end{array}\right)
$$

where the sizes of the blocks in 4.3 .3 are just as in 4.3.2. From 4.2.4, we find that $C\left(s_{1}, \cdots, s_{p}\right)=0$ and that $D\left(s_{1}, \cdots, s_{p}\right)=0$. Equality 4.2.5 shows that
4.3.4

$$
A\left(s_{1}, \cdots, s_{p}\right)=\delta_{s_{p}^{*}, p} I
$$

where $\delta_{s_{p}^{*}, p}$ is the Kronecker δ-function. From 4.3.1, we see that
4.3.5. $\quad C(1,2, \cdots, p)=0, \quad B(\{1\},\{2\}, \cdots,\{p-1\},\{p, \cdots, n\})=0$.
4.4 If φ and ψ are 1-to-1 mappings of the set $\{1, \cdots, p\}$ onto itself (i.e., elements of \mathfrak{S}_{p}), then 4.1 implies that

$$
\text { 4.4.1 } \quad u(\varphi(1), \cdots, \varphi(p)) u(\psi(1), \cdots, \psi(p))=u(\varphi(\psi(1)), \cdots, \varphi(\psi(p))) .
$$

Then, as in 4.3, we see that

$$
\text { 4.4.2 } \quad A(\varphi(1), \cdots, \varphi(p)) A(\psi(1), \cdots, \psi(p))=A(\varphi(\psi(1)), \cdots, \varphi(\psi(p)))
$$

Thus the matrices $A\left(a_{1}, \cdots, a_{p}\right)$ for which $\left\{a_{1}, \cdots, a_{p}\right\}=\{1, \cdots, p\}$ produce a representation of \widetilde{S}_{p}.

For a positive integer a, let $a^{\prime}=\min (a, p)$. Then, for $1 \leqq a \leqq n$, $u(1, \cdots, p)$ carries a into a^{\prime}. From this it is easy to see that
4.4.3 $u(1, \cdots, p) u\left(a_{1}, \cdots, a_{p}\right)=\left\{\begin{array}{cc}u\left(a_{1}^{\prime}, \cdots, a_{p}^{\prime}\right) \text { if } a_{1}^{\prime}, \cdots, a_{p}^{\prime} \\ \text { are all different, }\end{array}\right.$

In the usual way, 4.4.3 implies that
4.4.4 $A\left(a_{1}, \cdots, a_{p}\right)=\left\{\begin{array}{c}A\left(a_{1}^{\prime}, \cdots, a_{p}^{\prime}\right) \text { if } a_{1}^{\prime}, \cdots, a_{p}^{\prime} \text { are all different, } \\ 0\end{array}\right.$

The matrices $A\left(e_{1}, \cdots, e_{p}\right)$ were defined in 4.3 .2 only for sequences e_{1}, \cdots, e_{p} with no repetitions. We now define $A\left(e_{1}, \cdots, e_{p}\right)$ as 0 if $e_{i}=e_{j}$ for some distinct i and j. With this convention, 4.4.4 becomes

$$
A\left(a_{1}, \cdots, a_{p}\right)=A\left(a_{1}^{\prime}, \cdots, a_{p}^{\prime}\right)
$$

and 4.4.2 can be extended to

$$
A\left(a_{1}, \cdots, a_{p}\right) A\left(c_{1}, \cdots, c_{p}\right)=A\left(a_{c_{1}^{\prime}}^{\prime}, \cdots, a_{c_{p}}^{\prime}\right)
$$

4.5 We now discuss the matrices $C\left(a_{1}, \cdots, a_{p}\right)$ defined in 4.3.2. If φ is a 1-to-1 mapping of $\{1, \cdots, p\}$ onto itself, then

$$
u\left(a_{1}, \cdots, a_{p}\right) u(\varphi(1), \cdots, \varphi(p))=u\left(a_{\varphi(1)}, \cdots, a_{\varphi(p)}\right)
$$

This is easy to verify. Our usual steps give us

$$
C\left(a_{\varphi(1)}, \cdots, a_{\varphi(p)}\right)=C\left(a_{1}, \cdots, a_{p}\right) A(\varphi(1), \cdots, \varphi(p))
$$

and equivalently
4.5.3

$$
C\left(a_{1}, \cdots, a_{p}\right)=C\left(a_{\varphi(1)}, \cdots, a_{\varphi(p)}\right) A\left(\varphi^{-1}(1), \cdots, \varphi^{-1}(p)\right) .
$$

For each ordered sequence $a=a_{1}, a_{2}, \cdots, a_{p}$, we define the function $\rho_{a}(i)$ ($i=1,2, \cdots, p$) so that $a_{\rho_{a}(1)}<a_{\rho_{a}(2)}<\cdots<a_{\rho_{a}(p)}$. Since the a_{j} are all distinct, we can do this. Plainly ρ_{a} is uniquely defined. Now we have
4.5.4 $C\left(a_{1}, \cdots, a_{p}\right)=C\left(a_{\rho_{a}(1)}, \cdots, a_{\rho_{a}(p)}\right) A\left(\rho_{a}^{-1}(1), \cdots, \rho_{a}^{-1}(p)\right)$,
which follows immediately from 4.5.3. Thus, if the representation $A(\varphi(1), \cdots, \varphi(p))$ of \Im_{p} is known, and if $C\left(a_{1}, \cdots, a_{p}\right)$ is known for monotonically increasing a_{1}, \cdots, a_{p}, the matrices $C\left(a_{1}, \cdots, a_{p}\right)$ are known for all a_{1}, \cdots, a_{p}.
4.6 We now discuss the matrices $B\left(s_{1}, \cdots, s_{p}\right)$ defined in 4.3.3. For every family of sets $s=s_{1}, s_{2}, \cdots, s_{p}$, we define the function

$$
\sigma_{s}(i)
$$

$$
(i=1,2, \cdots, n)
$$

so that $i \in S_{\sigma_{\theta}(i)}$. The equality
4.6.1 $v\left(s_{1}, \cdots, s_{p}\right) u\left(a_{1}, \cdots, a_{p}\right)=\left\{\begin{array}{cc}u\left(\sigma_{s}\left(a_{1}\right), \cdots, \sigma_{s}\left(a_{p}\right)\right) & \text { if all } \sigma_{s}\left(a_{i}\right) \\ \text { are different, } \\ z & \text { otherwise, }\end{array}\right.$
is not hard to verify. For $1 \leqq b_{1}<b_{2}<\cdots<b_{p} \leqq n, 4.6 .1$ and our usual steps give us

$$
\begin{align*}
B\left(s_{1}, \cdots, s_{p}\right) C\left(b_{1},\right. & \left.\cdots, b_{p}\right) \\
& =-\delta_{s_{p}^{*}, p} A\left(b_{1}^{\prime}, \cdots, b_{p}^{\prime}\right)+A\left(\sigma_{s}\left(b_{1}\right), \cdots, \sigma_{s}\left(b_{p}\right)\right)
\end{align*}
$$

The condition that the sequence b_{1}, \cdots, b_{p} be monotonic increasing is not required in 4.6.2. However this special case of 4.6.2 is all that will be needed. We agree that b_{1}, \cdots, b_{p} will always mean a monotone strictly increasing sequence of integers lying between 1 and n.
4.7 Combining formulas $4.2 .1,4.3 .2,4.3 .3,4.3 .4,4.4 .5$, and 4.5 .4 , one can obtain the equality
4.7.1 $\quad M\left(\begin{array}{llll}s_{1} & s_{2} & \cdots & s_{p} \\ a_{1} & a_{2} & \cdots & a_{p}\end{array}\right)$
$=\left(\begin{array}{c}\delta_{s_{p}^{*}, p} A\left(a_{1}^{\prime}, \cdots, a_{p}^{\prime}\right) \\ \left.\delta_{s_{p}^{*}, p} C\left(a_{\rho_{a}(1)}, \cdots, a_{\rho_{a}(p)}\right) A\left(a_{1}^{\prime}, \cdots, a_{a}^{\prime}\right) B(1), \cdots, \rho_{a}^{-1}(p)\right) \\ C\left(a_{\rho_{a}(1)}, \cdots, a_{\rho_{a}(p)}\right) A\left(\rho_{a}^{-1}(1), \cdots, \rho_{a}\right) \\ -1(p)) B\left(s_{1}, \cdots, s_{p}\right)\end{array}\right)$
4.8 Suppose now that M is an irreducible representation of $\mathfrak{B}_{p} \mathbf{\cup}\{z\}$. Since every ($k+l, k+l$) matrix is in this case a linear combination of matrices 4.7.1, the form of 4.7.1 and 4.4.2 show that matrices $A\left(a_{1}^{\prime}, \cdots, a_{p}^{\prime}\right)$, where $\left\{a_{1}^{\prime}, \cdots, a_{p}^{\prime}\right\}=\{1,2, \cdots, p\}$, produce an irreducible representation of \mathfrak{S}_{p}.

