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SYMMETRIZATION AND HARMONIC MEASURE

DIMITRIOS BETSAKOS

Dedicated to Matti Vuorinen on the occasion of his sixtieth birthday.

Abstract. We prove the equality statements for the classical
symmetrization estimates for harmonic measure. In fact, we

prove more general results for α-harmonic measure.

The α-harmonic measure is the hitting distribution of symmetric

α-stable processes upon exiting an open set in R� (0 < α < 2,

n ≥ 2). It can also be defined in the context of Riesz poten-
tial theory and the fractional Laplacian. We prove polarization

and symmetrization inequalities for α-harmonic measure. We

give a complete description of the corresponding equality cases.
The proofs involve analytic and probabilistic arguments.

1. Introduction

The classical symmetrization estimates for harmonic measure were proved
in 1974 by Baernstein [1] (for planar harmonic measure) and in 1976 by Baern-
stein and Taylor [4] (in higher dimensions). Equality statements were proved
by Essén and Shea [20] and by Solynin [25] under certain regularity condi-
tions. We will prove equality statements without regularity assumptions. In
fact, we will work in the more general context of Riesz potential theory.

The α-harmonic functions, 0 < α < 2, are defined by a mean value property
(involving the parameter α), analogous to the classical one. Equivalently,
they are the solutions of the equation Δα/2u = 0, where Δα/2 is the fractional
Laplacian, a nonlocal integro-differential operator.

A function u : Rn → R, n ≥ 2, which is α-harmonic in an open set D is
determined by its exterior values (its values in Dc := Rn \ D). If B is a Borel
set in Dc, the α-harmonic measure of B with respect to D is the α-harmonic
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function u in D with exterior values u = χB on Dc. The α-harmonic measure
of B with respect to D, evaluated at the point x ∈ Rn, will be denoted by
ωD

α (x,B). For fixed x ∈ D, ωD
α (x, ·) is a Borel probability measure on Dc.

Both classical and α-harmonic measures have symmetry properties and sat-
isfy the Carleman principle (domain monotonicity) and the Harnack principle.
The latter implies that if ωD

α (x,B) = 0 for some x ∈ D, then ωD
α (y,B) = 0 for

all y ∈ D; we say then that B is a D-null set. There are, however, essential
differences. The classical harmonic measure is defined (as function) in a do-
main D and is supported (as measure) on the boundary of D. The α-harmonic
measure is defined (as function) in whole R� and is supported (as measure)
in the exterior of D. These properties become transparent when are viewed
from the probabilistic point of view. The classical harmonic measure is the
hitting distribution of Brownian motion upon exiting D, while the α-harmonic
measure is the hitting distribution of symmetric α-stable process. This is a
Hunt process with discontinuous paths. Thus, its paths may jump from one
component of D to another, and may hit Dc (upon exiting D) at points of
(D)c and not necessarily at points of ∂D.

The basic facts of Riesz potential theory are presented in the book of Land-
kof [22]. Recently, there has been a renewed interest on Riesz potential theory,
mainly from the probabilistic point of view. Bogdan [11] proved the bound-
ary Harnack principle for α-harmonic functions on Lipschitz open sets. Song
and Wu [26] proved extensions of Bogdan’s results. Bogdan [12] and Chen
with Song [16] gave a Martin representation for nonnegative α-harmonic func-
tions. Wu [27] found necessary or sufficient conditions for a boundary set to
have zero α-harmonic measure. Bañuelos, Latala, and Méndez-Hernández [5]
proved isoperimetric type inequalities for transition probabilities, Green func-
tions, and eigenvalues associated with symmetric stable processes. Various
other properties and applications of α-harmonic functions and the fractional
Laplacian are presented in [15], [13], [7], and [8].

In the present article, we study the behavior of α-harmonic measure un-
der symmetrization. There are various kinds of symmetrization. For the
sake of concreteness, we will state and prove symmetrization results only
for 1-dimensional Steiner symmetrization. The results, however, hold for
all kinds of Steiner and cap symmetrization with the obvious modifications.
The 1-dimensional Steiner symmetrization of a set A ⊂ R� with respect to
an (n − 1)-dimensional hyperplane H is a set having the same volume as A,
convex in the direction perpendicular to H , and symmetric under reflection
in H . A rigorous definition appears in Section 2.

Let Π = {(x1, x2, . . . , xn) ∈ Rn : xn = 0}. Every (n − 1)-dimensional hyper-
plane in Rn will be simply called plane. Every plane parallel to Π will be called
horizontal. A line will be called vertical if it is perpendicular to Π. For an
open or closed set A ⊂ Rn, we denote by SHA the 1-dimensional Steiner sym-
metrization of A with respect to the plane H . If H = Π, we write SHA = A�.
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If p = (x1, . . . , xn−1, xn) ∈ Rn, we denote by p� the orthogonal projection of p
on Π, p� = (x1, . . . , xn−1,0).

