
FINITE DIMENSIONALITY OF CERTAIN TRANSFORMATION GROUPS

BY DEANE MONTGOMERY

1. Introduction

The main result to be proved in this paper is as follows"

THEOREM A. If G is a locally compact effective transformation group of a

manifold M, then G is finite-dimensional.
By munifold M is meant a separable, metric, connected, locally euclidean

spce. For the proof of Theorem A it will be sufficient to consider the case
where G is compact. This is because an infinite-dimensional locally compact
group contains an infinite-dimensional compact subgroup [4, 5].

This theorem gives no information on whether or not G must be Lie
group. Information on this latter question depends on an analysis of the
case where G is zero-dimensional.
The proof of Theorem A will be based on Theorem B which is known for

compact Lie groups (see [7] and for extensions [6] and [8]).

THEOREM B. Let G be a compact connected group which acts on an n-dimen-
sional manifold M and let F be the set of points of M left fixed by every element

of G. /fdimF >__ n- 1, thenF M.

2. Reduction of Theorem A to Theorem B
It hs been shown in the introduction that for the proof of Theorem A,

the group G may be assumed compact. It is therefore now assumed that G
is compact effective transformation group of a manifold M.

Let G* be the identity component of G, nd let k be the highest dimension
of any orbit of G*. The set of points of M which lie on/-dimensional orbits
is an open set and a component of this open set will be denoted by Y. The,

group G* acts s a transformation group of Y,

G*(Y) Y,

lthough it my, conceivably, not be effective. Let H be the subgroup of
G* which leaves every point of Y fixed. Then H is an invariant subgroup of
G*, and G*/H acts in a natural way on Y nd the action is effective. It is
known [5, p. 243] that G*/H is finite-dimensional.
Assuming that Theorem B is true, it follows that H* leaves all of M fixed.

But G was tken effective so H* can contain only the identity, and H is zero-
dimensional. Then

dim G dim G* dim G*/H,

nd G is finite-dimensional.
This completes the proof that Theorem B implies Theorem A.
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3. Reduction to a solenoid

A solenoid, by definition, is a compact connected one-dimensional group
which is therefore an inverse limit of circle groups. (Note that for the pur-
poses of this paper the definition of solenoid includes the circle as a special
case.) In the statement of Theorem B, G is not required to be effective, but
on the other hand the theorem for G not effective follows at once from the
effective case. Hence it may be assumed in proving Theorem B that G is
effective. Hence G is an inverse limit of a countable sequence of compact
connected Lie groups [5, p. 63].
LEMMA 1. For the proof of Theorem B it is sucient to let G be a solenoid.

By the remarks above, the G of Theorem B may be assumed effective, and
hence G is separable and the inverse limit of a sequence of compact connected
Lie groups Gi,

G lim Gi, Gi f(Gi+i).

In order to prove Lemma 1 it will be enough to show that elements of G which
lie on solenoids are everywhere dense in G.

In order to do this let g be any element of G so that g, as a sequence of the
inverse limit, has the form

g (gl, g2, g, gi+, ), g Gi, gi f(gi+).

Let i be a fixed index, and let Ki be a circle subgroup of Gi which contains
h as near as we please to gi. There is a circle subgroup K+I of G+I such
that

K f(K+).
Continuing, there is obtained the circle groups

Ki Ki+ Ki+2
where each group is the image of the succeeding one. Projecting Ki to K_,
which is a circle group in G_, and so on gives the sequence of circle groups

This is an inverse sequence of circles having for limit a solenoid in G. This
solenoid contains the element

g’ (hl,h, ,hi,gi+, "").
The first i coordinates of g’ are near the first i coordinates of g. Thus given
g in G and anjnteger i, there is an element g’ in G, where g’ is on a solenoid
in G, and g’ and g differ in each of the first i coordinates by as little as we
please. This proves that elements of G, which are in solenoids in G, are dense
in G, and this proves Lemma 1.

4. Invariant cycles
From this point on, it is assumed that G is a solenoid acting on the mani-

fold M, and that F is the set of points left fixed by every element of G. Let
U M F so that every point of U has a one-dimensional orbit.
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Let T be a compact zero-dimensional subgroup of G such that G/T is a
circle group. The space M/T will be denoted by M*, M/G by M**, with a
corresponding notation for subsets. Notice that (letting a homeomorphism
be indicated by

M/T/G/T M*/G/T i**.