5. Sufficient conditions for a representation

In this section, we will show that conditions 4.4.6, 4.6.2, and 4.3.5 are sufficient for the mapping defined by 4.7.1, along with $M(z)=0$, to be a representation of $\mathfrak{B}_{p} \cup\{z\}$.
5.1 We suppose that we have (k, k) matrices $A\left(c_{1}, \cdots, c_{p}\right)$ defined for all integers c_{1}, \cdots, c_{p} between 1 and p. We suppose that we have (k, l) matrices
$B\left(s_{1}, \cdots, s_{p}\right)$ defined for all s_{1}, \cdots, s_{p}. We suppose that we have (l, k) matrices $C\left(b_{1}, \cdots, b_{p}\right)$ defined for all monotone strictly increasing sequences b_{1}, \cdots, b_{p} of integers between 1 and n. We will show that the mapping M of $\mathfrak{B}_{p} \cup\{z\}$ defined by
5.1.1 $M\left(\begin{array}{cccc}s_{1} & s_{2} & \cdots & s_{p} \\ a_{1} & a_{2} & \cdots & a_{p}\end{array}\right)$
$\left.=\left(\begin{array}{c}\delta_{s_{p}^{*}, p} A\left(a_{1}^{\prime}, \cdots, a_{p}^{\prime}\right) \\ \delta_{s_{p}^{*}, p} C\left(a_{\rho_{a}(1)}, \cdots, a_{\rho_{a}(p)}\right) A\left(a_{a}^{\prime}, \cdots, a_{p}^{\prime}\right) B\left(s_{1}, \cdots, s_{p}\right) \\ C\left(a_{\rho_{a}(1)}, \cdots, a_{\rho_{a}(p)}\right) A\left(\rho_{a}^{-1}(1), \cdots, \rho_{a}^{-1}(p)\right) \\ \hline\end{array}\right) B\left(s_{1}, \cdots, s_{p}\right)\right)$

$$
M(z)=0
$$

is a representation of $\mathfrak{B}_{p} \cup\{z\}$ provided that the following conditions are satisfied. If φ and ψ are 1 -to- 1 mappings of $\{1,2, \cdots, p\}$ onto itself, then 5.1.2 $A(\varphi(1), \cdots, \varphi(p)) A(\psi(1), \cdots, \psi(p))=A(\varphi(\psi(1)), \cdots, \varphi(\psi(p))) ;$
A is not identically zero; and if there are any repetitions among the numbers c_{1}, \cdots, c_{p}, then

$$
\text { 5.1.3 } \quad A\left(c_{1}, \cdots, c_{p}\right)=0
$$

From 5.1.2 and 5.1.3, one can easily infer the equality

$$
\text { 5.1.4 } \quad A\left(e_{1}, \cdots, e_{p}\right) A\left(f_{1}, \cdots, f_{p}\right)=A\left(e_{f_{1}}, e_{f_{2}}, \cdots, e_{f_{p}}\right) \text {, }
$$

which is valid for all allowable values of e_{1}, \cdots, e_{p} and f_{1}, \cdots, f_{p}.
For s_{1}, \cdots, s_{p} and b_{1}, \cdots, b_{p}, let the matrix function $\gamma_{b_{1} \cdots b_{p}}^{s_{1} \cdots s_{p}}$ be defined by

$$
\gamma_{b_{1}, \cdots, b_{p}}^{s_{1}, \cdots, s_{p}}=-\delta_{s_{p}^{*}, p} A\left(b_{1}^{\prime}, \cdots, b_{p}^{\prime}\right)+A\left(\sigma_{s}\left(b_{1}\right), \cdots, \sigma_{s}\left(b_{p}\right)\right)
$$

Then the matrices B and C are to satisfy the condition

$$
B\left(s_{1}, \cdots, s_{p}\right) C\left(b_{1}, \cdots, b_{1}\right)=\gamma_{b_{1}, \cdots, b_{p}}^{s_{1}, \cdots, s_{p}}
$$

for all s_{1}, \cdots, s_{p} and b_{1}, \cdots, b_{p}, as well as

$$
C(1,2, \cdots, p)=0
$$

and
5.1.8

$$
B(\{1\},\{2\}, \cdots,\{p-1\},\{p, \cdots, n\})=0
$$

The sufficiency proof that we wish to give will be simplified by being broken up into a series of steps.
5.2 Lemma. Let a_{1}, \cdots, a_{p} and s_{1}, \cdots, s_{p} be given. Let $b_{i}=a_{\rho_{a}(i)}$, where ρ_{a} is defined as in $4.5(i=1,2, \cdots, p)$. Let σ_{s} be as in 4.6. Then

$$
\delta_{s_{p}^{*}, p} A\left(a_{1}^{\prime}, \cdots, a_{p}^{\prime}\right)+\gamma_{b}^{s} A\left(\rho_{a}^{-1}(1), \cdots, \rho_{a}^{-1}(p)\right)
$$

$$
=A\left(\sigma_{s}\left(a_{1}\right), \cdots, \sigma_{s}\left(a_{p}\right)\right)
$$

Proof. Multiply both sides of 5.1 .5 on the right by $A\left(\rho_{a}^{-1}(1), \cdots, \rho_{a}^{-1}(p)\right)$ and apply 5.1.4.
5.3 Lemma. Let $a_{1}, \cdots, a_{p}, c_{1}, \cdots, c_{p}$, and s_{1}, \cdots, s_{p} be given. Suppose that the numbers $\sigma_{s}\left(a_{i}\right)$ are all distinct. Write $d_{i}=c_{\sigma_{\Delta}\left(a_{i}\right)}(i=1,2, \cdots, p)$. Then we have
5.3.1

$$
d_{\rho_{d}(i)}=c_{\rho_{c}(i)} \quad(i=1, \cdots, p)
$$

and
5.3.2

$$
\rho_{c}^{-1}\left(\sigma_{s}\left(a_{i}\right)\right)=\rho_{d}^{-1}(i) \quad(i=1, \cdots, p)
$$

Proof. Equality 5.3.1 follows from the definitions of d_{i} and ρ. The equality
5.3.3

$$
\rho_{c}(i)=\sigma_{s}\left(a_{\rho_{d}(i)}\right)
$$

follows at once from 5.3 .1 and the definition of d_{i}. Equality 5.3 .2 becomes obvious upon replacing i by ${\rho_{d}}^{-1}(i)$ in 5.3.3.
5.4 First step. From 5.1.1, and using 5.1.7, 5.1.8, and 5.1.2, we find that

$$
\begin{aligned}
M\left(\begin{array}{ccc}
s_{1} & \cdots & s_{p} \\
1 & \cdots & p
\end{array}\right) M & \left(\begin{array}{ccc}
\{1\} & \cdots & \{p-1\} \\
a_{1} \cdots & a_{p-1} & a_{p}
\end{array}\right) \\
& =\left(\begin{array}{cc}
\delta_{s_{p}^{*}, p} I & B\left(s_{1}, \cdots, s_{p}\right) \\
0 & 0
\end{array}\right) \\
& \cdot\left(\begin{array}{cc}
& A\left(a_{1}^{\prime}, \cdots, a_{p}^{\prime}\right) \\
C\left(a_{\rho_{a}(1)}, \cdots, a_{\rho_{a}(p)}\right) A\left(\rho_{a}^{-1}(1), \cdots, \rho_{a}^{-1}(p)\right) & 0
\end{array}\right)
\end{aligned}
$$