In the theorem below, we assume that the open set D lies in a striplike
set G. We say that an open set G ⊂ Rn is a striplike set if for every vertical
line l that intersects G, we have l ∩ G = l. This condition guarantees that if
B is a Borel set in Gc, then B� lies also in Gc. By mk, k ∈ N, we denote the
k-dimensional Lebesgue measure.

Theorem 1. Let D be an open set in Rn lying in a striplike set G. Let
Σ be a vertical line intersecting D. Let Φ : R → R be a nonconstant, convex,
increasing function. Let B be a closed set in Gc. Then∫

Σ

Φ(ωD
α (p,B))m1(dp) ≤

∫
Σ

Φ(ωD�

α (p,B�))m1(dp),(1.1)

ωD
α (p,B) ≤ ωD�

α (p�,B�), p ∈ D.(1.2)

An illustration for Theorem 1 appears in Figure 1. For the classical pla-
nar harmonic measure (n = 2, α = 2), the inequalities (1.1) and (1.2) were
proved by Baernstein [1] who used his star-function method; see also [21,
Chapter 9], [3]. Baernstein’s inequalities were extended to higher dimensions
in [4]. Related inequalities for α-harmonic measure were proved in [7] under
the additional assumption that the boundary of D is smooth.

The next two theorems deal with the equality cases for the inequalities (1.1)
and (1.2). For α = 2, the equality cases were studied by Essén and Shea [20]
for n = 2 and by Solynin [25] for all dimensions; both these works use the
additional regularity assumptions. The theorems say (roughly) that equality
holds if and only if D and B are essentially symmetric. To make this statement
rigorous, we use various types of exceptional sets: (a) Sets of zero Riesz
capacity, (b) sets in (G)c of zero n-dimensional Lebesgue measure, (c) sets on
∂G ∩ ∂D which are D-null.

We do not make any regularity assumption for D or B and so we are obliged
to introduce some special terminology and the corresponding notation. We

Figure 1. An illustration for Theorem 1.
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say that an open set D is an essentially striplike set if there exists a striplike
set G ⊃ D such that Cα(G \ D) = 0. Here, Cα denotes the capacity associated
with the Riesz kernel; see [22, Chapter II] for more details about this capacity.

Notation 1. For an open set D and a plane H , the notation SHD
Cα= D

means that there exists an open set Ω such that (i) D ⊂ Ω, (ii) Cα(Ω \ D) = 0,
and (iii) Ω = SHΩ. For a closed set B, the notation SHB

mn= B means that the
symmetric difference of B and SHB has mn-measure zero. More generally,
A

mn= B means that the symmetric difference of B and A has mn-measure
zero. Suppose that B is a closed set on the boundary of an open set D with
SHD

Cα= D. The notation SHB
D= B means that the symmetric difference of

B and SHB is a D-null set.

Theorem 2. Let D,G,B,Σ,Φ be as in Theorem 1. Let B1 = B ∩ (G)c and
B2 = B ∩ ∂G ∩ ∂D. Assume that B is not a D�-null set and that∫

Σ

Φ(ωD
α (p,B))m1(dp) < ∞.

(a) Suppose that D is an essentially striplike set, B is bounded, and Φ is
affine function (that is, of the form Φ(x) = ax + b). Then

(1.3)
∫

Σ

Φ(ωD
α (p,B))m1(dp) =

∫
Σ

Φ(ωD�

α (p,B�))m1(dp).

(b) Suppose that D is an essentially striplike set and Φ is not affine in any
interval. Then

(1.4)
∫

Σ

Φ(ωD
α (p,B))m1(dp) =

∫
Σ

Φ(ωD�

α (p,B�))m1(dp)

if and only if there exists a horizontal plane H such that SHB1
mn= B1 and

SHB2
D= B2.

(c) Suppose that D is not an essentially striplike set. Then

(1.5)
∫

Σ

Φ(ωD
α (p,B))m1(dp) =

∫
Σ

Φ(ωD�

α (p,B�))m1(dp)

if and only if there exists a horizontal plane H such that SHD
Cα= D, SHB1

mn=
B1, and SHB2

D= B2.

The assumption in (a) that B is bounded is necessary; for example, if n = 2,
D is the union of two vertical strips with common boundary a vertical line l,
and B is a half-line on l, then B� is the whole line l.

