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ERGODIC COMPONENTS OF AN EXTENSION BY
A NILMANIFOLD

A. LEIBMAN

Abstract. We prove that all ergodic components of an exten-
sion of an ergodic system by translations on a nilmanifold X are

isomorphic to extensions of this system by translations on sub-
nilmanifolds of X.

If G is a compact group and V a subgroup of G, then under the (left)
action of V , G splits into a disjoint union of isomorphic “orbits”: if H is
the closure of V in G, then the right cosets Ha, a ∈ G, are minimal closed
V -invariant subsets of G, and the action of V on each of these sets is ergodic
(with respect to the Haar measure). If X is a compact homogeneous space of
a locally compact group G and V is a subgroup of G, then the structure of
orbits of the action of V on X may be much more complicated. However, if G
is a nilpotent Lie group, and X is, respectively, a compact nilmanifold, then
the orbit structure on X is almost as simple as in the case of a compact G:

Theorem 1. Let X be a compact nilmanifold and let V be a group of
translations of X. Then X is a disjoint union of closed V -invariant (not
necessarily isomorphic) subnilmanifolds, on each of which the action of V is
minimal and ergodic with respect to the Haar measure.

(See [Le], [L1], and [L2]; this is also a corollary of the general theory of
Ratner and Shah on unipotent flows, see [Sh].)

Let us now turn to the “relative” situation. We say that a measure space
Y is an extension of Y ′, and that Y ′ is a factor of Y , if a measure preserving
mapping p : Y −→ Y ′ is fixed. If P and P ′ are measure preserving actions of
a group V on Y and Y ′, respectively, such that P ′

v ◦ p = p ◦ Pv , v ∈ V , we say
that P is an extension of P ′ on Y , and that Y ′ is a factor of Y under the
action P .
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Throughout the paper, (Ω, ν) will be a probability measure space, and S
will be an ergodic measure preserving action of a group V on Ω. We will
assume that V is countable. (This assumption is not crucial for our argu-
ment, but saves us from measure theoretical troubles: under this assumption,
if some statement is true a.e. for every v ∈ V , then it is true a.e. for all
v ∈ V simultaneously.) Let G be a compact group; we say that an exten-
sion T of S on the space Ω × G is a group extension if T is defined by the
formula Tv(ω,x) = (Svω,av,ωx), x ∈ G, where av,ω ∈ G, ω ∈ Ω, v ∈ V , and for
every v ∈ V , the mapping ω �→ av,ω is assumed to be measurable. The family
(av,ω)v∈V,ω∈Ω of elements of G defining T is called a cocycle; we will say that
T is given by the cocycle (av,ω). If H is a subgroup of G and av,ω ∈ H for all
v ∈ V and ω ∈ Ω, we will say that (av,ω)v∈V,ω∈Ω is an H-cocycle. Clearly, if
T is given by an H-cocycle, the sets Ω × (Hx), x ∈ G, are T -invariant.

We will call a self-mapping of Ω × G defined by the formula (ω,x) �→
(ω, bωx), x ∈ G, where bω ∈ G, ω ∈ Ω, and measurably depend on ω, a repara-
metrization of Ω × G over Ω. When reparametrizing Ω × G we allow ourself
to ignore a null set of Ω, so that the reparametrization function bω can only
be defined on a subset Ω′ of full measure in Ω, and we substitute Ω by Ω′.
After a reparametrization given by bω , the cocycle (av,ω), defining a group
extension T of S on Ω × G, changes to the cocycle (bSvωav,ωb−1

ω ) (which is
said to be cohomologous to (av,ω)).

Let G be a compact metric group and let T be a group extension of S on
Ω × G. Then in complete analogy with the absolute case, a simple decompo-
sition of Ω × G takes place.

Theorem 2. (See, for example, [Z1].) There exists a closed subgroup H
of G (called the Mackey group of T ) such that after a certain reparametriza-
tion of Ω × G over Ω, T is given by an H-cocycle and T is ergodic on the right
cosets Ha, a ∈ G, with respect to the measures ν × (μHa), where μH is the
left Haar measure on H . Moreover, any T -ergodic measure on Ω × G whose
projection to Ω is ν has the form ν × (μHa) for some a ∈ G.