Multiply the two matrices on the right side of 5.4.1; apply 5.1.6; then apply 5.2.1. This gives
5.4.2

$$
M\left(\begin{array}{ccc}
s_{1} & \cdots & s_{p} \\
1 & \cdots & p
\end{array}\right) M\left(\begin{array}{cccc}
\{1\} & \cdots & \{p-1\} & \{p, \cdots, n\} \\
a_{1} & \cdots & a_{p-1} & a_{p}
\end{array}\right)
$$

$$
=\left(\begin{array}{cc}
A\left(\sigma_{s}\left(a_{1}\right), \cdots, \sigma_{s}\left(a_{p}\right)\right) & 0 \\
0 & 0
\end{array}\right)
$$

5.5 Second step. As in 5.4, it follows from 5.1.1 that

$$
M\left(\begin{array}{ccc}
s_{1} & \cdots & s_{p} \\
c_{1} & \cdots & c_{p}
\end{array}\right)
$$

5.5.1

$$
=\left(\begin{array}{cc}
A\left(c_{1}^{\prime}, \cdots c_{p}^{\prime}\right) & 0 \\
C\left(c_{\rho_{c}(1)}, \cdots, c_{\rho_{c}(p)}\right) A\left(\rho_{c}^{-1}(1), \cdots, \rho_{c}^{-1}(p)\right) & 0
\end{array}\right) M\binom{s_{1} \cdots s_{p}}{1 \cdots} .
$$

Multiply both sides of 5.5 .1 on the right by

$$
M\left(\begin{array}{ccc}
\{1\} & \cdots & \{p-1\} \\
a_{1} \cdots & a_{p-1} & a_{p}
\end{array}\right)
$$

use 5.4.2, multiply the resulting matrices, and use 5.1.4. This yields
5.5.2

$$
M\left(\begin{array}{ccc}
s_{1} \cdots & s_{p} \\
c_{1} \cdots & c_{p}
\end{array}\right) M\left(\begin{array}{cccc}
\{1\} & \cdots & \{p-1\} & \{p, \cdots, n\} \\
a_{1} & \cdots & a_{p-1} & a_{p}
\end{array}\right)
$$

$$
=\left(\begin{array}{cc}
A\left(c_{\sigma_{s}\left(a_{1}\right)}^{\prime}, \cdots, c_{\sigma_{s}\left(a_{p}\right)}^{\prime}\right) & 0 \\
C\left(c_{\rho_{c}(1)}, \cdots, c_{\rho_{c}(p)}\right) A\left(\rho_{c}^{-1}\left(\sigma_{s}\left(a_{1}\right)\right), \cdots, \rho_{c}^{-1}\left(\sigma_{s}\left(a_{p}\right)\right)\right) & 0
\end{array}\right)
$$

If there are any repetitions among the $\sigma_{s}\left(a_{i}\right)$, then the right side of 5.5.2 is zero. If not, we can apply Lemma 5.3 and find, in the notation of Lemma 5.3, that

$$
\begin{aligned}
& M\left(\begin{array}{ccc}
s_{1} \cdots & s_{p} \\
c_{1} \cdots & c_{p}
\end{array}\right) M\left(\begin{array}{cccc}
\{1\} & \cdots & \{p-1\}\{p, \cdots, n\} \\
a_{1} & \cdots & a_{p-1} & a_{p}
\end{array}\right) \\
& 5.5 .3=\left\{\begin{array}{cc}
A\left(d_{1}^{\prime}, \cdots, d_{p}^{\prime}\right) & 0 \\
\left(\begin{array}{cc}
\\
C\left(d_{\rho_{d}(1)}, \cdots, d_{\rho_{d}(p)}\right) A\left(\rho_{d}^{-1}(1), \cdots, \rho_{d}^{-1}(p)\right) & 0
\end{array}\right) \\
0 & \text { if the } \sigma_{s}\left(a_{i}\right) \text { are all distinct, } \\
0 & \text { otherwise. }
\end{array}\right.
\end{aligned}
$$

It is easy to see that

$$
\left(\begin{array}{ccc}
s_{1} \cdots & s_{p} \\
c_{1} \cdots & c_{p}
\end{array}\right)\left(\begin{array}{ccc}
\{1\} & \cdots & \{p-1\}\{p, \cdots, n\} \\
a_{1} \cdots & a_{p-1} & a_{p}
\end{array}\right)
$$

5.5.4

$$
=\left\{\begin{array}{ccc}
\left(\begin{array}{ccc}
\{1\} & \cdots & \{p-1\}\{p, \cdots, n\} \\
d_{1} \cdots & d_{p-1} & d_{p}
\end{array}\right) & \text { if the } \sigma_{s}\left(a_{i}\right) \text { are all distinct } \\
z & \text { otherwise. }
\end{array}\right.
$$

Equalities 5.5.3 and 5.5.4, together with 5.1.1 and 5.1.8, show that
5.5.5

$$
\left.\begin{array}{rl}
M\left(\begin{array}{ccc}
s_{1} \cdots & s_{p} \\
c_{1} \cdots & c_{p}
\end{array}\right) M & \left(\begin{array}{ccc}
\{1\} & \cdots & \{p-1\}\{p, \cdots, n\} \\
a_{1} & \cdots & a_{p-1}
\end{array} a_{p}\right.
\end{array}\right) .
$$

5.6 Third step. From 5.1.1 and direct multiplication of matrices, we find that

$$
M\binom{t_{1} \cdots t_{p}}{a_{1} \cdots a_{p}}=\left(\begin{array}{cc}
A\left(a_{1}^{\prime}, \cdots, a_{p}^{\prime}\right) & 0 \\
C\left(a_{\rho_{a}(1)}, \cdots, a_{\rho_{a}(p)}\right) A\left(\rho_{a}^{-1}(1), \cdots, \rho_{a}^{-1}(p)\right. & 0
\end{array}\right)
$$

$$
\left(\begin{array}{cc}
\delta_{t_{p}^{*}, p} I & B\left(t_{1}, \cdots, t_{p}\right) \\
0 & 0
\end{array}\right)
$$

The first matrix on the right side of 5.6 .1 is clearly equal to

$$
M\left(\begin{array}{ccc}
\{1\} & \cdots & \{p-1\} \\
a_{1} \cdots & a_{p-1} & a_{p}
\end{array}\right)
$$

We therefore have

$$
5.6 .2
$$

$$
\begin{aligned}
& M\left(\begin{array}{ccc}
s_{1} & \cdots & s_{p} \\
c_{1} & \cdots & c_{p}
\end{array}\right) M\left(\begin{array}{ccc}
t_{1} \cdots & t_{p} \\
a_{1} & \cdots & a_{p}
\end{array}\right) \\
& \quad=M\left(\begin{array}{ccc}
s_{1} & \cdots & s_{p} \\
c_{1} & \cdots & c_{p}
\end{array}\right) M\left(\begin{array}{cccc}
\{1\} & \cdots & \{p-1\}\{p, & \cdots, n\} \\
a_{1} & \cdots & a_{p-1} & a_{p}
\end{array}\right) \\
&
\end{aligned} \begin{gathered}
\delta_{\delta_{t_{p}^{*}, p} I} \\
0
\end{gathered}
$$

Formula 5.5.3 now shows that the right side of 5.6.2 is equal to
$5.6 .3\left(\begin{array}{c}\delta_{t_{p}^{*}, p} A\left(d_{1}^{\prime}, \cdots, d_{p}^{\prime}\right) \\ \delta_{t_{p}^{*}, p} C\left(d_{\rho_{d}(1)}, \cdots, d_{\rho_{d}(p)}\right) A\left(\rho_{d}^{-1}(1), \cdots, d_{p}^{\prime}\right) B\left(t_{1}, \cdots, t_{p}\right) \\ C\left(d_{\rho_{d}(1)}, \cdots, d_{\rho_{d}(p)}\right) A\left(\rho_{d}^{-1}(1), \cdots, \rho_{d}^{-1}(p)\right) B\left(t_{1}, \cdots, t_{p}\right)\end{array}\right)$
if all the $\sigma_{s}\left(a_{i}\right)$ are distinct and is zero otherwise. We also have
5.6.4 $\left(\begin{array}{ccc}s_{1} & \cdots & s_{p} \\ c_{1} & \cdots & c_{p}\end{array}\right)\left(\begin{array}{ccc}t_{1} \cdots & t_{p} \\ a_{1} \cdots & \cdots & a_{p}\end{array}\right)=\left\{\begin{array}{cc}\left(\begin{array}{ccc}t_{1} & \cdots & t_{p} \\ d_{1} & \cdots & d_{p}\end{array}\right) & \text { if all } \sigma_{s}\left(a_{i}\right) \text { are distinct, } \\ z & \text { otherwise. }\end{array}\right.$