Theorem 3. Let D,G,B be as in Theorem 1. Let p ∈ D. Let B1 = B ∩
(G)c and B2 = B ∩ ∂G ∩ ∂D. Assume that B is not a D�-null set. Then

(1.6) ωD
α (p,B) = ωD�

α (p�,B�)
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if and only if there exists a horizontal plane H such that p ∈ H , SHD
Cα= D,

SHB1
mn= B1, and SHB2

D= B2.

The proof of the above symmetrization results is based on the approach to
symmetrization via polarization. Polarization is another geometric transfor-
mation which is simpler than symmetrization. Moreover, as a general princi-
ple, symmetrization can be approximated by a sequence of polarizations. We
use concrete statements of this principle to reduce the symmetrization results
to polarization results. The latter results are proved by using the probabilistic
interpretation of α-harmonic measure. The strong Markov property and the
geometric decomposition associated with polarization induce a probabilistic
decomposition of the paths of the symmetric stable process. This decompo-
sition reduces the polarization inequalities for α-harmonic measure to similar
inequalities for sets of simpler geometry.

In Section 2, we review some facts about Steiner symmetrization, Riesz
potential theory, and symmetric stable processes. In Section 3, we introduce
polarization and state the related theorems for α-harmonic measure. Sec-
tions 4–6 contain the proofs of the polarization theorems. In Section 7, we
prove the symmetrization results, Theorems 1–3. Finally in Section 8, we
treat two special cases: the classical case (α = 2) and the case of regular sets.
Theorems 8 and 9 are the equality statements for Baernstein’s symmetrization
inequalities for classical harmonic measure.

2. Background

2.1. Steiner symmetrization. We give here the definition of 1-dimensional
Steiner symmetrization. Let H be a plane in Rn. We define the symmetriza-
tion SHA of an open or closed set A ⊂ Rn by determining its intersections
with every line perpendicular to H . Let l(x) be the line which is perpendic-
ular to H and passes through the point x ∈ H . Let rx be the 1-dimensional
Lebesgue measure of the set l(x) ∩ A.

• If 0 < rx < ∞, let (−rx, rx) be the open linear segment on l(x) centered
at x with length 2rx. Let [−rx, rx] be the corresponding closed segment.
Then

SHA ∩ l(x) :=

{
(−rx, rx), if A is open,

[−rx, rx], if A is closed.

• If rx = 0, then

SHA ∩ l(x) :=

{
∅, if A ∩ l(x) is empty,

{x}, if A ∩ l(x) is nonempty.

• If rx = ∞, then
SHA ∩ l(x) = l(x).
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Figure 2. An open set D and its symmetrization D� with
respect to Π.

We refer to [2], [3], [14], [18], [23], [24] and references therein for more infor-
mation about symmetrization. See Figure 2.

2.2. α-harmonic measure. The Perron–Wiener–Brelot method can be ap-
plied for the solution of the Dirichlet problem for α-harmonic functions; see
[22, Chapter IV], [10, Chapter VII], [27]. Suppose D is an open set in Rn.
If B is a Borel set in Dc, the α-harmonic measure of B with respect to D,
denoted by ωD

α (x,B), is defined via the Perron–Wiener–Brelot method. It is
the α-harmonic function u in D with exterior values u = χB on Dc.

There is no known geometric characterization of null sets for α-harmonic
measure. If a boundary set has zero α-capacity, then it has also zero α-har-
monic measure; see [22]. Also, the α-harmonic measure and the Lebesgue
measure mn are mutually absolutely continuous in (D)c. Some more refined
necessary or sufficient conditions are given in [27].

2.3. Symmetric stable processes. (See [10], [11], [12], [13], [15], [16],
[26], [27]). From now on, we assume that 0 < α < 2 (unless otherwise stated).
The fractional Laplacian Δα/2 is the characteristic operator of the symmet-
ric α-stable process {Xt, t ∈ [0, ∞)} in Rn. This is a Lévy process (homo-
geneous and with independent increments) with transition density pt(x, y) =
pt(y,x) = pt(x − y) (relative to the Lebesgue measure) uniquely determined
by its Fourier transform

(2.1)
∫

Rn

eix·ξpt(x)dx = e−t|ξ|α

.

When α = 2, we get a Brownian motion running at twice the speed.
The probability measures and the corresponding expectations of the process

{Xt} starting at x ∈ Rn will be denoted by Px and Ex. The symmetric α-stable
process {Xt} is a strong Markov, a strong Feller, and a Hunt process. For
A ⊂ Rn, we put

(2.2) TA = inf{t > 0 : Xt /∈ A},
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the first exit time from A. A Borel function u defined on Rn is α-harmonic
in an open set D ⊂ Rn if and only if

(2.3) u(x) = Exu(XT U ), x ∈ U,

for every bounded open set U with closure U contained in D. If D ⊂ Rn is
open and B is a Borel subset of Dc, then

(2.4) ωD
α (x,B) = Px(XT D ∈ B), x ∈ Rn.

