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:BY JOHN TATE

Introduction

This paper contains a collection of results on the homology of a residue class
ring RIM of a commutative Noetherian ring R, as R-module. More impor-
tant thn the individual results is the general method by which they are ob-
tained, namely, the systematic use of skew-commutative graded differential
algebras (called R-algebras in this pper, cf. 1). The functor

Wor(R/M, R/N)

has naturally the structure of an R-algebra (cf. 5), so why not exploit this
fact? We show in 2 that it is always possible to construct a free resolution
of RIM which is an R-algebra, and in 3 and 4, we show that in some im-
portant cases our abstract method of construction yields a concrete effi-
cient resolution (Theorem 4). Our "adjunction of variables" is a naive
approach to the exterior algebras und twisted polynomial rings familiar to
topologists, and the ideas involved were clarified in my mind by conversa-
tions with John Moore. In the long 6 we apply our methods to a local
ring R and obtain generalizations of results of Serre and Eilenberg. In par-
ticular, Theorem 8 gives the correct lower bound for the Betti numbers of a
nonregular local ring. I wish to thank Zariski and Artin for several stimu-
lating general discussions in connection with these problems.

1. R-algebras
Let R be commutative Noetherin ring with unit element. In this note

we shall use the brief term R-algebra to denote an associative algebra X over
R in which there is defined an R-linear mapping d’X X, such that the fol-
lowing axioms are satisfied"

(1) X is graded, i.e. X =_Xx is the direct sum of R-modules X
such that X X, c X+.

(2) Xx 0 for h < 0; X has a unit element 1 eX0such that X0 R1;
und Xx is a finitely generated R-module for , > 0.

(3) X is strictly skew-commutative, that is"

xy (-1)Xyx, for x e Xx, y e X
and

x 0, for x e Xx, odd.

(4) The map d is a skew derivation of degree -1, that is, dXx Xx_
for all , d 0, and

(*) d(xy) (dx)y - (- 1)x x (dy), for x e Xx, y e X.
Received August 29, 1956.
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A homomorphism, f, of an R-algebra X into an R-algebra Y is an R-linear ring
homomorphismf:X -- Y such that f(Xx) Yx for all },, f(1) 1, andfdx
dfx for all x e X. An R-algebra X is an R-subalgebra of an R-algebra Y, if
X is a subset of Y, and the inclusion map X - Y is a homomorphism.
An R-algebra X can be viewed as a complex of R-modules with boundary

operator d:

--X d X_ X- X0 0 ...,
Let Z Z(X) be the kernel of d (group of cycles) and let B B(X) be the
image of d (group of boundaries). Then Z ’x Zx (direct sum), where
Zx ZnXx, and B Bx(direct sum), where Bx B n Xx
dXx+l. Since d 0 we have B c Z. The formula (*) for the derivative
of a product shows

Zx Z, c Z+,, Bx_l Z, c Bx+,_l, and Zx B_I c Bx+,-1.

Hence Z is a graded subalgebra of X, and B is a homogeneous two-sided ideal
in Z. The residue class algebra Z/B is called the homology algebra of X and
is denoted by H H(X). Obviously H is graded; H ’ Hx, where Hx
Zx/Bx. We say thatXisacyclicifH H0,i.e. ifHx 0for all}, > 0.
We shall call X free if Xx is a free R-module for each . If X is free, we have
X0 R1 R and B0 M, a certain ideal of R, hence Ho RIM is a
residue class ring of R. If X is free and acyclic it furnishes us with a free
resolution of the R-module R/M, that is, an exact sequence

-+X2
d dX- : R R/M O

in which the modules Xx are R-free. It is our purpose to construct resolu-
tions of this type and to show their usefulness by a few applications.