Since G/T is a circle, M** is the orbit space of M* as acted on by the circle
group G/T.
The homology used in this paper will always have for coefficients the real

numbers R, and this is to be understood whether R is indicated explicitly
or not.

If A X are invariant compact subsets of M, let

I(X, A R) {x x eH(X, A R), g(x) x, g e T},

that is let I(X, A; R) denote all elements of H(X, A;R) which are invariant
under every element of T. As remarked above, the following abbreviations
and similar ones are often used"

H(X, A) H(X, A; R)

I(X, A) I(X, A; R).

LEMMA 2. If A c X are invariant compact subsets of M, then

I(X, A) H(X*, A*).

When T is a finite group, this fact has been shown by Liao, Floyd, and
Conner (see [1] and the references there given). The fact that the lemma is
true for finite groups will be used to prove the general case. Let

T= TDTD...
be a decreasing sequence of compact zero-dimensional subgroups with T/T+
finite for all i and f’lT. e. This determines the sequence of spaces

M/T M/T -- M/T. --where each is the image of the succeeding as indicated. Thus M/T is the
image of M/T+ under a map determined by forming the orbit space of the
finite group T/T+ in its action on M/T+. With these maps, M is the
inverse limit of the sequence of spaces M/T

M lim M/T,

and similarly the pair (X, A) is the limit"

(X, A) lim (X/T, AlTo).

Since real Cech homology on compact pairs is continuous [2, p. 261], it
follows that

(1) H(X, A) lim H(X/T AlTo).
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Now the known fact for finite groups is

H(X/Tj A/T) Ii(X/T+k A/T+k)

where in this latter equation invariance is with respect to the finite group
Tj/T-+k acting on (X/T+k, A/Ti+). Hence

(2) Hi(XT1, A/TI) Ii(X/Tj A/T),

invariance being with respect to T/T, or, otherwise expressed, with respect
to the action of T1 since of course every element of T. leaves every element
of X/Ti fixed. For these groups of invariant cycles, there is the following
map
(3) I(X/T A/T) I(X/T+I A/T+)

which is onto and is a part of the inverse sequence (1). Thus (3) determines
an inverse sequence which is a subsequence of (1). We see that

I(X, A) lim Ii(X/T A/Tj),
and because of (2)

I(X, A) Hi(X/T,. A/T1),

which completes the proof.

5. Invariant cycles of dimension n

LEMMA 3. If (X, A) is an invariant compact pair, then for i > 0

Hn+(X*, A*) In+i(X, A) 0.

The proof is immediate.
The following is included as of some interest though it is not really needed.

LEMMA 3’. Le X be a compact invariant set in M with boundary A and wih
X A a connected open set. Let (Y, B) be a compac pair, satisfying

(1) (X, A) (Y, B),
(2) Y is a closed n-cell,
(3) B is a spherical shell and Y B is an open n-cell in X A,
(4) for any g T, and x A, the segment from x to g(x) is in B.

Then for dimension n, we have

H(X, A) H(X*, A*).

Proof. By Lemma 2
(*) In(X, A) Hn(X*, A*).
It will next be proved that

(**) I,,(X, A) Hn(X, A).
Let i be the identity map of (X, A) into (Y, B), so that there is the induced
homology map

i.:H(X, A) -+ H(Y, B),
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and take

Then
y eHn(X,A).

i, y zl H, Y, B
i, g, y z. H,(Y, B).

By hypothesis the map g is homotopic to the identity so that

i,y i,g,y.
The map

is one-one, and therefore

i,’H,(X, A) -- H,(Y, B)

y g,y.

This proves (, ,) and therefore completes the proof of the lemma.
Notice that if an X is given which is invariant under G and in an n-cell

neighborhood, then T can always be chosen so that B exists, and it will always
be assumed that this has been done.

6. Formulation of cases

The proof of Theorem B for G a solenoid will be made by means of a con-
tradiction. Thus from this point on, it is assumed that Theorem B is false.
There must then be a point p,

p e B Boundary U,

such that B separates any sufficiently small neighborhood of p. Let V be
an open neighborhood of p such that

(a) G(V)= V,
(b) ? is compact,
(c) any neighborhood of p which is in V is separated by B,
(d) ? is contained in an n-cell neighborhood of p.