3. Polarization results for α-harmonic measure

For E ⊂ Rn, we denote by Ê the reflection of E in the (n − 1)-dimensional
plane Π. Thus, we have

Ê = {(x1, . . . , xn−1, xn) : (x1, . . . , xn−1, −xn) ∈ E}.

We will also use the following notation: if x = (x1, . . . , xn−1, xn) then x̂ :=
(x1, . . . , xn−1, −xn); E+ := {(x1, . . . , xn−1, xn) ∈ E : xn > 0}; Eo := E ∩ Π;
E− = {(x1, . . . , xn−1, xn) ∈ E : xn < 0}.

Now, let E be any set in Rn. We divide E into three subsets S,U,V : S =
SE = {x ∈ E : x̂ ∈ E} = E ∩ Ê (the symmetric part of E), U = UE = {x ∈
E : x ∈ E+, x̂ /∈ E} = E+ \ SE (the upper nonsymmetric part of E), V = VE =
{x ∈ E : x ∈ E−, x̂ /∈ E} = E− \ SE (the lower nonsymmetric part of E). Then
E = S ∪ U ∪ V . The polarization E∗ of E is the set

E∗ := S ∪ U ∪ V̂ .

Equivalently, E∗ = (E ∪ Ê)+ ∪ (E ∩ Ê)−. See Figure 3.
If x ∈ Rn, we set

x∗ =

{
x, if x ∈ Rn

+ ∪ Π,

x̂, if x ∈ Rn
−.

Figure 3. A set E = S ∪ U ∪ V and its polarization E∗ =
S ∪ U ∪ V̂ .
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Figure 4. An illustration for Theorem 4.

It is clear that the polarization of an open set is open. For more properties
of polarization and its relation to symmetrization, we refer to [2], [6], [7], [9],
[14], [17], [18], [24], [25].

Notation 2. The polarization as defined above may be called polarization
with respect to Π. In a similar way, one can define polarization with respect
to any other oriented (n − 1)-dimensional plane in Rn. Let H be such a plane.
We denote by PHE the polarization of E with respect to H . We also denote
by RHE the reflection of E in H .

Theorem 4. Let D be an open set in Rn, n ≥ 2, and let B be a Borel set
in Dc such that B∗ ⊂ (D∗)c. Then for x ∈ Rn,

(3.1) ωD
α (x,B) ≤ ωD∗

α (x∗,B∗)

and

(3.2) ωD
α (x,B) + ωD

α (x̂,B) ≤ ωD∗

α (x,B∗) + ωD∗

α (x̂,B∗).

In the following theorem, we determine the equality cases in the above
inequalities. We need some more pieces of notation. An illustration for The-
orem 4 appears in Figure 4.

Notation 3. Let D be an open set and B a Borel set. Let S,U,V be
the symmetric, upper nonsymmetric, and lower nonsymmetric parts of D,
respectively. We write D

Cα= D∗ if Cα(V ) = 0. We write D
Cα= D̂∗ if Cα(U) = 0.

Also, D
Cα= D̂ means that Cα(V ) = Cα(U) = 0.

Theorem 5. Let D be an open set in Rn, n ≥ 2 and let B be a Borel set
in Dc such that B∗ ⊂ (D∗)c. Denote by S,U , and V the symmetric, upper
nonsymmetric, and lower nonsymmetric part of D, respectively. Suppose that
B is not a D∗-null set.

(i) Assume that B ⊂ Rn
+. Then

(3.3) ωD
α (x,B) = ωD∗

α (x,B)

for some x ∈ S+ ∪ So ∪ U if and only if D
Cα= D∗.
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(ii) Assume that B ⊂ Rn
−. Then

(3.4) ωD
α (x,B) = ωD∗

α (x̂, B̂)

for some x ∈ S− ∪ So ∪ V if and only if D
Cα= D̂∗.

(iii) Assume that B ⊂ Rn
+. Then

(3.5) ωD
α (x,B) < ωD∗

α (x̂,B)

for all x ∈ S− ∪ V .
(iv) Assume that B ⊂ Rn

−. Then

(3.6) ωD
α (x,B) < ωD∗

α (x, B̂)

for all x ∈ S+ ∪ U .
(v) Assume that B is symmetric with respect to Π. Then

(3.7) ωD
α (x,B) = ωD∗

α (x,B)

for some x ∈ S+ ∪ U if and only if D
Cα= D∗.

(vi) Assume that B is symmetric with respect to Π. Then

(3.8) ωD
α (x,B) = ωD∗

α (x̂,B)

for some x ∈ S− ∪ V if and only if D
Cα= D̂∗.