2. The process of adjoining a variable of degree p
in order to kill a cycle of degree p-

Let X be an R-algebra. Let p > 0 be a positive integer. Let Zp_(X)
be a cycle of degree p 1. We shall now describe a canonical procedure for
constructing an extension R-algebra Y X such that

(a) Yx X, for k < p, and

(b) Bp_(Y) Bp_(X) + Rt.

The procedure is quite different for the case of even p and the case of odd p,
so we discuss the two cases separately"

p odd. Let XT be the free X-module with one basis element, T, and put
Y X -- XT, direct sum. Grade Y by giving T the degree p; that is, put
Yx Xx + Xx_p T. This defines Y as a graded R-module, and it is now a
completely straightforward matter to check that there is a unique way to
make Y into an extension R-algebra of X, such that dT t, and that the
conditions (a) and (b) are then achieved. Since T is of odd degree, we must
have T 0, and Tx (-1)XxT for x e Xx. These rules determine a mul-
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tiplication in Y which turns out to be associative and skew-commutative.
Similarly, we must have d(xT) (dx)T + (-1)Xx(dT) for x e Xx, and this
rule determines an extension of d to Y which turns out to be a skew deriva-
tion. We leave the details to the reader.

p even. In this case we let Y be the free X-module on a countable basis
{1, T, T(2), T(3),...}"

Y X%XT+XT() ....
For convenience in writing formulas, we sometimes put 1 T() alld T
T(1). We grade Y by giving T(i) the degree pi; that is, we put

Yx Xx + Xx_p T + X_p T() + ....
This is a finite sum because X_, 0 for ip > . We define the multipli-
cation in Y by the rules

T(i)T() (i + j)! T(i+i) ald T(*)x xT(), x X.

The derivation in X is extended to Y in the unique way such that

dT() tT(i-1) for i > 0.

It is a straightforward matter, which we leave to the reader, to check that all
requirements are met by these definitions. Notice that if R contains a sub-
field of characteristic 0, then we have T() T/(i!). In this case Y is just the
ring of polynomials X[T] in one commuting variable T with coefficients in X,
and the derivation is then uniquely determined by the requirement dT t.
In both cases, p even and p odd, we shall denote the R-algebra Y which we

have constructed by the combination of symbols:

Y X(T}; dT t,

and we shall call Y the R-algebra obtained from X by the adjunction of a vari-
able T which kills t. Suppose that we are given a finite sequence of homology
classes rl, r2, reH_l(X). Select cycles t, t, t.eZ_l(X)
representing these classes. Then by adjoining successively variables T,
T., Tn of degree p which kill the cycles t we obtain an R-algebra

Y X(T, T,..., T}; dT t,

satisfying the following conditions:

(a) Y D X, and Yx Xx for , < p.

(b) H_I(Y) Hp_(X)/(R-o + Rrl + + RTn).
Furthermore, it is clear from our construction that Y is free if X is free.
it is almost obvious how to prove

Now

THEOREM 1. Let M be any ideal in R. Then there exists a free acyclic R-
algebra X such that Ho(X) RIM. In other words, there exists a free resolu-
tion of R/M which is an R-algebra.



HOMOLOGY OF NOETHERIAN RINGS AND LOCAL RINGS 17

Proof. We shall obtain X as the union of an ascending chain of R-algebras
X c X c X which we shall now define inductively. We define
X to be the R-algebra R itself (X R;X 0, X 0;d 0). Toeon-
struet X we take generators tl tn for the ideal M. Then, viewing the
t. as 0-cycles in the algebra R, we adjoin variables T1, Tn of degree 1
to R which kill the t- and put

X1-" R{T1,..., Tn}; dTj ti.

Clearly, H0(X1) --R/M. Next we choose 1-cycles 81, 8m ZI(X1),
whose homology classes a. generate Hi(X1), and adjoin variables S. of degree
2 to X which kill the cycles s., obtaining an R-algebra

X XI(s1, "’", Sm};

such that HI(X) 0, and Ho(X) RIM.
define inductively for k > 0

xk-t-l’-- Xk(U1, Unk>;

Continuing in this way we

dU
where ul, Unk are generators for the k-cycles (mod boundaries) in Xk.
Since (Xk)x is constant as function of k for k => X, and since X is by construc-
tion acyclic in degrees 0 < X < k, it is obvious that the algebra X U_-0 X
furnishes a free resolution of RIM.