Formula 5.1.1 shows that 5.6.3 is equal to

$$
M\left(\begin{array}{ccc}
t_{1} & \cdots & t_{p} \\
d_{1} & \cdots & d_{p}
\end{array}\right)
$$

Therefore 5.6.4 and 5.6.2 imply that M is a representation of $\mathfrak{B}_{p} \mathbf{u}\{z\}$.
We now summarize the results of this section.
5.7 Theorem. Let A, B, C be matrix functions as described in 5.1 that satisfy conditions 5.1.2, 5.1.3, 5.1.6, 5.1.7, and 5.1.8. Then the mapping M defined in 5.1.1 is a representation of $\mathfrak{B}_{p} \cup\{z\}$.

6. Construction of certain representations

In this section, we will exhibit a class of representations of $\mathfrak{B}_{p} \mathbf{u}\{z\}$. These representations are in general reducible. They will be used in $\S 7$ to find all of the irreducible representations of $\mathfrak{B}_{p} \cup\{z\}$. Throughout this section, we suppose that we have a matrix function A satisfying the conditions of Theorem 5.7. We will obtain matrix functions B and C satisfying the conditions of Theorem 5.7.
6.1 In order to write condition 5.1.6 in compact form, it is convenient to order all of the sequences b_{1}, \cdots, b_{p} and all of the families of sets s_{1}, \cdots, s_{p}. Let there be $u+1$ families of sets s_{1}, \cdots, s_{p} and $v+1$ sequences b_{1}, \cdots, b_{p}. Let $\{1\},\{2\}, \cdots,\{p-1\},\{p, \cdots, n\}$ correspond to the index 0 , and order all remaining s_{1}, \cdots, s_{p} in any way at all in a sequence with indices from 1 to u. Write $B_{j}=B\left(s_{1}, \cdots, s_{p}\right)$ if s_{1}, \cdots, s_{p} has index $j(0 \leqq j \leqq u)$. Similarly, let the sequence $1, \cdots, p$ correspond to the index 0 , and order all remaining sequences b_{1}, \cdots, b_{p} in any way at all in a sequence with indices from 1 to v. Write $C_{i}=C\left(b_{1}, \cdots, b_{p}\right)$ if b_{1}, \cdots, b_{p} has index $i(0 \leqq i \leqq v)$. Finally, write γ_{i}^{j} for $\gamma_{b_{1}, \cdots, b_{p}}^{s_{1}, \cdots, s_{p}}$ if s_{1}, \cdots, s_{p} has index j and b_{1}, \cdots, b_{p} has index $i(0 \leqq j \leqq u, 0 \leqq i \leqq v)$. Condition 5.1.6 in this notation is

$$
B_{j} C_{i}=\gamma_{i}^{j} \quad(0 \leqq j \leqq u, 0 \leqq i \leqq v)
$$

6.2 We first prove

$$
\gamma_{0}^{j}=0, \quad \gamma_{i}^{0}=0 \quad(0 \leqq j \leqq u, 0 \leqq i \leqq v)
$$

If $j=0$, then clearly $\sigma_{s}\left(b_{h}\right)=b_{h}^{\prime}(1 \leqq h \leqq p)$. Formula 5.1.5 shows at once that $\gamma_{i}^{0}=0$. If $i=0$, then $b_{h}=b_{h}^{\prime}=h^{\prime}=h(1 \leqq h \leqq p)$. Then if $s_{p}^{*}=p$, it is clear that $s_{h}^{*}=h(1 \leqq h<p)$, and hence $\sigma_{s}\left(b_{h}\right)=h(1 \leqq h \leqq p)$. It is clear from 5.1.5 that $\gamma_{0}^{j}=0$ in this case. If $s_{p}^{*} \neq p$, then $\delta_{s_{p}^{*}, p}=0$ and $A\left(\sigma_{s}\left(b_{1}\right), \cdots, \sigma_{s}\left(b_{p}\right)\right)=0$ because there is necessarily a repetition among the numbers $\sigma_{s}\left(b_{1}\right), \cdots, \sigma_{s}\left(b_{p}\right)$.
6.3 We now define $B_{0}=0$ and $C_{0}=0$. (This choice is of course dictated by 5.1.8 and 5.1.7.) Equalities 6.2.1 show that condition 6.1.1 is satisfied if $i=0$ or $j=0$. The matrices B_{1}, \cdots, B_{u} and C_{1}, \cdots, C_{v} are now to satisfy the condition

$$
\left(\begin{array}{ccc}
B_{1} C_{1} & \cdots & B_{1} C_{v} \\
\cdots & \cdots & \cdots
\end{array}\right] \cdots \cdots \cdot\left(\begin{array}{ccc}
\gamma_{1}^{1} & \cdots & \gamma_{v}^{1} \\
B_{u} C_{1} & \cdots & B_{u} C_{v}
\end{array}\right)=\left(\begin{array}{ccc}
& \cdots & \cdots \\
\gamma_{1}^{u} & \cdots & \gamma_{v}^{u}
\end{array}\right)
$$

We write Γ for the matrix on the right side of 6.3.1. It is a ($k u, k v$) matrix. 6.4 Let r be the rank of Γ. Let α and β be any positive integers greater
than or equal to r. (Note that r is positive.) Let $J(\alpha, \beta)$ be the (α, β) matrix
6.4.1

$$
\left(\begin{array}{ccccc}
1 & 0 & \cdots & 0 & \\
0 & 1 & \cdots & 0 & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & 1_{(r)} & \\
& & & & 0
\end{array}\right)
$$

having 1's in the first r places of the main diagonal and 0's elsewhere. We write $J(k u, k v)$ as $J, J(k u, r)$ as J_{1}, and $J(r, k v)$ as J_{2}. Obviously

$$
J=J_{1} J_{2}
$$

It is a familiar fact that there exist a nonsingular ($k u, k u$) matrix P and a nonsingular ($k v, k v$) matrix Q such that

6.4.3

$$
P \Gamma Q=J
$$

If we define the (k, r) matrices B_{j} by
6.4.4

$$
\left(\begin{array}{c}
B_{1} \\
B_{2} \\
\vdots \\
B_{u}
\end{array}\right)=P^{-1} J_{1}
$$

and the (r, k) matrices C_{i} by
6.4.5

$$
\left(C_{1} C_{2} \cdots C_{v}\right)=J_{2} Q^{-1}
$$

we see that
6.4.6

$$
\left(\begin{array}{c}
B_{1} \\
B_{2} \\
\vdots \\
B_{u}
\end{array}\right)\left(C_{1} C_{2} \cdots C_{v}\right)=P^{-1} J_{1} J_{2} Q^{-1}=P^{-1} J Q^{-1}=\Gamma
$$

Condition 6.3.1 is then obviously satisfied. By Theorem 5.7, we have obtained a representation of $\mathfrak{B}_{p} \mathbf{\cup}\{z\}$ for which $l=r$.
6.5 For use in §7, we need two facts. Let Y be an arbitrary (k, r) matrix. Then there are (k, k) matrices M_{1}, \cdots, M_{u} such that $Y=\sum_{j=1}^{u} M_{j} B_{j}$. To see this, we note that

$$
Y J(r, k u) P\left(\begin{array}{c}
B_{1} \\
B_{2} \\
\vdots \\
B_{u}
\end{array}\right)=Y
$$

and that the left side of 6.5 .1 has the form $\sum_{j=1}^{u} M_{j} B_{j}$. Similarly, let Z be an arbitrary (r, k) matrix. Then we have
6.5.2

$$
\left(C_{1} C_{2} \cdots C_{v}\right) Q J(k v, r) Z=Z
$$

and it follows that every (r, k) matrix can be written in the form $\sum_{i=1}^{v} C_{i} N_{i}$, where the N_{i} are (k, k) matrices.