(vii) Assume that B is symmetric with respect to Π. Then

(3.9) ωD
α (s,B) = ωD∗

α (s,B)

for some s ∈ So if and only if either D
Cα= D∗ or D

Cα= D̂∗.
(viii) Assume that B ⊂ Rn

+. Then

(3.10) ωD
α (s,B) + ωD

α (ŝ,B) = ωD∗

α (s,B) + ωD∗

α (ŝ,B)

for some s ∈ S if and only if D
Cα= D∗.

(ix) Assume that B ⊂ Rn
−. Then

(3.11) ωD
α (s,B) + ωD

α (ŝ,B) = ωD∗

α (s, B̂) + ωD∗

α (ŝ, B̂)

for some s ∈ S if and only if D
Cα= D̂∗.

(x) Assume that B is symmetric with respect to Π. Then

(3.12) ωD
α (s,B) + ωD

α (ŝ,B) = ωD∗

α (s,B) + ωD∗

α (ŝ,B)

for some s ∈ S if and only if either D
Cα= D∗ or D

Cα= D̂∗.

Theorems 4 and 5 lead to convex integral mean inequalities.
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Theorem 6. Let D be an open set in Rn and let B be a Borel set in Dc

such that B∗ ⊂ (D∗)c. Let Φ : R → R be a nonconstant, convex, increasing
function. Let Σ be a Borel set that lies on a k-dimensional plane, orthogonal
to Π, and assume that Σ is symmetric with respect to Π. Then

(3.13)
∫

Σ

Φ(ωD
α (x,B))mk(dx) ≤

∫
Σ

Φ(ωD∗

α (x,B∗))mk(dx).

Notation 4. Let SB ,UB , VB be the symmetric, upper nonsymmetric, and
lower nonsymmetric parts of B, respectively. The notation B

D∗
= B∗ means

that V̂B is D∗-null and the notation B
D∗
= B̂∗ means that UB is D∗-null.

Theorem 7. Let D,B,Φ,Σ be as in Theorem 6. Assume, in addition, that
Σ ⊂ S, B∗ is not D∗-null and∫

Σ

Φ(ωD
α (p,B))m1(dp) < ∞.

(i) Suppose that D
Cα= D̂ and that Φ is affine function. Then equality holds

in (3.13).
(ii) Suppose that D

Cα= D̂ and that Φ is not affine in any interval. Then

equality holds in (3.13) if and only if B
D∗
= B∗ or B

D∗
= B̂∗.

(iii) Suppose that the condition D
Cα= D̂ is not true. Then equality holds in

(3.13) if and only if (D Cα= D∗, B
D∗
= B∗) or (D Cα= D̂∗, B

D∗
= B̂∗).

The following lemma is necessary for the proof of Theorems 4 and 5. It is
proved among with other related results in [8].

Lemma 1. Let D be an open set in Rn. Suppose that D is polarized with
respect to the plane Π, i.e., D∗ = D. Let B ⊂ Rn

+ ∩ Dc be a Borel set. Then

(i) ωD
α (x,B) ≥ ωD

α (x̂,B), x ∈ Rn
+ ∪ Π;

(ii) ωD
α (x,B) ≥ ωD

α (x, B̂), x ∈ Rn
+ ∪ Π;

(iii) ωD
α (x,B) + ωD

α (x̂,B) ≥ ωD
α (x, B̂) + ωD

α (x̂, B̂), x ∈ Rn;
(iv) ωD

α (x,B) + ωD
α (x, B̂) ≥ ωD

α (x̂,B) + ωD
α (x̂, B̂), x ∈ Rn.

Assume, in addition, that B is not D-null. Then for x ∈ D+, we have

(3.14) ωD
α (x,B) > ωD

α (x̂,B)

and

(3.15) ωD
α (x,B) > ωD

α (x, B̂).

See Figure 5.
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Figure 5. An illustration for Lemma 1.

4. Proof of Theorem 4

Let D be an open set in Rn and B a Borel set in Dc. Let S,U,V denote
the symmetric, upper nonsymmetric, and lower nonsymmetric part of D, re-
spectively. If x ∈ Dc, the inequalities (3.1) and (3.2) are trivial. Also, if x ∈ U
or if x ∈ V , then (3.2) reduces to (3.1). We will prove (3.2) for x = s ∈ S; the
proof of (3.1) is similar.

From now on {Xt, t ≥ 0} will denote a symmetric α-stable process (0 <
α < 2) starting from a point of D, with sample space Ω. We may and do
assume that {Xt} is the canonical version of the process [19, pp. 87–88]; so
the elements ω of Ω are right-continuous functions defined on [0, ∞) with
values on Rn (paths).