3. The change in the homology ring produced by
killing a cycle

Let X be an R-algebra, let be a cycle of degree o 1 in X, and let Y
X(T}; dT be the result of killing t. Then the inclusion map i’X Y
induces a homomorphism i,’H(X)-- H(Y) of the homology algebra of X
into that of Y. We wish now to examine this homomorphism more closely
and in doing so to prove the following

THEOREM 2. In the situation just described, suppose that the homology class
r of is a skew non-zerodivisor; that is, assume for e H(X)

r 0 O, if r is of even degree (o odd),

r 0 e rH(X), if r is of odd degree (p even).

Then i, is a surjection with kernel rH(X); and hence H(Y) H(X)/rH(X).

Proof. Wg treat the cases of odd and even o separately, giving first a gen-
eral discussion with no assumptions on r and then proving the theorem.

p odd" In this case Y X + XT. Consider the map j’Y--, X defined
by j(xl + xT) x. Obviously the sequence

(1) 0 -- X-/ Y 3_ X-- 0

is exact. Furthermore, j commutes with d because

jd(x + xT) j(dxl + (dx)T 4- x2t) dx dj(xl + xT).
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Hence our .xact sequence yields an exact homology triangle

H(Y)
i,z "j,
/

d,H(X) H(X)

Here j, is of degree -p and d, is of degree p 1. I contend that, except
for a sign, the connecting homomorphism d, is just multiplication by r, the
homology class of t. Indeed, let H(X) be represented by a cycle x Z(X).
Then j(xT) x, hence d,() is the homology class of the cycle d(xT)
(-1)Xxt, that is, d, (-1)xr, as contended. From the exactness of 1,
we now obtain the following information about the homomorphism i,"

Kernel i, Image d, rH(X)

Cokernel i, Kernel d, l H(X) r 01.
In particular, if v is not a zerodivisor in H(X), then i, is an onto mapping
and H(Y) H(X)/rH(X).

even" In this case, Y X - XT + XT(2) -+- .... Consider the map
j’Y Y defined by

j(xo + xlT + xT() + "") xl + xT + x3T() + ....
Obviously the sequence

(2) 0__X_ y 3_ Y-0
is exact, and j commutes with d. Therefore (2) gives rise to an exact homol-
ogy triangle

H(Y)
i, /z j,

(2,) /
H(X) d, H(Y)

in which j, is of degree -p and d, of degree p 1. I contend that the map
d,i,’H(X) H(X) obtained by skipping j, in the triangle is none other than
(left) multiplication by r, the homology class of t. Indeed, let e H(X)
and let x Z(X) be a cycle representing . Then j(xT) x ix, hence
d,i, is the homology class (in X) of the cycle d(xT) d(Tx) tx, as con-
tended. The complete analysis of the information contained in our triangle
(2,) leads to a spectral sequence (Cf. W. S. MASSE, Exact couples in alge-
braic topology, Ann. of Math., vol. 56 (1952), pp. 363-396). Here we treat
only the extremely simple case in which satisfies the hypothesis of Theorem
2. In order to establish the conclusion of Theorem 2 it is enough, in view
of the exactness of (2,), to prove that j, 0. We first prove that Image
j, and Image i, have 0 intersection. Indeed, suppose i, j,v. Then
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r d,i, d,j, 0, so there exists 1 such that TI, and hence
i, i,r i,d,i, 0. Since Image i, Kernel j, we now know that
o2
3,7 0 implies j, O. By induction it follows that , 0 implies
j, 0. However, for any e H(Y) there exists an n such that jv 0,
because j, is of negative degree -p (simply take n so large that np > degree
). Thus we have shown j, 0 for all v.
In Theorem 2, udjunction of a variable to X divides H(X) by a non-zero-

divisor. In the next theorem, division of X by a non-zerodivisor adjoins a
variable to H(X).