7. The irreducible representations

Condition 5.1.2 implies that the matrices A appearing in 5.1.1 yield a representation of \mathfrak{S}_{p}. We will establish in this section a 1-to-1 correspondence between the irreducible representations of \mathfrak{S}_{p} and those representations 5.1.1 of $\mathfrak{B}_{p} \cup\{z\}$ that are irreducible.
7.1 A glance at 5.1.1 shows that if the representation M of $\mathfrak{B}_{p} \mathbf{u}\{z\}$ is irreducible, then the representation A of \mathfrak{S}_{p} must be irreducible. Conversely, suppose that A is an irreducible representation of \mathfrak{S}_{p}. From 5.1.1, we have

$$
M\left(\begin{array}{ccc}
\{1\} & \cdots & \{p-1\}\{p, \cdots, n\} \\
1 & \cdots & p-1
\end{array}\right)=\left(\begin{array}{cc}
I & 0 \\
0 & 0
\end{array}\right)
$$

If X is any (k, k) matrix, then X can be written as a linear combination $\sum \beta_{\left(a_{1}, \cdots, a_{p}\right)} A\left(a_{1}, \cdots, a_{p}\right)$. Then
7.1.2 $\left(\begin{array}{ll}I & 0 \\ 0 & 0\end{array}\right) \sum \beta_{\left(a_{1}, \cdots, a_{p}\right)} M\left(\begin{array}{ccc}\{1\} & \cdots & \{p-1\}\{p, \cdots, n\} \\ a_{1} & \cdots & a_{p-1}\end{array} a_{p}.\right)=\left(\begin{array}{cc}X & 0 \\ 0 & 0\end{array}\right)$.

Since M is a representation, the left side of 7.1.2 is a linear combination of matrices 5.1.1.

Next, consider an arbitrary b_{1}, \cdots, b_{p}, and let φ be a 1-to-1 mapping of $\{1, \cdots, p\}$ onto itself. Then 5.1 .1 shows that
7.1.3

$$
M\left(\begin{array}{ccc}
\{1\} & \cdots & \{p-1\}\{p, \cdots, n\} \\
b_{\varphi(1)} & \cdots & b_{\varphi(p-1)}
\end{array} b_{\varphi(p)}\right)
$$

$$
=\left(\begin{array}{cc}
H & 0 \\
C\left(b_{1}, \cdots, b_{p}\right) A(\varphi(1), \cdots, \varphi(p)) & 0
\end{array}\right)
$$

where H is some (k, k) matrix. Since A is irreducible, we can, for every (k, k) matrix N, find a linear combination of matrices 7.1.3 that has the form

$$
\left(\begin{array}{cc}
H^{\prime} & 0 \\
C\left(b_{1}, \cdots, b_{p}\right) N & 0
\end{array}\right)
$$

Then 6.5 shows that for an arbitrary (r, k) matrix Z, there is a linear combination of matrices 5.1.1 that has the form
7.1.5

$$
\left(\begin{array}{ll}
H^{\prime \prime} & 0 \\
Z & 0
\end{array}\right)
$$

Next consider an arbitrary s_{1}, \cdots, s_{p}, and let φ be as above. Then 5.1.1 and 5.1.7 show that
7.1.6 $M\left(\begin{array}{ccc}s_{1} & \cdots & s_{p} \\ \varphi(1) & \cdots & \varphi(p)\end{array}\right)=\left(\begin{array}{cc}H^{\prime \prime \prime} & A(\varphi(1), \cdots, \varphi(p)) B\left(s_{1}, \cdots, s_{p}\right) \\ 0 & 0\end{array}\right)$.

As before, we apply 6.5 and see that, for an arbitrary (k, r) matrix Y, there is a linear combination of matrices 5.1.1 having the form

$$
\left(\begin{array}{ll}
H^{\prime \prime \prime \prime} & Y \\
0 & 0
\end{array}\right)
$$

From 7.1.2, 7.1.5, and 7.1.7, it is clear that linear combinations of the matrices 5.1.1 give arbitrary matrices
7.1.8

$$
\left(\begin{array}{ll}
X & Y \\
Z & 0
\end{array}\right)
$$

Let $E_{i j}(\alpha, \beta)$ be an (α, β) matrix with 1 in the $i^{\text {th }}$ row and $j^{\text {th }}$ column and 0 's elsewhere. Then
7.1.9 $\quad\left(\begin{array}{cc}0 & 0 \\ E_{i 1}(r, k) & 0\end{array}\right)\left(\begin{array}{cc}0 & E_{1 j}(k, r) \\ 0 & 0\end{array}\right)=\left(\begin{array}{cc}0 & 0 \\ 0 & E_{i j}(r, r)\end{array}\right)$.

From 7.1.8, 7.1.9, and the fact that M is a representation, we now see that M is irreducible.
7.2 We next show that equivalent irreducible representations of \widetilde{S}_{p} produce equivalent representations of $\mathfrak{B}_{p} \cup\{z\}$. If A and \bar{A} are equivalent irreducible representations of \Im_{p} by (k, k) matrices, then there is a nonsingular (k, k) matrix R such that $\bar{A}(\varphi(1), \cdots, \varphi(p))=R A(\varphi(1), \cdots, \varphi(p)) R^{-1}$ for all φ as in 5.1.2. Let M and \bar{M} be the irreducible representations of $\mathfrak{B}_{p} \cup\{z\}$ obtained from A and \bar{A} respectively by applying 5.1 .1 and 5.1.3. Writing $A_{i j}$ for the entry in the $i^{\text {th }}$ row and $j^{\text {th }}$ column of A, and similarly for \bar{A}, M, and \bar{M}, we now have
7.2.1

$$
\bar{A}_{11}(\varphi(1), \cdots, \varphi(p))=\sum_{i, j} \tau_{i j} A_{i j}(\varphi(1), \cdots, \varphi(p))
$$

for all 1-to-1 mappings φ of $\{1, \cdots, p\}$ onto itself. Condition 5.1.3 shows that

$$
\bar{A}_{11}\left(c_{1}, \cdots, c_{p}\right)=\sum_{i, j} \tau_{i j} A_{i j}\left(c_{1}, \cdots, c_{p}\right)
$$

for all integers c_{1}, \cdots, c_{p} lying between 1 and p. Now 5.1.1 and 7.2.2 show that
7.2.3

$$
\bar{M}_{11}\left(\begin{array}{ccc}
s_{1} & \cdots & s_{p} \\
a_{1} & \cdots & a_{p}
\end{array}\right)=\delta_{s_{p}^{*}, p} \sum_{i, j} \tau_{i j} A_{i j}\left(a_{1}^{\prime}, \cdots, a_{p}^{\prime}\right)
$$

7.2.3

$$
=\sum_{i, j} \tau_{i j} M_{i j}\left(\begin{array}{ccc}
s_{1} & \cdots & s_{p} \\
a_{1} & \cdots & a_{p}
\end{array}\right)
$$

Also
7.2.4

$$
\bar{M}_{11}(z)=0=\sum_{i, j} \tau_{i j} M_{i j}(z)
$$

Consequently the function \bar{M}_{11} is a linear combination of the functions $M_{i j}(1 \leqq i \leqq k, 1 \leqq j \leqq k)$. Theorem 5.18 of [3] implies that the representations M and \bar{M} are equivalent.
7.3 We will now show that inequivalent irreducible representations of $\mathbb{S}_{\underline{p}}$ produce inequivalent representations of $\mathfrak{B}_{p} \cup\{z\}$. Suppose that A and \bar{A} are irreducible representations of \Im_{p} by (k, k) and (\bar{k}, \bar{k}) matrices, respectively, and that M and \bar{M} are the corresponding representations of $\mathfrak{B}_{p} \cup\{z\}$ obtained by 5.1.3 and 5.1.1. We may obviously suppose that $\bar{k} \geqq k$. Let I_{s} denote the (s, s) identity matrix $(s=1,2,3, \cdots)$. Now suppose that M and \bar{M} are equivalent. There exist $(k+r, k+r)$ matrices

$$
\left(\begin{array}{ll}
S & T \\
U & V
\end{array}\right) \text { and }\left(\begin{array}{ll}
S^{\prime} & T^{\prime} \\
U^{\prime} & V^{\prime}
\end{array}\right)
$$