For the Borel sets U,V , we define inductively three sequences {τU
k }, {τV

k },
{τ V̂

k }, k ≥ 1 of Markov times as follows:

τU
1 = inf{t > 0 : t ≤ TD, Xt ∈ U },(4.1)

τV
1 = inf{t > 0 : t ≤ TD, Xt ∈ V },(4.2)

τ V̂
1 = inf{t > 0 : t ≤ TD∗

, Xt ∈ V̂ }.(4.3)

For k ≥ 2, we set

τU
k = inf{t > τV

k−1 : t ≤ TD, Xt ∈ U },(4.4)

τV
k = inf{t > τU

k−1 : t ≤ TD, Xt ∈ V },(4.5)

τ V̂
k = inf{t > τU

k−1 : t ≤ TD∗
, Xt ∈ V̂ }.(4.6)

As usual, if the set {t > τV
k : t ≤ TD, Xt ∈ U } is empty, we set τU

k+1 = ∞; if
the set {t > τU

k : t ≤ TD, Xt ∈ V } is empty, we set τV
k+1 = ∞; if the set {t >

τU
k : t ≤ TD, Xt ∈ V̂ } is empty, we set τ V̂

k+1 = ∞. Thus, for example, τU
k (ω) is

the moment when the path ω makes the kth jump from S ∪ V to U (having
stayed inside D until that moment). Note that if the process starts from a
point in S and XT S ∈ U , then almost surely 0 < τU

1 < τV
1 < τU

2 < τV
2 < · · ·
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provided that these Markov times are finite; if the process starts from a point
in S and XT S ∈ V , then almost surely 0 < τV

1 < τU
1 < τV

2 < τU
2 < · · · provided

that these Markov times are finite.
We consider the sets of paths

B = {ω ∈ Ω : XT D ∈ B},

B ∗ = {ω ∈ Ω : XT D∗ ∈ B∗ }.

Then for x ∈ D, Px(B) = ωD
α (x,B) and Px(B ∗) = ωD∗

α (x,B∗). Therefore, in
order to prove (3.2) for x = s ∈ S, it suffices to prove that

(4.7) Ps(B) + Pŝ(B) ≤ Ps(B ∗) + Pŝ(B ∗), s ∈ S.

We decompose the path set B into bracket sets as follows:

B = [S] ∪ [U ] ∪ [V ] ∪ B∞ ∪
∞⋃

k=1

[UkU ](4.8)

∪
∞⋃

k=1

[UkV ] ∪
∞⋃

k=1

[V kU ] ∪
∞⋃

k=1

[V kV ],

where

[S] = {ω ∈ B : TS = TD },

[U ] = {ω ∈ B : XT S ∈ U,TD = TS∪U },

[V ] = {ω ∈ B : XT S ∈ V,TD = TS∪V },

B ∞ = {ω ∈ B : τU
k < ∞, τV

k < ∞, ∀k ∈ N},

and for k ∈ N,

[UkU ] = {ω ∈ B : XT S ∈ U, τU
k+1 < TD, τV

k+1 = ∞},

[UkV ] = {ω ∈ B : XT S ∈ U, τV
k < TD, τU

k+1 = ∞},

[V kU ] = {ω ∈ B : XT S ∈ V, τU
k < TD, τV

k+1 = ∞},

[V kV ] = {ω ∈ B : XT S ∈ V, τV
k+1 < TD, τU

k+1 = ∞}.

Intuitively, [UkV ] is the set of paths in Ω that visit successively U and V
(staying in D) k times and then jump out of S ∪ V to the set B; these paths
are allowed to pass through S between the successive jumps from U to V or
from V to U . Similarly, [V kV ] is the set of paths in Ω that visit successively V
and U (staying in D) k times, then visit V once more and finally jump out
of S ∪ V to the set B. The path set B∞ contains all paths in B that visit
successively U and V an infinite number of times.
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The path set B ∗ has a similar decomposition:

B ∗ = [S] ∪ [U ] ∪ [V̂ ] ∪ B ∗
∞ ∪

∞⋃
k=1

[UkU ]∗ ∪
∞⋃

k=1

[UkV̂ ]∗ ∪
∞⋃

k=1

[V̂ kU ]∗(4.9)

∪
∞⋃

k=1

[V̂ kV̂ ]∗,

where

[V̂ ] = {ω ∈ B ∗ : XT S ∈ V̂ , TD = TS∪V̂ },

B ∗
∞ = {ω ∈ B ∗ : τU

k < ∞, τ V̂
k < ∞, ∀k ∈ N},

and for k ∈ N,

[UkU ]∗ = {ω ∈ B ∗ : XT S ∈ U, τU
k+1 < TD, τ V̂

k+1 = ∞},

[UkV̂ ] = {ω ∈ B ∗ : XT S ∈ U, τ V̂
k < TD, τU

k+1 = ∞},

[V̂ kU ] = {ω ∈ B ∗ : XT S ∈ V̂ , τU
k < TD, τ V̂

k+1 = ∞},

[V̂ kV̂ ] = {ω ∈ B ∗ : XT S ∈ V̂ , τ V̂
k+1 < TD, τU

k+1 = ∞}.