THEOREM 3. Let X be an R-algebra. For odd p, let a be an element ofB_(X)
which is not a zerodivisor in X, and select s e X such that ds a. Then the
residue class algebra X/aX, with the derivation induced by d, is an R-
algebra, and the residue class of s (rood aX) is a p-cycle in , whose homology
class we denote by H,(). The canonical map j’X induces an iso-
morphism j, of H(X) into H(), and we have H() (j,H(X))(z}; dz O.

Proof. Since a is not a zerodivisor in X, the sequence

(3) o x&x 2 o
is exact. Since a is a boundary, the induced map a,’H(X) H(X) is zero,
and consequently the homology triangle associated wth (3) reduces to an
exact sequence

d,J* H() H(X) O.(3,) o H(X)

I contend that for any e H(X) we hve

(*) j, +
To prove this, choose x e X such that e X is a cycle representing . Then
dx ay for some y e X, and y is a cycle whose homology class v e H(X) is
the image of under d,. Thus j, d, , the homology class of e X.
On the other hand, to compute j, d, we write d(sx) (ds)x- sdx
a say a(x sy), which shows that j, d, - - aj, d, ,
as contended. Now (*) shows

H(X) j, H(X) + H(X)

and using (*), together with 0, and the exactness of (3,), one easily
checks that 1 and are in fact a j, H(X)-basis for H().

4. A special free resolution

A sequence of elements a, a2, are R is said to be an R-sequence if
al is not a zerodivisor in R, and if, for each i, i <__ i < r, the residue class of
ai+ is not a zerodivisor in the residue class ring R/(a,..., ai).
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THEOREM 4. Let tl t,, and al ar be R-sequences such that the ideal
A (al, ar) generated by the at is contained in the ideal M (tl, tn)
generated by the ti. Write at =lciti, 1 <=j <-_ r, with cieR. Let
[ R/A and il M/A, and let and denote the A-residues of cj and t
Then the algebra

Y

with T of degree 1, S of degree 2, and with

dT dS in= T

is acyclic, and therefore yields a free resolution of the [-module /I.

Proof. The R-algebra Y can be reached in three successive steps as fol-
lows. We start with the R-algebra R itself, and adjoin variables T to kill
the t, obtaining an R-algebra

X R(TI,..., Tn; dT t.

By induction on n, using the fact that t, tn is an R-sequence, together
with the case p 1 of Theorem 2, we see that

H(X) R/(tl,..., t) RIM.
In X1, we have elements sj cT such that ds cti at for
each j. Next we take everything mod A, obtaining the algebra

(T1, Tn}; dT .
By induction on r, using the fact that a, a is an R-sequence, together
with the case p 1 of Theorem 3, we find that

where a is the homology class of the 1-cycle . ; T . Finally
to obtain the algebra Y we adjoin variables S. which kill these cycles ,
and we prove by induction on r, using the case p 2 of Theorem 2, that
H(Y) //. (Theorem 2 is applicable because for any ring P, a is evi-
dently a skew non-zerodivisor in

Application 1. Let F be the free abelian group on generators u, u,,
-1 u1] be the group ring of F withand let R Z(F) Z[u, u ,..., u,,

integer coefficients. Let ti u 1, 1 __< i _<- n, and let M (t ,... tn).
Let a u 1, 1 =< i -<_ r, with positive integers el el er, and let
A (ai, at). Then / R/A is the group ring of the abelian group

generated by elements with the relations 1, 1 __< i _-< r, that is,
of the direct product of cyclic groups of order e, 1 <__ i <_- r, and n- r
infinite cyclic groups. Theorem 4 yields then a free resolution of the F-
module Z RIM //, a resolution which can be used efficiently to
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compute the cohomology and homology groups of the finitely generated
abelian group .

