
ON MODULES OF TRIVIAL COHOMOLOGY OVER A FINITE GROUP

BY TADASI NAKAYAM&

We say that a module A over a finite group G is of trivial cohomology when
we have H(H, A) 0 for every integer n and every subgroup H of G. Re-
cently the writer proved"

THEOREM. Let A be a module over a finite group G. Assume that for every
prime p dividing the order [G] of G there is an integer r, such that

Hrp(H,, A) Hrp+I(H A) O,

where H, is a p-Sylow subgroup of G. Then the G-module A is of trivial co-
homology.

Our proof of this theorem in [8] (or [7]) was a combination of representation-
theoretical arguments and an argument by so-called fundamental exact se-
quences in group cohomology. In the present note we shall give two (partly)
new proofs, one by means of fundamental exact sequences only, like former
proofs of a weaker form of the theorem ([5], [1], [2]), and one quite repre-
sentation- or module-theoretical. Indeed, in the course of our latter proof,
which makes use of an idea of Gaschiitz, we shall obtain a result which may
be considered as a structural characterization of a module of trivial co-
homology.

1. Proof by fundamental exact sequences
Let G be a group and H an invariant subgroup of G. The theorem of

fundamental exact sequences in group cohomology states [6], [4]" If n is a
natural number and if A is a G-module such that H(H, A) 0 for i
1, 2, n 1, then the sequence

0 H"(G/H, AH)- ) pH’(G, A)- H’(H, A)

" H’+I(G/H, An) H"+I(G, A)
is exact, where M with a G-module M denotes the submodule of M consist-
ing of all G-invariant elements of M and where ,, p and r denote lift, restric-
tion and transgression maps respectively. Dually we have the theorem of
fundamental exact sequences in homology, which in case of a finite group G
may be formulated in terms of negative dimensional cohomology groups as
follows" If n >__ 2 and if H-(H, A) 0 for i 2, 3, n 1, then we
have an exact sequence

0 -- H-(G/H, A.) - H-’(G, A) H-(H,- H-(+1) (G/H, A.) (--- H-(+1) (G, A)
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where M with a G-module M denotes the residue module of M modulo the
submodule generated by the elements of form (1 a)u ( e G, u e M).
As a bridge between these two series of exact sequences the writer proved

recently [9]" If G is a finite group, H an invariant subgroup of G, and A
G-module, then we have an exact sequence

0 -- H(G/H, A) -- H(G, A) ,--- g(H, A)o-- H-I(G/H, AH) -- H-i(G, A);
if further H(H, A) 0, then we have an exact sequence

0 - H-I(G/H, AH) e- H-I(G, A) (--- H-I(H, A)o
(-- H-(G/H, A’) -- S-(G, A).

(The first half of the former of these two exact sequences had been given by
Artin-Tate [1]). We have also duals to these sequences.
Now we turn to a proof of our Theorem. By the Sylow group argument in

cohomology it is sufficient to consider the case of a p-group. Thus, let G
be a p-group and A a G-module such that H’(G, A) H+(G, A) 0 for
some integerr. If herer _-> 0 then we put B A (R) J (R) (R) J (rJ’s),
while we put B A (R) I (R) (R) I (-r I’s) if r < 0, where (R) denotes the
tensor multiplication over the integer ring and the tensor product of G-modules
is considered as a G-module in the usual way by component-wise operation
and where I, J are the dimension shifters of Artin-Tate-Chevalley; thus I
is the ideal of the group algebra Z[G] over the integer ring Z generated by the
elements of form 1 ( e G) and J is the residue module of Z[G] modulo
the principal ideal generated by the element o. Then B satisfies
H(G, B) HI(G, B) 0. So the third terms in the exact sequences