(written in $(k, k),(k, r),(r, k)$ and (r, r) blocks) that are inverses of each other and have the property that
7.3.1 $\quad\left(\begin{array}{cc}S & T \\ U & V\end{array}\right) M\left(\begin{array}{ccc}s_{1} & \cdots & s_{p} \\ a_{1} & \cdots & a_{p}\end{array}\right)\left(\begin{array}{cc}S^{\prime} & T^{\prime} \\ U^{\prime} & V^{\prime}\end{array}\right)=\bar{M}\left(\begin{array}{ccc}s_{1} & \cdots & s_{p} \\ a_{1} & \cdots & a_{p}\end{array}\right)$
for all

$$
\left(\begin{array}{ccc}
s_{1} & \cdots & s_{p} \\
a_{1} & \cdots & a_{p}
\end{array}\right) \in \mathfrak{B}_{p}
$$

Putting

$$
\left(\begin{array}{ccc}
s_{1} & \cdots & s_{p} \\
a_{1} & \cdots & a_{p}
\end{array}\right)=\left(\begin{array}{cccc}
\{1\} & \cdots & \{p-1\} & \{p, \cdots, n\} \\
1 & \cdots & p-1 & p
\end{array}\right)
$$

in 7.3.1, and using 5.1.1, we have
7.3.2 $\quad\left(\begin{array}{ll}S & T \\ U & V\end{array}\right)\left(\begin{array}{ll}I_{k} & 0 \\ 0 & 0\end{array}\right)\left(\begin{array}{ll}S^{\prime} & T^{\prime} \\ U^{\prime} & V^{\prime}\end{array}\right)=\left(\begin{array}{ll}I_{\bar{k}} & 0 \\ 0 & 0\end{array}\right)$.

We also have
7.3.3 $\left(\begin{array}{ll}S & T \\ U & V\end{array}\right)\left(\begin{array}{ll}S^{\prime} & T^{\prime} \\ U^{\prime} & V^{\prime}\end{array}\right)=I_{k+r}$.

From 7.3.2, we have
7.3.4 $\quad S S^{\prime}=I_{k}, \quad U S^{\prime}=0, \quad S T^{\prime}=0$.

Hence
7.3.5

$$
U=0, \quad T^{\prime}=0
$$

From 7.3.5 and 7.3.3, we infer in turn
7.3.6

$$
V V^{\prime}=I_{r}, \quad U^{\prime}=0, \quad T=0
$$

The left side of 7.3.2 is therefore equal to

$$
\left(\begin{array}{ll}
I_{k} & 0 \\
0 & 0
\end{array}\right)
$$

and this implies that $k=\bar{k}$. Let φ be a 1 -to-1 mapping of $\{1, \cdots, p\}$ onto itself. Consider 7.3.1 for $s_{1}, \cdots, s_{p}=\{1\}, \cdots,\{p-1\},\{p, \cdots, n\}$ and $a_{1}, \cdots, a_{p}=\varphi(1), \cdots, \varphi(p)$. We obtain
7.3.7

$$
\left(\begin{array}{cc}
S & 0 \\
0 & V
\end{array}\right)\left(\begin{array}{cc}
A(\varphi(1), \cdots, \varphi(p)) & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
S^{-1} & 0 \\
0 & V^{-1}
\end{array}\right)
$$

$$
=\left(\begin{array}{cc}
\bar{A}(\varphi(1), \cdots, \varphi(p)) & 0 \\
0 & 0
\end{array}\right)
$$

so that
7.3.8

$$
S A(\varphi(1), \cdots, \varphi(p)) S^{-1}=\bar{A}(\varphi(1), \cdots, \varphi(p))
$$

Hence the representation A of \Im_{p} is equivalent to the representation \bar{A} of \Im_{p}. We have therefore proved the following.
7.4 Theorem. Let the representation A of \mathfrak{S}_{p}, as described in 5.1.2, run through a complete set of inequivalent irreducible representations of \mathfrak{S}_{p}. The corresponding representations M of $\mathfrak{B}_{p} \mathbf{\cup}\{z\}$ defined by 5.1.3 and 5.1.1 are all irreducible and inequivalent. Furthermore, every irreducible representation of $\mathfrak{B}_{p} \cup\{z\}$ is obtained in this way.
7.5 Theorems 7.4 and 3.7 show that we have a method for obtaining all irreducible representations of \mathfrak{T}_{n}. To write down any of these representations, begin with an irreducible representation of \mathfrak{S}_{p}. These representations are well known, and a method for their construction can be found, for example, in Ch. IV of [1]. The construction in $\S 6$ gives the matrices B_{i} and C_{j}. Formula 5.1 .1 gives the associated irreducible representation of $\mathfrak{B}_{p} \mathbf{\cup}\{z\}$. Theorem 3.5 shows how to extend this representation over all of \mathfrak{I}_{n}. A numerical example is given in 8.6.

8. Special results

We here give the special forms of the irreducible representations of \mathfrak{I}_{n} that correspond to certain special values of p and A. We also work out some numerical examples.
8.1 The case $p=1$. The semigroup \mathfrak{B}_{1} has the simple multiplication rule $f g=f$. The only irreducible representation of \mathfrak{B}_{1} is the 1 -dimensional iden-
tity representation. By Theorem 3.5, the only irreducible representation of \mathfrak{I}_{n} not zero on \mathfrak{B}_{1} is the 1-dimensional identity representation. This also fits into the general theory of $\S \S 5-7$, since $u+1=1$ if $p=1$, and the matrix Γ does not appear at all. Note also that z is an adjoined zero in the semigroup $\mathfrak{B}_{1} \mathrm{u}\{z\}$.
8.2 The case $p=n$. It is clear that an irreducible representation of \mathfrak{T}_{n} that is zero on $\bigcup_{j=1}^{n-1} \mathfrak{B}_{j}$ must be an irreducible representation on the group $\mathfrak{B}_{n}=\mathfrak{S}_{n}$. Conversely, every irreducible representation of \mathfrak{B}_{n} can be extended to an irreducible representation of \mathfrak{I}_{n} by being defined as 0 on $\bigcup_{j=1}^{n-1} \mathfrak{B}_{j}$. Thus we know all irreducible representations of \mathfrak{T}_{n} that vanish on $\bigcup_{j=1}^{n-1} \mathfrak{B}_{j}$ in terms of the irreducible representations of the symmetric group \mathfrak{B}_{n}. This fits into the general theory of $\S \S 5-7$: for $p=n$, we have $u+1=v+1=1$, and the matrix Γ does not appear.
8.3 The case in which A is the identity. If the representation A of \mathfrak{S}_{p} appearing in 5.1 .2 is the 1 -dimensional identity representation, then the corresponding irreducible representation of \mathfrak{T}_{n} can be written in a simple form. Suppose that $1<p<n$. Consider the semigroup algebra $\mathscr{L}_{1}\left(\mathfrak{B}_{p} \mathbf{U}\{z\}\right)$ as defined in [3]. We may think of $\mathscr{L}_{1}\left(\mathfrak{B}_{p} \mathbf{u}\{z\}\right)$ as consisting of all formal complex linear combinations $\sum \alpha_{f} f$, the sum being taken over all $f \in \mathfrak{B}_{p} \mathbf{\cup}\{z\}$, with $\left(\sum_{f} \alpha_{f} f\right)\left(\sum_{g} \beta_{g} g\right)=\sum_{f} \sum_{g} \alpha_{f} \beta_{g} f g$. For every sequence b_{1}, \cdots, b_{p} (recall that $1 \leqq b_{1}<\cdots<b_{p} \leqq n$), let $F_{b_{1} \cdots b_{p}}$ be the element of $\mathscr{L}_{1}\left(\mathfrak{B}_{p} \cup\{z\}\right)$
8.3.1 $\quad F_{b_{1} \cdots b_{p}}=\sum_{\varphi \in \Im_{p}}\left(\begin{array}{ccccc}\{1\} & \{2\} & \cdots & \{p-1\} & \{p, \cdots, n\} \\ b_{\varphi(1)} & b_{\varphi(2)} & \cdots & b_{\varphi(p-1)} & b_{\varphi(p)}\end{array}\right)-p!z$.