Application 2. Let R be a regular local ring of dimension n, and let A
be an ideal of dimension n r in R such that A can be generated by r ele-
ments al,-.. at. Then it is known, in connection with the theorem of
Cohen-Macaulay, that the a. form an R-sequence. In particular, the maxi-
mal ideal, M, of R is generated by an R-sequence tl, tn. Thus, Theorem
4 yields a free resolution of the residue field//] as/-module, for any local
ring/ which can be obtained from a regular local ring by factoring by an
ideal of type A. Geometrically, a ring of type / would arise for example
as the local ring of a point P on a va.riety V, such that P is simple on the am-
bient variety, and such that V is locally a complete intersection at P. In
this case A is the prime ideal of functions regular at P on the ambient variety
which vanish along the subvariety V. Consideration of this special case in
conversations with Zariski gave the first impetus to this work. Zariski has
independently obtained the resolution of Theorem 4 in the case of local com-
plete intersections.

5. Applications to the torsion functor
Let X and Y be R-algebras. It is easy to check that their tensor product

X (R) Y over R can be made into an R-algebra in a unique way such that
x (R) y (x (R) 1)(1 (R) y) and such that the maps x - x (R) landy--.1 (R) y
are homomorphisms of X and Y into X (R) Y. Suppose that X and Y are
both free and acyclic, with H(X) RIM and H(Y) R/N. Denote by
j’X -- RIM and k’Y ---. R/N the canonical homomorphisms. Then it
is well known (elementary theory of the torsion functor; cf. [1]) that the
homomorphisms

(R/M) (R) Y j(R) 1 X (R) Y 1(R)/ X (R) (R/N)

induce isomorphisms

H((R/M) (R) Y) H(X (R) Y) H(X (R) (R/N)).

Thus, the homology algebra H(X (R) Y), ring structure included, is independent
of the resolutions X and Y, and, up to canonical isomorphisms, depends only
on RIM and R/N. It is denoted of course by TorR(R/M, R/N). The mul-
tiplication is the c product; see [1], p. 215 bottom.

THEOREM 5. Let M and N be ideals of R. Let a e MN be a non-zerodivisor
in R. Let R/aR, and put K R/M, L R/N. Then

Tor(K, L) TorR(K, L)(U),

where U is a variable of degree 2.

Proof. Let X be a free acyclic R-algebra such that H(X) K RIM.
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Then dNX1 NdXI NM, so we can choose s e NX1 such that ds a.
Let X/aX and let e 1 be the residue of s. From Theorem 3 we k-now
that H(.) K(z}, where is the class of s; and from Theorem 2 it follows
that

is a free resolution of the /-module K. To compute Torn(K, L) we must
now tensor with L R/N and pass to homology. Tensoring with L com-
mutes with adjunction of S, and subsumes the passage from X to because
a e N. Hence

Tora(K, L)= H((X (R) L)(S}) H _j, (X (R) L)S().
i--0 /

Since s e NX, we have dS(i) sS(-) 0 (rood NX(S}), hence the direct
sum decomposition is stable with respect to d and we can continue:

H(X (R) L)U()= H(X (R) L)(U},
i--1

where U() is the homology class of S() (mod NX(S}). Since H(X (R) L)
Torn(K, L), our theorem is proved.