(1) 0 - H(G/H, B’) - H(G, B) - H(H, B)o e- H-I(G/H, B’),
(2) 0 --> H(G/H, BH) --> HI(G, B) --+ HI(H, B)
are 0, where H is any invariant subgroup of G. Hence the second terms, i.e.
H(G/H, B’), H(G/H, B’) are 0 too. Now, assume that G/H is cyclic.
Then we have H’(G/H, B’) 0 for every n, and in particular
H-(G/H, B’) H(G/H, B’) 0. From the same exact sequences (1),
(2) we have H(H, B)o Ht(H, B) 0. But G is a p-group and the order
of any element of H(H, B), H(H, B) divides the order g [G] of G. It
follows that H(H, B), HI(H, B) themselves are 0. For, as the ideal I modulo
gZ[G] of the group algebra (Z/gZ)[G] is nilpotent, H(H, B) 0 would entail
H(H, B) IH(H, B), i.e. H(H, B)o O. Further, if H(H, B) O, then
it would contain a minimal (nonzero) G-submodule, say M, as we readily
see by considering a G-submodule of H(H, B) generated by a single element.
As I modulo gZ[G] is nilpotent, we should have IM 0, i.e. M H(H, B).
These prove H(H, B) HI(H, B) 0. Hence we have the exact sequences

(3) 0 (--- H-(G/H, U’) (-- H-I(G, B) --- H-t(H, B)o

(4) 0 -- H(G/H, B’) --> H(G, B) --, H(H, B).
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Now, assume that the theorem is true for proper subgroups of G. (On
assuming G # 1) take a proper invariant subgroup (for instance a maximal
invariant subgroup) H of G such that G/H is cyclic. Then, as we have seen,
H(H, B) Hi(H, B) 0. Hence, by our assumption, the H-module B
is of trivial cohomology. We have in particular H-I(H, B) H2(H, B) 0
in (3), (4). As we have seen H-I(G/H, Bn) H(G/H, B) 0 too, we have
thus H-I(G, B) H(G, B) O. HenceB satisfies HI(G, B) H(G, B) O,
and, therefore, B (R) J satisfies H(G, B (R) J) Hi(G, B (R) J) O. Taking
B (R) J instead of B, we have then H(G, B @ J) O, i.e. H3(G, B) O.
In this way we obtain Hn(G, B) 0 for any n > 0. Similarly we have
Hn(G, B) O for n -< 0. ThusH’(G,A) H-(G, B) O for every n.

Further, for any proper subgroup K of G, there is an H as above which
contains K; for instance a maximal invariant subgroup of G containing K
may be taken as H. Since the H-module B is of trivial cohomology, we have
H’(K, B) 0 for every n. Thus H’(K, A) 0 for every n. Hence the
G-module A is of trivial cohomology. Now our Theorem for p-groups G
follows readily by induction with respect to composition lengths.

2. Torsion free modules of trivial cohomology over a p-group
We now turn to our representation-theoretical proof of the Theorem. In

[8] we proved

LEMMA 1. Let G be a p-group and A a G-module such that H(G, A/pA
Hr+I(G, A ()) 0 for some integer r, where A () {a e AIpA 0}. For
any p-torsion free G-module M we have

H(G,A (R) M) O.

We shall in the sequel make use of the following speciM case"

LEMMA 1. Let G be a p-group and A a p-torsion free G-module satisfying
Hr(G, A/pA 0 for some integer r. For any representation module M of G
over Z (i.e. finitely generated torsion free G-module) we have Hr(G, A (R) M) O.

As in the situation of Lemma 1’ we may consider A (R) M as a submodule
of A (R) M2, where M and M2 are two representation modules of G over Z
satisfying pM2 M M, the wording is made a little simpler in the proof
of Lemma 1 than in the proof of Lemma 1. Though we do not repeat these
proofs here, they may easily be reconstructed from our proof of Lemma 7 and
the second approach to Proposition 3 below.

LEMMA 2. Let G be a finite group and A a q-torsion group, where q is a
natural number. If Hr(G, A) Hr+(G, A) 0 for some integer r, then
H(G, A/qA) O.