Now let G be a locally compact group and let X be a compact homogeneous
space of G. The notion of a group extension of S on Ω ×X given by a G-cocycle
is transferred without changes to this case; we will only call it a homogeneous
space extension, not a group extension. A reparametrization of Ω × X over Ω
with the help of a function bω ∈ GΩ is also defined similarly. Our goal is to
show that in the framework of relative actions, compact nilmanifolds, again,
behave as well as compact groups.

Theorem 3. Let X be a compact nilmanifold and let T be a homogeneous
space extension of S on Ω × X. There exists a closed subgroup H of G such
that after a certain reparametrization of Ω × X over Ω, T is given by an
H-cocycle, and if

⋃
θ∈Θ Xθ is the partition of X into the minimal subnilmani-

folds with respect to the action of H , then the measures ν × μXθ
, θ ∈ Θ, where
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μXθ
is the Haar measure on Xθ, are T -ergodic, and are the only T -ergodic

measures on Ω × X whose projection to Ω is ν.

We will use the following notation and terminology. If a is a transformation
of a (measure) space Y and f is a function on Y , then a acts on f from the
right by the rule (fa)(y) = f(ay). If a space Y ′ is a factor of Y , then any
function h′ on Y ′ lifts to a function h on Y ; we identify h′ with h, and say
that h comes from Y ′ in this case.

If Y ′ is a factor of a measure space Y , P ′ is an action of a group V on Y ′,
and P is an extension of P ′ on Y , we will say that a function f ∈ L∞(Y ) is an
eigenfunction of P over Y if fPv = αvf , where αv ∈ L∞(Y ′), for every v ∈ V .
(Our definition of an eigenfunction over Y is more restricted than the standard
definition of a generalized eigenfunction of P over Y , which assumes that the
module spanned by the functions fTv , v ∈ V , has finite rank over L∞(Ω).)

G will stand for a nilpotent Lie group of nilpotency class r, Γ for a cocom-
pact subgroup of G, and X for the compact nilmanifold G/Γ. By μX we will
denote the Haar measure on X , and will always mean this measure on X if
the opposite is not stated.

T will stand for a homogeneous space extension of S on Ω × X by a cocycle
(av,ω)v∈V,ω∈Ω.

If Z is a factor of X under the action of G, then T induces an action of
V on Ω × Z, which is defined by the same cocycle (av,ω)v∈V,ω∈Ω. We will
identify this action with T and denote it by the same symbol.

A subnilmanifold X ′ of X is a closed subset of X of the form Kx, where K
is a closed subgroup of G and x ∈ X . (Note that the notion of a subnilmanifold
depends on the group acting of X ; what is a subnilmanifold of X with respect
to the action of G may not be a subnilmanifold with respect to the action of,
say, the identity component of G.) For a subnilmanifold X ′ = Kx of X , we
will denote by μX′ the Haar measure on X ′ with respect to the action of K,
and will always mean this measure on X ′ if the opposite is not stated.

Let Go be identity component of G. If X is connected, then X is a homoge-
neous space of Go, X = Go/(Γ ∩ Go). If X is disconnected, then X is a finite
union of connected subnilmanifolds; this subnilmanifolds are all isomorphic,
are homogeneous spaces of Go, and are permuted by elements of G.

We define G(1) = Go, G(k) = [G(k−1),G], k = 2,3, . . . , r, and X(k) =
G(k+1)

\X , k = 0,1, . . . , r − 1. When X is connected, we also define X2 =

[Go,Go]\X ; then X2 is a torus, the maximal factor-torus of X . We will
denote by p the canonical projection Ω × X −→ Ω.

A base tool in studying orbits in nilmanifolds is a lemma by W. Parry
([P1] and [P2]), that says that a shift-transformation of a compact connected
nilmanifold X is ergodic iff it is ergodic on the maximal factor-torus of X .
Here is a “relative” analogue of Parry’s lemma; another proof of it can be
found in [Z2].
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Proposition 4. (Cf. [Z2], Corollary 3.4.) Assume that X is connected. If
T is ergodic on Ω × X2, then T is ergodic on Ω × X, and any eigenfunction f
of T over Ω comes from Ω × X2 and is such that f(ω, ·) is a character on X2,
times a constant, for a.e. ω ∈ Ω.