By the strong Markov property, for every k ∈ N and every s ∈ S,

Ps(B ∞) ≤
∫

V

ωS∪U
α (s, dv1)

∫
U

ωS∪V (v1, du1)
∫

V

ωS∪U
α (u1, dv2) · · ·

×
∫

V

ωS∪U
α (uk−1, dvk)

∫
U

ωS∪V
α (vk, duk)ωD

α (uk,B).

Thus, by [8, Theorem 3],

Ps(B ∞) ≤
(

1
2

)2k−1

.

Hence, Ps(B ∞) = 0.
Therefore, in order to prove (4.7), it suffices to prove the following inequal-

ities for s ∈ S:

Ps[V ] + Pŝ[V ] ≤ Ps[V̂ ] + Pŝ[V̂ ],(4.10)

Ps[UkU ] + Pŝ[UkU ] ≤ Ps[UkU ]∗ + Pŝ[UkU ]∗, k ∈ N,(4.11)

Ps[UkV ] + Pŝ[UkV ] ≤ Ps[UkV̂ ]∗ + Pŝ[UkV̂ ]∗, k ∈ N,(4.12)

Ps[V kU ] + Pŝ[V kU ] ≤ Ps[V̂ kU ]∗ + Pŝ[V̂ kU ]∗, k ∈ N,(4.13)

Ps[V kV ] + Pŝ[V kV ] ≤ Ps[V̂ kV̂ ]∗ + Pŝ[V̂ kV̂ ]∗, k ∈ N.(4.14)

We now prove the inequality (4.10). By the strong Markov property,

(4.15) Ps[V ] + Pŝ[V ] =
∫

V

[ωS
α(s, dv) + ωS

α(ŝ, dv)]ωS∪V
α (v,B)
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and similarly,

(4.16) Ps[V̂ ] + Pŝ[V̂ ] =
∫

V

[ωS
α(s, d̂v) + ωS

α(ŝ, d̂v)]ωS∪V̂
α (v̂,B∗),

where ωS
α(s, d̂v) is the measure μ on V defined by μ(A) = ωS

α(s, Â) with a
similar definition for the measure ωS

α(ŝ, d̂v).
We denote by SB , UB , VB the symmetric, upper nonsymmetric, and lower

nonsymmetric part of B, respectively. Then, of course, we have

(4.17) ωS∪V
α (v,B) = ωS∪V

α (v,SB) + ωS∪V
α (v,UB) + ωS∪V

α (v,VB)

and

(4.18) ωS∪V̂
α (v̂,B∗) = ωS∪V̂

α (v̂, SB) + ωS∪V̂
α (v̂,UB) + ωS∪V̂

α (v̂, V̂B).

Because of symmetry,

(4.19) ωS∪V
α (v,SB) = ωS∪V̂

α (v̂, SB)

and

(4.20) ωS∪V
α (v,VB) = ωS∪V̂

α (v̂, V̂B).

Also, by Lemma 1,

(4.21) ωS∪V
α (v,UB) = ωS∪V̂

α (v̂, ÛB) ≤ ωS∪V̂
α (v̂,UB).

The inequality (4.10) follows from (4.15)–(4.21).
Next, we prove the inequality (4.12). The inequalities (4.11), (4.13),

and (4.14) are proved in a similar manner. Fix k ∈ N. By the strong Markov
property,

Ps[UkV ] + Pŝ[UkV ]

=
∫

U

[ωS
α(s, du1) + ωS

α(ŝ, du1)]
∫

V

ωS∪U
α (u1, dv1)

∫
U

ωS∪V
α (v1, du2) · · ·

×
∫

U

ωS∪V
α (vk−1, duk)

∫
V

ωS∪U
α (uk, dvk)ωS∪V

α (vk,B)

and similarly

Ps[UkV̂ ]∗ + Pŝ[UkV̂ ]∗

=
∫

U

[ωS
α(s, du1) + ωS

α(ŝ, du1)]
∫

V

ωS∪U
α (u1, d̂v1)

∫
U

ωS∪V̂
α (v̂1, du2) · · ·

×
∫

U

ωS∪V̂
α (v̂k−1, duk)

∫
V

ωS∪U
α (uk, d̂vk)ωS∪V̂

α (v̂k,B∗).