The elements $F_{b_{1} \ldots b_{p}}$ are linearly independent, and span an $\binom{n}{p}$-dimensional subspace \mathcal{S} of $\mathscr{L}_{1}\left(\mathfrak{B}_{p} \mathbf{u}\{z\}\right)$. For every $f \in \mathfrak{I}_{n}$, let
8.3.2 $\quad T_{f} F_{b_{1} \cdots b_{p}}=\left\{\begin{array}{rlll}\sum_{\varphi £_{p}} f\left(\begin{array}{lll} & b_{\varphi(1)} & \cdots \\ b_{\varphi(p-1)} & & b_{\varphi(p)}\end{array}\right)-p!z \\ & \text { if } f\left(b_{1}\right), \cdots, & f\left(b_{p}\right) \text { are all distinct }\end{array}\right.$, 0 otherwise.

It is easy to see that $T_{f} F_{b_{1} \ldots b_{p}}=F_{c_{1} \cdots c_{p}}$, where c_{1}, \cdots, c_{p} is the sequence $f\left(b_{1}\right), \cdots, f\left(b_{p}\right)$ arranged in increasing order, if $f\left(b_{1}\right), \cdots, f\left(b_{p}\right)$ are all distinct. Extend the transformations T_{f} over S by linearity. It is easy to see that they form a representation of \mathfrak{T}_{n} by linear transformations on \mathcal{S}. The set $\left\{T_{f}\right\}_{f \in \mathfrak{P}_{p}}$ of linear transformations can be shown to be irreducible on \mathcal{S}. Choose a new basis for s :

$$
\left\{F_{12 \ldots p}\right\} \cup\left\{F_{12 \ldots p-1 x}-F_{12 \ldots p}\right\}_{p<x \leqq n} \cup\left\{F_{b_{1} \ldots b_{p}}\right\}_{b_{p-1}>p-1} .
$$

Consider the matrices $N(f)$ corresponding to the linear transformations T_{f} in this particular basis $\left(f \epsilon \mathfrak{B}_{p}\right)$. It is easy to see that the upper left corners of
these matrices are the same as the upper left corners of the matrices 5.1.1 for A the identity. Hence the irreducible representation of $\mathfrak{B}_{p} \mathbf{\cup}\{z\}$ defined by

$$
\begin{aligned}
& f \rightarrow N(f) \text { for } f \in \mathfrak{B}_{p} \\
& z \rightarrow 0
\end{aligned}
$$

is equivalent to the representation 5.1 .1 with A the identity. This follows from Theorem 5.18 of [3]. Formula 8.3.2 thus defines in one step the irreducible representation of \mathfrak{I}_{n} corresponding to A the identity and any fixed value of $p, 1<p<n$. We see that the representation is by means of $\left(\binom{n}{p},\binom{n}{p}\right)$ matrices. Furthermore it is easy to show that the rank of the matrix corresponding to T_{f} for $f \in \mathfrak{B}_{p+j}$ is $\binom{p+j}{p}(j=0,1, \cdots, n-p)$.
8.4 The case $p=2$. In view of $8.1,8.2$, and the general theory, we have on y one more irreducible representation of \mathfrak{I}_{n} not vanishing on \mathfrak{B}_{2} : the representation 5.1.1 for $p=2$ and A the alternating representation of \mathfrak{S}_{2}. Consider the semigroup algebra $\mathscr{L}_{1}\left(\mathfrak{T}_{n}\right)$, and let $H_{b} \in \mathscr{L}_{1}\left(\mathfrak{I}_{n}\right)$ be defined by
8.4.1 $\quad H_{b}=\binom{\{1,2, \cdots, n\}}{1}-\binom{\{1,2, \cdots, n\}}{b}, \quad b=2,3, \cdots, n$.

For every $f \in \mathfrak{I}_{n}$, let
8.4.2

$$
U_{f} H_{b}=f H_{b}
$$

Clearly
8.4.3

$$
U_{f} H_{b}=H_{f(b)}-H_{f(1)}
$$

Just as in 8.3 , one can show that the U_{f} produce linear transformations (also written as U_{f}) on the linear subspace of $\mathfrak{L}_{1}\left(\mathfrak{I}_{n}\right)$ spanned by H_{2}, \cdots, H_{n}. These linear transformations yield an irreducible representation of \mathfrak{I}_{n} which on $\mathfrak{B}_{2} \cup\{z\}$ is equivalent to the representation 5.1 .1 with $p=2$ and A the alternating representation of \mathfrak{S}_{2}. Hence the matrices M of 5.1.1 are in this case $(n-1, n-1)$ matrices. It is not hard to see that the rank of the matrix corresponding to U_{f} is $p-1$ for $f \in \mathfrak{B}_{p}(p=1,2, \cdots, n)$.
8.5 The case $p=n-1$. Carefully chosen transformations of the matrix Γ lead to the following results for $p=n-1$. Let the degree k of the representation A of \mathfrak{S}_{n-1} be greater than 1. Then the rank of Γ is $k(n-1)$, and hence the degree of the corresponding representation of \mathfrak{I}_{n} is $k n$. If $k=1$ and A is the alternating representation of \Im_{n-1}, then the rank of Γ is $n-2$. Thus the degree of the corresponding representation of \mathfrak{I}_{n} is $n-1$. If A is the identity representation of \Im_{n-1}, then the rank of Γ is $n-1$, and the degree of the corresponding representation of \mathfrak{I}_{n} is n. (This last follows also from 8.3.) The calculations are long, and we omit them.
8.6 As an example of the general theory, we consider the case $n=4, p=3$.

We order the s_{1}, s_{2}, s_{3} and the b_{1}, b_{2}, b_{3} :
8.6.1

$\{1\}$	$\{2\}$	$\{34\}$	123
$\{1\}$	$\{23\}$	$\{4\}$	124
$\{12\}$	$\{3\}$	$\{4\}$,	134
$\{1\}$	$\{24\}$	$\{3\}$	234
$\{14\}$	$\{2\}$	$\{3\}$	
$\{13\}$	$\{2\}$	$\{4\}$	

Using 5.1.5 and the definition of Γ in 6.3 , we find

$$
\Gamma=\left(\begin{array}{rcc}
I & I & 0 \\
0 & I & I \\
-I & A(1,3,2) & 0 \\
-I & 0 & A(2,3,1) \\
I & 0 & A(2,1,3)
\end{array}\right)
$$

where the A 's form an irreducible (k, k) matrix representation of \Im_{3} and I is the (k, k) identity matrix. We have used the equalities $A(1,2,3)=I$ and $A\left(c_{1}, c_{2}, c_{3}\right)=0$ if there is a duplication among the c's.

Now if we take

$$
P_{1}=\left(\begin{array}{ccccc}
I & 0 & 0 & 0 & 0 \\
0 & I & 0 & 0 & 0 \\
I & -I-A(1,3,2) & I & 0 & 0 \\
I & -I & 0 & I & 0 \\
A(2,1,3) & -A(2,1,3)-A(2,3,1) & A(2,1,3) & I & I
\end{array}\right)
$$

and

$$
Q_{1}=\left(\begin{array}{rrr}
I & -I & -\frac{1}{2} I \\
0 & I & \frac{1}{2} I \\
0 & 0 & -\frac{1}{2} I
\end{array}\right)
$$

we obtain

$$
P_{1} \Gamma Q_{1}=\left(\begin{array}{ccc}
I & 0 & 0 \\
0 & I & 0 \\
0 & 0 & \frac{1}{2}(I+A(1,3,2)) \\
0 & 0 & \frac{1}{2}(I-A(2,3,1)) \\
0 & 0 & 0
\end{array}\right)
$$

where we have used the equality $A(2,1,3) A(1,3,2)=A(2,3,1)$.