Proof. We will assume by induction on r that T is ergodic on Ω × X(r−1),
and that if g is an eigenfunction of T on Ω × X(r−1) over Ω, then g comes
from Ω × X2 and g(ω, ·) is a character-times-a-constant on X2 for a.e. ω ∈ Ω.

Let f ∈ L∞(Ω × X) be an eigenfunction of T over Ω, fTv = αv(ω)f ,
αv : Ω −→ C, v ∈ V . The action of the group G(r) on Ω × X factors through
an action of the compact commutative group (the torus) G(r)/(G(r) ∩ Γ), thus
L2(Ω × X) is a direct sum of eigenspaces of G(r). Let f ′ be a nonzero pro-
jection of f to one of these eigenspaces, then f ′c = λcf

′, λc ∈ C, for every
c ∈ G(r). Since the eigenspaces of G(r) are T -invariant and invariant under
multiplication by functions from L∞(Ω), we have f ′Tv = αv(ω)f ′, v ∈ V .

For every b ∈ G and c ∈ G(r), (f ′b)c = f ′cb = λcf
′b, so the function f ′

b =
(f ′b)/f ′ is G(r) invariant, and thus comes from Ω × X(r−1).

Assume, by induction on decreasing k, that for some k ∈ {2, . . . , r} we have
f ′c = λcf

′, λc ∈ C
Ω, for any c ∈ G(k). Then (f ′c)(ω,x) = λc(ω)(ω)f ′(ω,x),

ω ∈ Ω, x ∈ X , for any c = c(ω) ∈ GΩ
(k). Now, for any b ∈ G(k−1) and v ∈ V ,

(f ′bTv)(ω,x) = f ′(Svω, bav,ωx) = f ′(Svω,av,ω[av,ω, b−1]bx)

= (f ′Tv)(ω, [av,ω, b−1]bx) = αv(ω)f ′(ω, [av,ω, b−1]bx)
= αv(ω)λcv,b(ω)(ω)f ′(ω, bx) = αv(ω)λcv,b(ω)(ω)(f ′b)(ω,x),

where cv,b(ω) = [av,ω, b−1] ∈ G(k), ω ∈ Ω. So, for any b ∈ G(k−1) and v ∈ V ,
f ′

bTv = λcv,b(ω)(ω)f ′
b, and since f ′

b comes from X(r−1), by our first induction
assumption, f ′

b(ω, ·) is a character-times-a-constant on X2 for a.e. ω ∈ Ω.
Thus, for a.e. ω ∈ Ω, we have a continuous mapping from G(k−1) to the set
of characters on X2, and since this set is discrete and G(k−1) is connected,
this mapping is constant. (For a.e. ω, the considered mapping may not be
a priori defined on a null subset of G(k−1), but since it is locally uniformly
continuous, it extends to a continuous mapping on G(k−1).) Hence, f ′

b(ω, ·) =
λb(ω), λb ∈ C, for all b ∈ G(k−1) and a.e. ω ∈ Ω, that is, f ′b = λbf

′ with
λb ∈ C

Ω, for all b ∈ G(k−1), which gives us the induction step.
As the result of our induction on k, we obtain that for every b ∈ G(1) = Go

there exists a function λb ∈ C
Ω such that f ′b = λbf

′. Thus, for any b1, b2 ∈
Go we have f ′[b1, b2] = f ′. Hence, f ′ is [Go,Go]-invariant, and so, comes
from Ω × X2. The equality f ′b = λbf

′, b ∈ Go, now implies that f ′(ω, ·) is a
character-times-a-constant on X2 for a.e. ω ∈ Ω.