6. Local rings

In this section we assume that R is a local ring with maximal ideal M and
residue field K. Let t, t2, tn be a minimal system of generators for M.
Then the M2-residues of the elements ti are a K-base for the vector space
M/M, and we have n dimK(M/M). Consider the R-algebra E
RT,..., Tn}; dT t. Though we shall not make use of the fact, it
is perhaps well to sketch here a proof that E is uniquely determined by R up
to a (noncanonical) isomorphism. Indeed, suppose t,..., tt is another
choice of generators for M, and let E’ R(T’,..., T,}; dT ti. Let
t ] a. t. with a. e R. Reading this last equation mod M, we see that
the determinant of the matrix (ai) does not belong to M, and consequently
the matrix is invertible in R. Since E and E’i are free R-modules with bases
{T} and {T it follows thatheR-linear map ’E1 --+ E’ defined byq(T)

a. T is bijective. Now extends to a ring isomorphism ’E ’ E’
because E and E’ are just the exterior algebras h E1 and h E over the R-
modules E and E. Furthermore, commutes with d because for each
generator T we have dqT daT’ at t qdT, and a
skew derivation is determined by its effect on generators. Thus the homol-
ogy Mgebra H(E) is an invariant of the local ring R. It might be of interest
to investigate the relationship between H(E) and the more conventional
homological invariants of R such as the algebra Tor(K, K) and the "Betti
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numbers" Bq dlmKTorq (K, K).
we have the whole story"

In the case of "complete intersections"

THEOREM 6. Suppose that R R’/(al at), where R’ is a regular local
ring and al, ar is an R’-sequence which is contained in the square of the
maximal ideal M’ of R’. Then

H(E) K(a, a); deg . 1,
and

TorR(K, K) K(T1, Tn , qr);

degT 1, degS-- 2.

In particular, the Betti numbers of R are given by the power series identity

BqZq (1 + Z)"
q=0 (1 Z)"

Proof. Let t’ieM’ be a pre-image of t, 1 =< i_-< n. Since the ideal
A (al, a) is contained in (M’)2, the t constitute a minimal system of
generators for Mt. Since R’ is regular, the t form an R-sequence, and we
can now apply Theorem 4. Our present objects R, t, R, E, t are, respec-
tively, denoted in Theorem 4 by the symbols R, t, /, , . From the
second step of the proof of Theorem 4 one finds H(E) K((,..., },
as contended. Concerning Tor, we have

where
Tor’(K, K) H(Y (R) K),

Y R(T1,’", T, ;S,.", S}

is the free resolution of the R-module K constructed in Theorem 4. To
complete our proof we must show H(Y (R) K) Y (R) K, that is, dY c MY.
Clearly dT t e MY. To show the same for dS we first write as
c t, c R’, and notice that ci because a. (M’)2. Letting

denote the image in R of c., we have then dS c T MY. More
generally, dS) (dS)S(-)e MY for all k, and it follows now that dY
MY, because d is a derivation and every element in Y is a linear combina-
tion of products of T’s and S.)’s with coefficients in R.
Having had a look at a good case where we know the full story, let us re-

turn to the consideration of our arbitrary local ring R. In constructing a
free resolutio of the R-module K in the manner of Theorem 1, we would

Using his technique of minimal resolutions, Eilenberg has proved B--()
and Ba >-- () - en, where e dimK H(E). A resolution X is minimal if dX MX; for

example, the resolution Y which we construct in Theorem 6 has this property. One diffi-
culty is that while minimal resolutions of K always exist, and while R-algebra resolutions
always exist, it is doubtful whether minimal R-algebra resolutions exist in all cases.
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of degree 1

(*)

and such that

begin with our R-algebra E, then adjoin variables of degree 2 to annihilate
Hi(E), then adjoin variables of degree 3, etc. At any given stage of this
process we would have before us a free R-algebra X, containing E as subal-
gebra. Let us consider such an X.

LEMMA 1. Let X be a free R-algebra. Then from a congruence

ti xi 0 (rood MX) xi X,

we can conclude xieMX, 1 <= i <= n.

Proof. Let Y-} be an R-basis for X, and write x b, y,, b., e R.
Our congruence implies - t b,-= 0 (rood M2) for each a, hence b, e M
for all i, a, hence xi e MX.