Proof. This is clear from the exact sequence

H(G, A) -- H(G, A/qA) H+I(G, qA
und the observation that qA is G-isomorphic to A.
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Now, with a finite group G, let us say that a G-module A is of quasi-trivial
cohomology when we have Hn(G, A) 0 for all integers n.

PROPOSITION 3. Let G be a p-group and A a p-torsion free G-module. If
Hr(G, A/pA) 0 for some r, then H’(G, A) 0 for all n, i.e. the G-module A
is of quasi-trivial cohomology.

Proof. This follows readily from Lemma 1’ by taking as M the dimension
shifters I, J and their products.

PROPOSITION 4. Let G be a p-group and A a p-torsion free G-module.
Hr(G, A) Hr+I(G, A) 0 for some r, then Hn(G, A/pA) 0 for all n.

Proof. We have Hr(G, A/pA) 0 by Lemma 2. Then by Proposition 3
H(G, A) 0 for all n. Again by Lemma 2 we obtain Hn(G, A/pA) 0
for all n.
From Propositions 3, 4 we obtain

PROPOSITION 5. Let G be a p-group and r an integer. A p-torsion free
module G-module A is of quasi-trivial cohomology if and only if

Hr(G, A/pA) O.

The same propositions suggest, if do not prove"

PROPOSITION 6. Let G be a p-group and A a G-module satisfying pA O,
H(G, A) 0 for some r. Then H(G, A) 0 for all n, i.e. the G-module A
is of quasi-trivial cohomology.

Proof. This follows, if we take I/pI, J/pJ and their products as M, from

LEMMA 7. Let G, A be the same as in Proposition 6. ThenH (G, A (R) M) 0
for any representation module M of G over the field Z/pZ.

Proof. The proof is similar to, and simpler than, a part of the proof of
Lemma 1 (or Lemma 1’). Thus, let N be a maximal G-submodule of M.
Then M/N is G-isomorphic to Z/pZ, G operating on Z trivially. As N is a
direct summand of M as Z/pZ-module (or as Z-module) A (R) N may be
looked upon as a submodule of A (R) M and we have readily the G-isomor-
phism (A (R) M)/(A (R) N) A/pA A Hence we have the exact sequence

H (G, A (R) N) Hr(G, A (R) M) -- Hr((, (A (R) M)/(A (R) N))

Hr(G, A) O.

It follows that Hr(c, A (R) M) 0 whenever we have Hr(G, A (R) N) O.
Now the lemma follows readily by induction with respect to the composition
length of M.

(In case G is cyclic, Proposition 6 can easily be proved structurally. In-
deed, all the cohomology groups H(G, A) (n 0, q-l, .-.) are isomorphic
then. For the group algebra (Z/pZ)[G] is then uni-serial and A is a direct
sum of G-submodules (perhaps infinite in number) each of which is isomorphic
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to an ideal of (Z/pZ)[G]. If m is the (finite or infinite) number of those sum-
mands which are not isomorphic to (Z/pZ)[G] itself, then we see easily that
both H-I(G, A) and H(G, A) are a direct sum of m cyclic modules of order p.
Having thus proved the cyclic case of Proposition 6 structurally, we may

derive the general case of Proposition 6 from it by means of the exact se-
quences (1), (2) (only)).

Proposition 6 being thus proved directly, it is perhaps of some interest to
derive Proposition 3, and thence Propositions 4, 5, from Proposition 6. Thus"