It follows that f also comes from Ω × X2. In particular, there are no
T -invariant functions on Ω × X since there are no T -invariant functions on
Ω × X2, so T is ergodic.
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Now assume that for at least two distinct eigenspaces of G(r) the projections
f ′, f ′ ′ of f to these eigenspaces are nonzero. Then both f ′Tv = αv(ω)f ′ and
f ′ ′Tv = αv(ω)f ′ ′, v ∈ V , and so, f ′/f ′ ′ is T -invariant, which contradicts the
ergodicity of T . Hence, f belongs to one of the eigenspaces of G(r), and so,
as this has been proven for f ′, f(ω, ·) is a character-times-a-constant on X2

for a.e. ω ∈ Ω. �
Remark. In contrast with the absolute case (the case Ω = { · }), the stron-

ger statement “T is ergodic if it is ergodic on Ω × ([G,G]\X)” (where it is
assumed that G is generated by Go and {Tv, v ∈ V }) is no longer true in
the relative case. Here is an example: let Ω = Z2, let X = T

2
x1,x2

where
T = R/Z, let G be the group of transformations of X of the form (x1, x2) �→
(x1 + α,x2 + lx1 + β), α,β ∈ T, l ∈ Z, and let V be the group generated by
the transformation T (ω,x1, x2) = (ω + 1, x1 + ωα,x2 + (−1)ωx1) of Ω × X ,
where α is an irrational element of T. Then [G,G] = {(0, x2), x2 ∈ T}, and

[G,G]\X � Tx1 . One checks that T is ergodic on Ω × ([G,G]\X), whereas
the function

f(ω,x1, x2) =

{
x2, ω = 0,

x2 − x1, ω = 1,
on Ω × X

is T -invariant. The reason of this effect is clear, it is a “bad parametrization”
of Ω × X ; after a proper reparametrization, T acts as a rotation on X , G can
be reduced to the group of rotations of X , and then [G,G]\X = X .

Remark. We do not know whether Proposition 4 can be extended to the
(more general) class of generalized eigenfunctions of T over Ω.

Let X be connected. Having Proposition 4, we may deal with the maximal
factor-torus X2 of X instead of X ; indeed, if T is not ergodic on Ω × X , then
T is not ergodic on T × X2 as well. The problem is that G, if disconnected,
may act on X2 not only by conventional rotations, but also by affine unipotent
transformation. Thus, we will still have to treat X2 as a nilmanifold, not as
a conventional torus. Since this does not change our argument, we will not
assume that X is a torus; we will, however, call “characters” on X those
on X2.

Note that for any character χ on X and any a ∈ G, χa = λχ′, where χ′ is
a character on X and λ ∈ C, |λ| = 1. On the other hand, if λ ∈ C, |λ| = 1,
and χ is a character on X , then clearly, there exists a translation a of X such
that χa = λχ.

Rather than Proposition 4, we will actually need the following, more tech-
nical fact.

Lemma 5. Let X be connected. Assume that T is ergodic on X(r−1) and
that f ∈ L∞(Ω × X) is T -invariant and is an eigenfunction of G(r). Then
f(ω, ·) is a character-times-a-constant on X for a.e. ω ∈ Ω.
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Of course, if X2 is a factor of X(r−1), this lemma follows from Proposition 4;
otherwise it has to be proven separately, though its proof is very similar to
that of Proposition 4.

Proof of Lemma 5. Let fc = λcf , λc ∈ C, c ∈ G(r). For every b ∈ G and
c ∈ G(r), (fb)c = fcb = λcfb, so the function fb = (fb)/f is G(r) invariant,
and thus comes from Ω × X(r−1). Assume, by induction on decreasing k, that
for some k ∈ {2, . . . , r} we have fc = λcf , λc ∈ C

Ω, for any c ∈ G(k). Then
(fc)(ω,x) = λc(ω)(ω)f(ω,x), ω ∈ Ω, x ∈ X , for any c = c(ω) ∈ GΩ

(k). Now, for
any b ∈ G(k−1) and v ∈ V ,

(fbTv)(ω,x) = f(Svω, bav,ωx) = f(Svω,av,ω[av,ω, b−1]bx)