LEMMA 2. Let X be a free R-algebra containing E as subalgebra. Then
there exist K-linear maps

D’H(X (R) K)- H(X (R) K), 1 <= i <= n,

such that for H(X (R) K), v H,(X (R) K),

n(v) (n) -t- (- 1)X(D,

Di (Krone&er delta),

where r H(X (R) K) denotes the homology class of the 1-cycle T (R) 1.

Proof. Let Hx(X (R) K) be represented by x e Xx. Then x is cycle
(rood MX h X +’" + t,X), and we can write dx _ty with
y e Xx-1. Differentiation yields 0 t dye, and Lemma 1 shows now
that dyi e MX. Let v e Hx_(X (R) K) be the class represented by y. I
contend that is uniquely determined by independently of the choices of
x and the y’s. Indeed, ccording to Lemma 1, the choice of x determines
the y’s uniquely (rood MX); changing x by a boundary doesn’t affect dx
nor the y’s, and changing x by an element

_
t u MX changes each y

by a boundary du We can therefore define Di for each i. Bearing
in mind Lemma 1 which allows one to compare coefticients of the h’s, it is a

straightforward matter to check that each map D inherits from d the prop-
erty (*), and writing dT t t shows D . i..

Let A E (R) K K(T.,..., T} be the exterior algebra of the n-
dimensional vector spce KT +...--KTn. Obviously we can view
H(X (R) K) s a lefth-module in a canonical way such that T
for e H(X (R) K). Viewing the T’s as operators on H(X (R) K) we have
the operator identity

(**) D T. - T. D: .i (Kronecker delta),

because
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DiT= Di(-)= (Di-)- r(D,)= s- TD for eH(X(R) K).

LEMMA 3. Let V be any left A-module in which there exist K-linear maps
D’V---. V satisfying the identity (**). Then V is A-free.

Proof. Let N A+... + A be the radical of A. ThenA/N K.
Select a family of elements v, e V whose residues (mod NV) form a K-base
for the vector space V/NV. I contend that the v, constitute a A-base for V.
Obviously since the v, generate V(mod NV) the elements T T T v
generate Nrv (rood Nr+Iv), and since N+ 0 it follows that the elements
T... T,v, 0 r n, 1 i < i < < i n, K-generate V.
We hve to show that they re K-linearly independent. Suppose therefore
we hve nontrivil K-linear relation between these elements nd let

Cil,i2," ,ir,a

be a nonvanishing coefficient with minimal value of r. Applying the oper-
ator DD D to our relation we find

c.,...,. v 0 (mod NV),

contradicting the K-linear independence of the v(mod NV).

LEMMA 4. Let X be a free R-algebra containing E, such that X E.
Then dimHI(X @ K) n, and the subalgebra, L, of H(X K) which is gen-
erated by H(X K) is just the exterior algebra of the vector space HI(X @ K).
Furthermore, H(X K) is L-free, possessing a homogeneous L-basis.

Proof. We have dX dE M, nd on the other hnd dX MX
because dX B(X) Z(X) Z(E) ME namely, if aT e Z(E),
ae R, then a t 0 implies a e M, for all i. It follows now that

H(X @ K) E/ME Kr +... + Kr
is of dimension n. Viewing H(X K) as A-module in the mnner de-
scribed before Lemma 3, we see now that L is the image of A under the
canonical homomorphism T r, 1 i n. On the other hnd, applying
Lemma 3 we see that H(X @ K) is free A-module nd that a A-bse [1
for it can be obtained by taking a K-base for H(X @ K)/NH(X K).
Since the ltter is graded, we can select the ’s homogeneous, nd we cn
obviously choose 1 as the first . Hence L A. 1 is isomorphic to, and
cn be identified with, A, and all is proven.

THEOREM 7. We have B dim Tor(K, K) n. The subalgebra, L,
of Tor(K, K) which is generated by Tor(K, K) is just the exterior algebra of
the vector space Tor(K, K), and Tor(K, K) is a free L-module with a homo-
geneous base.