There are two nonequivalent irreducible representations of \mathfrak{S}_{3} by $(1,1)$ matrices and one by $(2,2)$ matrices. Now \mathfrak{S}_{3} is generated by the elements corresponding to $A(1,3,2)$ and $A(2,1,3)$, so we need list only these two matrices. We have the three cases
(i) $A(1,3,2)=A(2,1,3)=(1)$,
(ii) $A(1,3,2)=A(2,1,3)=(-1)$,
(iii) $A(1,3,2)=\left(\begin{array}{ll}1 & -1 \\ 0 & -1\end{array}\right), \quad A(2,1,3)=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$.

In case (i), we have $k=1$ and

$$
P_{1} \Gamma Q_{1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad P=P_{1}, \quad Q=Q_{1}, \quad r=3
$$

In case (ii), we have $k=1$ and

$$
P_{1} \Gamma Q_{1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad P=P_{1}, \quad Q=Q_{1}, \quad r=2
$$

In case (iii), we have $k=2$ and

$$
P_{1} \Gamma Q_{1}=\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & -\frac{1}{2} \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} \\
0 & 0 & 0 & 0 & -\frac{1}{2} & 1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) ;
$$

To bring this matrix to our standard form, we multiply on the left by

$$
\begin{aligned}
& P_{2}=\left(\begin{array}{cccccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{2}{3} & 0 & \frac{2}{3} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \frac{2}{3} & \frac{2}{3} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & -1 & 1 & 0 & 0
\end{array}\right) . \\
& P_{2} P_{1} \Gamma Q_{1}=\left(\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right), \quad P=P_{2} P_{1}, \quad Q=Q_{1}, \quad r=6 .
\end{aligned}
$$

In all three cases, we have

$$
\begin{gathered}
Q^{-1}=Q_{1}^{-1}=\left(\begin{array}{ccc}
I & I & 0 \\
0 & I & I \\
0 & 0 & -2 I
\end{array}\right), \\
P_{1}^{-1}=\left(\begin{array}{ccccc}
I & 0 & 0 & 0 & 0 \\
0 & I & 0 & 0 & 0 \\
-I & I+A(1,3,2) & I & 0 & 0 \\
-I & I & 0 & I & 0 \\
I & -I & -A(2,1,3) & -I & I
\end{array}\right),
\end{gathered}
$$

$$
P_{2}^{-1}=\left(\begin{array}{cccccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & -\frac{1}{2} & 0 & 0 & 0 & \frac{1}{3} \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & -\frac{1}{3} \\
0 & 0 & 0 & 0 & -\frac{1}{2} & 1 & 0 & 0 & 0 & \frac{1}{3} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0
\end{array}\right) .
$$

In cases (i) and (ii), we have $P^{-1}=P_{1}^{-1}$, and in case (iii) we have $P^{-1}=P_{1}^{-1} P_{2}^{-1}$. The irreducible representations of $\mathfrak{B}_{3} \cup\{z\}$ can be obtained from the matrices P^{-1} and Q^{-1}, and they can be then extended over \mathfrak{T}_{4}. We will not do this, but we will carry one case a little further.

In case (ii), we have $k=1, r=2$,

$$
P^{-1}=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
-1 & 0 & 1 & 0 & 0 \\
-1 & 1 & 0 & 1 & 0 \\
1 & -1 & 1 & -1 & 1
\end{array}\right),
$$

and

$$
Q^{-1}=\left(\begin{array}{ccc}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & -2
\end{array}\right)
$$

From this we find

$$
\begin{array}{ll}
B_{1}=\left(\begin{array}{ll}
1 & 0
\end{array}\right) \\
B_{2}=\left(\begin{array}{ll}
0 & 1
\end{array}\right) & C_{1}=\binom{1}{0} \\
B_{3}=\left(\begin{array}{ll}
-1 & 0
\end{array}\right), & C_{2}=\binom{1}{1} \\
B_{4}=\left(\begin{array}{ll}
-1 & 1
\end{array}\right) \\
B_{5}=\left(\begin{array}{ll}
1 & -1
\end{array}\right) & C_{3}=\binom{0}{1}
\end{array}
$$

using the ordering 8.6.1. These matrices can be used in 5.1.1 to find the corresponding irreducible representations of $\mathfrak{B}_{3} \mathbf{u}\{z\}$. For example, we find

$$
\begin{aligned}
& M\left(\begin{array}{ccc}
\{1\} & \{23\} & \{4\} \\
1 & 3 & 4
\end{array}\right)=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & \\
0 & C_{2} B_{1}
\end{array}\right)=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 0
\end{array}\right), \\
& M\left(\begin{array}{ccc}
\{1\} & \{23\} & \{4\} \\
2 & 3 & 4
\end{array}\right)=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & C_{3} B_{1} \\
0 &
\end{array}\right)=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right), \\
& M\left(\begin{array}{ccc}
\{12\} & \{3\} & \{4\} \\
2 & 3 & 4
\end{array}\right)
\end{aligned}
$$

We also have

$$
M\left(\begin{array}{ccc}
\{1\} & \{2\} & \{34\} \\
1 & 2 & 3
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

and hence
$M\left(\begin{array}{ccc}\{1\} & \{2\} & \{34\} \\ 1 & 2 & 3\end{array}\right)+M\left(\begin{array}{ccc}\{1\} & \{23\} & \{4\} \\ 1 & 3 & 4\end{array}\right)$

$$
-M\left(\begin{array}{ccc}
\{1\} & \{23\} & \{4\} \\
2 & 3 & 4
\end{array}\right)+M\left(\begin{array}{ccc}
\{12\} & \{3\} & \{4\} \\
2 & 3 & 4
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

from which we can read off the values of the α_{f} for use in Theorem 3.5.
8.7 The matrix Γ has $k u$ rows and $k v$ columns. The number v is obviously

$$
v=\binom{n}{p}-1
$$

The number u is not as easy to find. We write $u=u(n, p)-1$. Consider the set of all s_{1}, \cdots, s_{p} counted by $u(n-1, p)$. If we replace any s_{i} by $s_{i} \mathbf{\cup}\{n\}$, we obtain an s_{1}, \cdots, s_{p} counted by $u(n, p)$. We will also get an s_{1}, \cdots, s_{p} counted by $u(n, p)$ if we take an s_{1}, \cdots, s_{p-1} counted by $u(n-1, p-1)$ and change it to $s_{1}, \cdots, s_{p-1}, s_{p}$ with $s_{p}=\{n\}$. It is easy to see that there are no duplicates and that this enumeration is exhaustive. Thus we have

$$
u(n, p)=p u(n-1, p)+u(n-1, p-1), \quad 2 \leqq p \leqq n-1
$$

Since $u(n, 1)=u(n, n)=1$, we obtain the following table.

n		p				
	1	2	3	4	5	6
1	1					
2	1	1				
3	1	3	1			
4	1	7	6	1		
5	1	15	25	10	1	
6	1	31	90	65	15	1

It can be shown that

$$
u(n, p)=\sum_{j=1}^{p} \frac{(-1)^{p-j} j^{n}}{j!(p-j)!}
$$

Bibliography

1. H. Boerner, Darstellungen von Gruppen, Die Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen, Band LXXIV, Springer-Verlag/ Berlin. Göttingen. Heidelberg, 1955.
2. A. H. Clifford, Matrix representations of completely simple semigroups. Amer. J. Math., vol. 64 (1942), pp. 327-342.
3. Edwin Hewitt and H. S. Zuckerman, Finite dimensional convolution algebras, Acta Math., vol. 93 (1955), pp. 67-119.
4. W. D. Munn, On semigroup algebras, Proc. Cambridge Philos. Soc., vol. 51 (1955), pp. 1-15.
5. I. S. Ponizovskin̆, O matričnyh predstavleniyah associativnyh sistem, Mat. Sbornik N. S., vol. 38 (80) (1956), pp. 241-260.
6. A. Suškevič, Über die Matrizendarstellung der verallgemeinerten Gruppen, Communications de la société mathématique de Kharkow [Zapiski], Ser. 4, vol. 6 (1933), pp. 27-38.

The University of Washington
Seattle, Washington

[^0]: Received October 18, 1956.
 ${ }^{1}$ Research supported in part by the National Science Foundation. The first named author is a fellow of the John Simon Guggenheim Memorial Foundation.