= (fTv)(ω, [av,ω, b−1]bx) = f(ω, [av,ω, b−1]bx)
= λcv,b(ω)(ω)f(ω, bx) = λcv,b(ω)(ω)(fb)(ω,x),

where cv,b(ω) = [av,ω, b−1] ∈ G(k), ω ∈ Ω. So, for any b ∈ G(k−1) and v ∈ V ,
fbTv = λcv,b(ω)(ω)fb, and since fb comes from X(r−1) where T is ergodic, by
Proposition 4, fb(ω, ·) is a character-times-a-constant on X for a.e. ω ∈ Ω.
Thus, for a.e. ω ∈ Ω, we have a continuous mapping from G(k−1) to the set of
characters on X , and since this set is discrete and G(k−1) is connected, this
mapping is constant. Hence, fb(ω, ·) = λb(ω), λb ∈ C, for all b ∈ G(k−1) and
a.e. ω ∈ Ω, that is, fb = λbf with λb ∈ C

Ω for all b ∈ G(k−1), which gives us
the induction step.

As the result of induction on k, we obtain that for every b ∈ G(1) = Go there
exists a function λb ∈ C

Ω such that fb = λbf . Hence, f(ω, ·) is a character-
times-a-constant on X for a.e. ω ∈ Ω. �

We will also need the following corollary of Theorem 2.

Lemma 6. Let K be a compact metric group, let Z be a homogeneous
space of K, and let R be a homogeneous space extension of S on Ω × Z. If
R is not ergodic, then K has a proper closed subgroup H such that after a
reparametrization of Ω × Z over Ω, R is given by an H-cocycle.

Proof. The cocycle defining the action R defines a group action R̃ of V on
Ω × K, for which R is a factor. If R is not ergodic, then R̃ is not ergodic as
well, and the assertion of the lemma follows from Theorem 2. �

Proposition 7. Assume that T is not ergodic on Ω × X. Then there exists
a proper closed subgroup H of G such that after a certain reparametrization
of Ω × X over Ω, T is given by an H-cocycle.

Proof. We will use induction on r, the nilpotency class of X . First, for
simplicity, consider the case where X is connected. If T is not ergodic on
Ω × X(r−1), then we are done by induction on r. Thus, we assume that T is
ergodic on Ω × X(r−1). Let f be a nonzero measurable T -invariant function
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on Ω × X . We replace f by its nonzero projection to one of the eigenspaces
of G(r), which is also a T -invariant function. By Lemma 5, f(ω, ·) = λ(ω)χω ,
where χω is a character on X and λ(ω) ∈ C, for a.e. ω ∈ Ω. Since S is ergodic,
|λ(ω)| = const on a subset Ω′ of Ω of full measure, and we may assume that
|λ| ≡ 1. There are only countably many characters on X , therefore a subset Ω′ ′

of full measure in Ω′ is partitioned into the union of sets of positive measure
where χω is constant. Since S is ergodic, we can choose a character χ on X and
elements b(ω), ω ∈ Ω′ ′, measurably depending on ω, such that for every ω ∈ Ω′

one has λωχω = χbω , so that f(ω,x) = λ(ω)χω(x) = χ(bωx), x ∈ X . After the
reparametrization of Ω × X defined by the function bω (and replacing Ω by
Ω′ ′), f takes the form f(ω,x) = χ(x), ω ∈ Ω, x ∈ X . Let H be the stabilizer
of χ in G, H = {c ∈ G : χc = χ}; then H is a proper closed subgroup of G and
the cocycle defining T takes values in H .

Now let X be disconnected. G acts on the finite set X of connected com-
ponents of X ; let G̃ be the subgroup (of finite index) of G that acts trivially
on X . Then the action of G on X factorizes through the action of the finite
group G/G̃, and if T is not ergodic on Ω × X , we are done by Lemma 6. Thus,
we may assume that T is ergodic Ω × X .