Let Y be a component of V B which is of course in U,

YcU.
Let

X Y, A Boundary X.

Then, letting denote isomorphism,

Hn(X, A) R reals,
so that

H(X*, A*) R.

Let z be a nonzero element of Hn(X, A),

0 z H,(X, A),
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and let y be the image of z under the map 0, that is

Oz y e Hn_I(A).
Now let

so that

and define

closure (A n U), A2 (A n B),

A AIuA2,

D AtnA.
It will be necessary to use the Mayer-Vietoris sequence [2, p. 39] which is
exact. This sequence is as follows"

..+-H,,_2(A1) + H,,_(A2),. H_(D) -H,_I(A)
(I) ,-- H,_(A) + H,_(A) H,,_t(D)--

Two cases will be considered.
Case I. For y e H,,_t(A) as defined above, it is true that y is carried to

zero in (I), that is
A(y) 0.

In this case the Mayer-Vietoris sequence shows that [2, p. 39]

y m,vl+m,v

where v H_I(A), v e Hn_(A2) and m, m are inclusion maps of A1, A
into A.

Case II. The element y is not carried to zero:

A(y) u O, u e H_(D).
In this case

u Oyl,

u Oy2,

Let f’ be the map from X to X**.

LEMMA 4. In both Case I and Case II, for f,(y) e Hn_I(A**),

y** f,(y) O,

and also in both cases y** bounds in X**, that is under the map Hn_(A**) -o

H,_(X**), y** is carried to zero.

Case I will be considered first and to begin with it will be shown in this case
that v2 O. Let x be an inner point ofX and assume v O, so that y ml, v
Then x may be deformed outside of X (going through A) without touching
A, and hence the point has index zero with respect to y m, v. This is
a contradiction which proves v O. Now f is
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SOf m2, v2 0. Then y** f’. y O. Since y bounds in X, y** bounds in
X** in Case I and Case II both. This completes the proof in Case I.

Case II will be considered next. In this case (for u defined above)
u** f’.(u) 0

because f’ is a homeomorphism on D. Hence y** O, y**e H,_I(A**).
This completes the proof. It follows that H,(X**, A**) O.

7. Product spaces and carriers

Let (W, E) be a compact pair, and let C be the circle so that

(WXC, EXC)
is also a compact pair.

LEMMA 5. If H(W, E) O, then (real coecients)

Hn+I(W X C, E X C) O.

We use (ech homology with real coefficients as always. Let y be a non-
zero element in H,(W, E) and let x be a nonzero element of H(C). Then
y X x can be defined in a natural way as a cycle in Hn(W X C, E X C) and
is not zero. This completes the proof.

Let (W, P, Q) be a compact triple

Then the following sequence is exact

H,_I(P, Q) (-- H(W, P)

PQ.

[2, p. 25]:

(-- Hn(W, Q) Hn(P, Q) -From exactness it follows that if H,(W, P) O, then the map

Hn(W, Q) - H,(P, Q)

is onto. This fact will be used below.

8. Proof of Theorem B
Now let P be a compact invariant subset of X so chosen that
(1) Cl(X* P*) is homeomorphic to a direct product of a circle and a

subset of X**,
(2) Cl(X- P) U,
(3) APX.

By the strengthened excision property [2, p. 266],

H,(X**, P**) H,[CI(X** P**), P** Cl(X** P**)].
Then by the lemma on a product by a circle we have

H,(X**, P**) 0;
for if this were not true, we would have H+I(X*, P*) 0 which is false by
Lemma 3. Hence the map

H(X**, A**) e- H,(P**, A**)
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is onto. There is a minimal set N** A** such that the map

H(X**, A**) e- Hn(N**, A**)

is onto (to see this, use continuity and the sequence for triples). We see
from the result mentioned iust above that

N** A**"

for if N** A**, it can always be reduced, because in any closed, invariant
set in U, there always exist invariant, relatively open sets where the circle
group acts without singularity. But

Hn(A**, A**) 0,
and hence

Hn(X**, A**) O.

This contradiction (Lemma 4 shows H(X**, A**) 0) proves Theorem B
which has been seen to prove Theorem A.
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