Second approach to Propositions 3, 4, 5. To prove Proposition 3, assume
Hr(G, A/pA) 0 where A is a p-torsion free module over a p-group G. By
Proposition 6 we have H"(G, A/pA) 0 for every n. What we have to do
is to derive Hn(G, A) 0 from H"(G, A/pA) 0, for each n. As a special
case M Z of Lemma 1’, this may be seen as follows by specializing the proof
of Lemma 1’. Thus, observe that the sum Z(a ) - I in Z[G] is direct
and that gZ[G] is contained in this sum, where g [G] denotes the order of G
and is a power of p. There exists therefore an increasing finite series of G-
modules Ni(i O, 1,..., t)such that No gZ[G], Nt Z(( o-) - I,
and for each i 0, 1 the residue module Ni+I/N is G-isomorphic
to Z/pZ. Now, as A is p-torsion free, A (R) N may be looked upon as a sub-
module of A (R) N+I and the residue module (A (R) N+I)/(A (R) N)
is G-isomorphic to A/pA. From the exact sequence H"(G, A (R) Ni) ---->

H’(G, A (R) Ni+I) --+ H’(G, A/pA) 0 we see that H"(G, A (R) Ni+) is a
homomorphic image of Hn(G, A (R) N). However, since A (R) No
A (R) gZ[G] is, together with gZ[G], a regular G-module, we have
H"(G, A (R)No) O. It follows thatH(G,A (R) Nt) O. HereA (R)Ntis
the direct sum A (R) Z ) + A (R) I and we have H(G, A (R) Z ( o’))
0. So H’(G, A) 0 since Z( ’, ) is G-isomorphic to Z. This proves
Proposition 3.
However, the above derivation of H(G, A) 0 from H’(G, A/pA) 0

is, by a specialization of Lemma 1’, a lemma which is so designed as to be ap-
plied also to "dimension shifting", and is.somewhat cumbersome. Perhaps
the following argument, which makes use of a remark of G. Rayna, is more
natural. Thus, assume Hn(G, A/pA) 0 with a p-torsion free G-module A
and consider the exact sequence

H(G, pd/p2A) ---> H(G, A/p’A) ---> H’(G, A/pA) O.

Since pA/pA is G-isomorphic to A/pA, the first term of this exact se-
quence is 0 too. Hence H’(G, AlphA) O. By recursion we obta.in
H’(G, AlphA) 0 for any h _-> 1, and in particular H(G, AlgA) 0 with
g [G]. However, by a remark of Rayna, communicated to the writer,
H’(G, A) is monomorphically mapped into H’(G, AlgA) O. For, we have
the exact sequence H’(G, gA) ----> H’(G, A) ---> H’(G, AlgA) where the first
map is induced by the natural embedding. Since A is g-torsion free, this em-
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bedding map is the trace of the map ga -- a (a A). So the first arrow of the
above exact sequence is a zero map. Hence H’(G, A) is mapped mono-
morphically intn H’(G, AlgA), and H’(G, AlgA) 0 entails H(G, A).
Thus Proposition 3 is proved.
As before, Proposition 4 follows from Proposition 3 and Lemma 2 while

Proposition 5 follows from Propositions 3 and 4.
On returning to our main trend of study we prove

LEMMA 8. Let G be a p-group. A G-module A satisfying pA 0 has an
independent basis over (Z/pZ)[G] if, and only if, H-I(G, A) O.

Proof. It suffices to prove the "if" part. The radical R of the group alge-
bra (Z/pZ)[G] is the ideal generated by the elements 1 a (a e G) and is thus
nothing but I modulo pZ[G]. Let a, 7 running over an index set r, be an
independent Z/pZ-basis of A modulo RA. As clearly a G-generate A modulo
RA, they G-generate A. Now we introduce a set of elements b in 1-1
correspondence with 1 and construct a (Z/pZ)[G]-module B having b as a
free (i.e. independent) (Z/pZ)[G]-basis. By b -- a we obtain a G-epi-
morphism of B onto A. If So denotes the trace map with respect to G,
So ((Z/pZ)[G]) is the ideal of (Z/pZ)[G] generated by the element a and
is the totality of elements u (Z/pZ)[G] with Ru O. So So(B) is the
totality of elements y e B with Ry O, or, what is the same, So(B) is the
maximal fully reducible submodule of the G-module B.
Let C be the kernel of our epimorphism B --* A and suppose that C 0.