Let Xo be a connected component of X ; then X , under the action of G̃,
is isomorphic to {1, . . . , n} × Xo, where n is the number of components in X .
Consider Ω × X = Ω × {1, . . . , n} × Xo as Ω̃ × Xo where Ω̃ = Ω × {1, . . . , n};
by our assumption, T acts ergodically on Ω̃. Since Xo is connected and
has nilpotency class ≤ r, we may, as in the first part of the proof, find a
subset Ω′ of full measure in Ω and a measurable T -invariant function f on
Ω̃′ × Xo = Ω′ × X such that f(ω, i, ·) = λ(ω, i)χω,i, where χω,i is a character
on Xo and λ(ω, i) ∈ C for all ω ∈ Ω′ and all i ∈ {1, . . . , n}. For all ω ∈ Ω′ we,
therefore, have the (nonordered) set Cω = {χω,1, . . . , χω,n} of characters on
Xo such that TvCω = CSvω , v ∈ V , for all ω ∈ Ω′, and since only countably
many possibilities for Cω exist, a certain reparametrization of Ω × X over Ω
(with replacing Ω by Ω′) makes Cω to be constant, Cω = C = {χ1, . . . , χn} for
all ω ∈ Ω. Moreover, since T acts ergodically on Ω × X , G acts transitively
on C; thus, after some change of coordinates in distinct connected components
of X , we may make χ1, . . . , χn to be all equal to the same character χ. After
this, we obtain that χTv = λ(ω,i)

λ(Svω,j)χ, j = j(v,ω, i), for all v ∈ V , ω ∈ Ω, and
i ∈ {1, . . . , n}, that is, T maps the fibers of χ to fibers. Let us assume, as
we may, that G is generated by Go and the entries of the cocycle defining T ;
then G maps the fibers of χ to fibers, and we may factorize X by these fibers.
Let Z be the factor; then Z is a finite union of circles, Z = {1, . . . , n} × T,
and G acts by rotations on T, that is, for any a ∈ G, a(i, x) = (ai, x + αa,i),
x ∈ T, i ∈ {1, . . . , n}, with αa,i ∈ T (and ai is defined by Xai = aXi). We
obtain that the action of G on Z factorizes through the action of a compact
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group (the group of rotations of components of Z and of permutations of these
components). Since T is not ergodic on Ω × Z, we are done by Lemma 6. �

Lemma 8. If T is ergodic on Ω × X (with respect to ν × μX), then ν × μX

is the only T -ergodic probability measure whose projection on Ω is ν.

Proof. Let G1 = G and Gk = [Gk−1,G] for k = 2,3, . . . , r, let Xr−1 =
Gr

\X , and let πr : X −→ Xr−1 be the canonical projection. If T is er-
godic on Ω × X with respect to ν × μX , by induction on r, ν × μXr−1 is
the only T -ergodic probability measure on Ω × Xr−1 whose projection on Ω is
ν. Thus, if τ is a T -ergodic probability measure on Ω × X with p(τ) = ν, then
(IdΩ ×πr)(τ) = ν × μXr−1 . Ω × X is a group extension of Ω × Xr−1 with the
fiber Fr = Gr/(Γ ∩ Gr), which is a compact commutative Lie group. Hence,
by Theorem 2, τ = ν × μXr−1 × μFr = ν × μX . �

Proof of Theorem 3. Let H be a minimal closed subgroup of G such that
there exists a reparametrization of X × Ω over Ω after which T is given by
an H-cocycle. (Such a subgroup exists since any chain of decreasing sub-
groups of G is finite.) Let X =

⋃
θ∈Θ Xθ be the partition of X into the union

of subnilmanifolds minimal under the action of H , as in Theorem 1. Af-
ter the reparametrization corresponding to H , Ω × X splits into the disjoint
union

⋃
θ∈Θ Ω × Xθ of T -invariant subsets on each of which T is given by an

H-cocycle. If T is not ergodic on one of these subsets, then by Proposition 7,
H contains a proper closed subgroup H ′ such that after a reparametrization
of Ω × X over Ω, T is given by an H ′-cocycle; this contradicts the choice of H .
Thus, T is ergodic on each of Ω × Xθ, θ ∈ Θ. Moreover, if τ is an ergodic
measure on Ω × X with p(τ) = ν, then τ must be supported by Ω × Xθ for
some θ ∈ Θ, and thus τ = ν × μΩθ

by Lemma 8. �
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