Proof. Construct a free R-lgebra resolution, X, of the R-module K s in
the proof of Theorem 1, starting with E nd djoining elements successively.
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Now apply Lemma 4 to X.
/ \

dim:Lr :), we have as a corollary a result of Serre [2], namelySince

B=dimK Tor(K,K) >= (:).
Of course, if R is regular, we have equality; and if R is not regular, we can in
fact prove a much stronger inequality. We begin with

LEMMA 5. (Eilenberg, M.I.T. Lecture, Spring 1956) If Hi(E) O, then R
is regular.

Outline of proof shown me by Zaris]ci. Since HI(E) 0, the sequence

E2 d-E d--->M--O
is exact. From elementary properties of tensor products it follows that for
each natural number p the sequence

(*) Ep-l) (R) E2
IP-) (R) d Ep) d(p)

M(,) M

is exact, where E) denotes the pth symmetric tensor power of E1, i.e., the result
of dividing (R) E1 by the relations

(...(R) x (R)...(R) y (R)...) (...(R) y (R)...(R) x (R)...).

Since E has an R-base consisting of the elements T1 T,,, we can iden-
tify E) with the space of all homogeneous polynomials f(T,..., Tn) of
degree p in n variables T with coefficients in R, and the map d() "E(p) -- M"becomes now the substitution T -- ti. Translating the exactness of (*) into
these terms we find" If a form f(T1, Tn) of degree p is such that

f(h, "", t,) O,

then there exist forms g of degree (p 1) such that

T) g(T1, Tn)(t T t T.),

and in particular, all coefficients of f are in M. Thus, the graded ring ob-
tained by filtering R with the powers of the maximal ideal M (t, t)
is just the polynomial ring K[TI, Tn], and R is regular.

THEOEM 8. If R is not regular, then Tor(K, K) contains a subalgebra of
the form L(S}, where S is a variable of degree 2, and L is the exterior algebra on

Tor(K, K) discussed in Theorem 7. In particular, we have

B>= r-2 r-4 "’"
and therefore Br >- 2-1 for r >- n.
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Proof. Consider the R-algebra E. Since R is not regular, we have

Hi(E) 0

by the previous lemma. Let dimK Hi(E) e, and adjoin e 1 variables
of degree 2 to E to obtain an algebra X(2) E such that HI(X(2)) is one-
dimensional. Now adjoin variables of degree 3 to X() to kill all 2-cycles,
then variables of degree 4 to kill all 3-cycles, etc. We end up then with a free
R-algebra X such that X1 El, and such that Ho(X) K, Hi(X) is one-
dimensional, and Hr(X) 0 for r >_-- 2. Let be a basis element for Hi(X),
let s e E be a cycle representing , and let Y X(S); dS s: I contend
Y is .acyclic. This follows from the case p 2 of Theorem 2, because a is
obviously a skew non-zerodivisor in H(X) K K. Now S(k) is a cycle
(mod MY) for every l, because dS(k)= sS(-1) and 8 Zi(E) ME
Therefore

Tor’(K, K) H(X(S) (R) K) (H(X (R)

Applying Lemma 4 to X, we see that L H(X (R) K), and consequently
Tor’(K, K) contains L(S) as was to be shown.
Our lower bound for the Betti numbers of nonregular local rings is obviously

the best possible because, as Theorem 4 shows, our inequalities become equali-
ties whenever R can be obtained from a regular local ring R’ by dividing R’
by a nonzero principal ideal. Theorem 8 affords a new quantitative proof of
the characterization of regular local rings as those with finite homological
dimension (Serre [2]). More generally, our Theorem 8 gives regularity criteria

of the following sort. If B (nr) fOr one single dimension r >= 2, then R is

regular. For r 2 and 3 this criterion has been proved by Eilenberg, using
his result (Lemma 5) on which our general proof is based (cf. footnote 1).
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