Then C n So(B) 0 and there is an elementr zb 0 ( Z/pZ)
in C So(B). Consider the element a of A. Since So(a) is the image,
bythe epimorphism B --+ A, of the element So( b) able C,
we have So(a) 0. However, as a are (Z/pZ)-independent modulo RA,
we have a RA. Here RA is nothing but the submodule of A generated by
the elements of form (1 z)x (a e G, x e A). Thus we have H-I(G, A) O,
contrary to our assumption. This shows that C 0 and our G-epimorphism
B -- A is an isomorphism. So A has, together with B, an independent basis
over (Z/pZ)[G].
In combination with Proposition 6 we have

PROPOSITION 9. Let G be a p-group, and r an integer. A G-module A
satisfying pA 0 has an independent basis over (Z/pZ)[G] if, and only if,
Ur(G, A) O.

For a representation module over Z/pZ (and for r, n __> 1) Propositions 6
and 9 have been obtained by Gaschtitz [3]. However, his argument, as it
stands, does not mean to be applied to infinitely generated A.
As a G-module with an independent (Z/pZ)[G]-basis has naturally an inde-

pendent (Z/pZ)[H]-basis for every subgroup H of G, we see in particular that
a module A over a p-group G satisfying pA 0 is of trivial cohomology when-
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ever it is of quasi-trivial cohomology. By Propositions 3, 4 the same is true
for a p-torsion free G-module. In fact, the same remains the case for any
module over a p-group as we shall see in the next section.

3. General modules of trivial cohomology
PROPOSITION 10. Let G be a p-group and A a G-module. If Hr(G, A)

Hr+I(G, A) 0 for some integer r, then A is of trivial cohomology. In particu-
lar, A is of trivial cohomology when it is of quasi-trivial cohomology.

Proof. Take a p-torsion free G-module A0 of trivial cohomology of which
A is a G-homomorphic image; for instance we may take as A0 a free G-module
over a G-generating system of A. Let A1 be the kernel of the G-homo-
morphism A0 -* A, thus A Ao/AI. We have the exact sequence

H’(G, A) -- Hn+(G, A1) -- H+(G, Ao)

for every n. Here the last term is always O, while by our assumption
Hr(G, A) H+(G, A) O the first term is O for n r,r-[- i. It follows
that Hr+I(G, A1) Hr+2(G, A) 0. Moreover, A1 is p-torsion free. By
Propositions 3, 4 the G-module A is of quasi-trivial cohomology, and hence
of trivial cohomology too, as has been observed at the end of the preceding
section. From the exact sequence

0 H(H, Ao) H’(H, A) -- H’+I(H, A) O,

where H is any subgroup of G, we have H(H, A) O, for every n, and A is
of trivial cohomology.
By the Sylow group argument we obtain our Theorem from Proposition 10.

Note that in our proof Proposition 9 is used for A A/pA with a p-torsion
free A and thus Proposition 6 and Lemma 7 are unnecessary.
The above considerations give in a sense a structural characterization of

modules of trivial cohomology. Namely, let G be a finite group and A a G-
module. Let A0 be a free G-module of which A is a G-homomorphic image,
and let A1 be the kernel of the homomorphism. Then, our G-module A is of
trivial cohomology if and only iffor every prime p dividing [G] the module Ai/pA
has an independent basis over (Z/pZ)[H], where H is a p-Sylow subgroup
of G. (If A itself is [G]-torsion free, then the transition to A is unnecessary
and we may assert that it is of trivial cohomology if and only if A/pA has
an independent (Z/pZ)[H]-basis for every p [G]).

Added in proof. G. Rayna kindly communicates to the writer a further dif-
ferent proof. He points out namely that the "passage to subgroups" is effected
readily also by Lemma 1 and Shapiro’s relation ([5]; cf. CARTAN-EILENBERG,
Homological algebra, Princeton, 1956, X, 7.4).
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