Therefore, the inequality (4.12) follows from the following inequalities:
(i) For all u ∈ U and all Borel sets V1 ⊂ V ,

(4.22) ωS∪U
α (u,V1) ≤ ωS∪U

α (u, V̂1).
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(ii) For all v ∈ V and all Borel sets U1 ⊂ U ,

(4.23) ωS∪V
α (v,U1) ≤ ωS∪V̂

α (v̂,U1).

(iii) For all v ∈ V ,

(4.24) ωS∪V
α (v,B) ≤ ωS∪V̂

α (v̂,B∗).

The inequalities (i) and (ii) follow at once from Lemma 1. The inequality
(iii) follows from symmetry, Lemma 1 and equations (4.17), (4.18).

The proof of Theorem 4 is now complete.

5. Proof of Theorem 5

In this section, we will prove Theorem 5. We recall the setting of the the-
orem: Let D be an open set in Rn, n ≥ 2 and let B be a Borel set in Dc.
Denote by S,U , and V the symmetric, upper nonsymmetric, and lower non-
symmetric part of D, respectively. Suppose that B is not a D∗-null set and
that B∗ ⊂ (D∗)c.

In the proof, we will make repeated use of the decomposition of the path
sets B and B ∗ into bracket sets; see the proof of Theorem 4 in Section 4. We
will also need the following lemma.

Lemma 2. Suppose that B ⊂ Rn
+ is not a D∗-null set. If B is both S ∪ V̂ -

null and S ∪ U -null set, then for x ∈ D+,

(5.1) 0 = ωD
α (x,B) < ωD∗

α (x,B).

Proof. By Lemma 1, since B is S ∪ V̂ -null, it is also S ∪ V -null. It is also
S ∪ U -null, and therefore all the bracket sets in the decomposition (4.8) have
zero Px probability. Similarly, all the sets in the decomposition (4.9), except
possibly B ∗

∞, have zero Px probability. Hence,

ωD
α (x,B) = 0 and ωD∗

α (x,B) = Px(B ∗
∞).

Since B is not D∗-null, we have ωD∗

α (x,B) > 0. �
Because of symmetry, part (i) of Theorem 5 is equivalent to part (ii). Also

part (iii) is equivalent to (iv), part (v) is equivalent to (vi), and part (viii) is
equivalent to (ix). We give here only the proofs of parts (i), (iii), and (viii).
Parts (v), (vii), and (x) can be proved by similar arguments.

Proof of part (i) of Theorem 5. Suppose that B ⊂ Rn
+ and that Cα(V ) =

0. Then V̂ is S ∪ U -null. It follows then from the decompositions (4.8) and
(4.9) that

ωD
α (x,B) = ωS∪U

α (x,B) = ωD∗

α (x,B).
for all x ∈ S+ ∪ So ∪ U .

Conversely, suppose that for some x ∈ S+ ∪ So ∪ U ,

(5.2) ωD
α (x,B) = ωD∗

α (x,B).
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Seeking for a contradiction, assume also that

(5.3) V̂ is not S ∪ U -null.

This assumption implies that V̂ �= ∅. The assumption (5.2) and the proof of
Theorem 4 imply that Px[V ] = Px[V̂ ]∗ which means that∫

V

ωS∪U
α (x,dv)ωS∪V

α (v,B) =
∫

V

ωS∪U
α (x, d̂v)ωS∪V̂

α (v̂,B),

or, equivalently,∫
V

[ωS∪U
α (x, d̂v) − ωS∪U

α (x,dv)]ωS∪V
α (v,B)(5.4)

+
∫

V

[ωS∪V̂
α (v̂,B) − ωS∪V

α (v,B)]ωS∪U
α (x, d̂v) = 0.

By Lemma 1, if B is not S ∪ V̂ -null, we have ωS∪V
α (v,B) < ωS∪V̂

α (v̂,B) and
this together with (5.3) contradict (5.4). Therefore,

(5.5) B is S ∪ V̂ -null.

The equality (5.2) and the proof of Theorem 4 also imply that Px[V 1U ] =
Px[V̂ 1U ]∗ which means that∫

V

ωS∪U
α (x,dv)

∫
U

ωS∪V
α (v, du)ωS∪U

α (u,B)

=
∫

V

ωS∪U
α (x, d̂v)

∫
U

ωS∪V̂
α (v̂, du)ωS∪U

α (u,B),

or equivalently,∫
V

ωS∪U
α (x, d̂v)

∫
U

[ωS∪V̂
α (v̂, du) − ωS∪V

α (v, du)]ωS∪U
α (u,B)(5.6)

+
∫

V

[ωS∪U
α (x, d̂v) − ωS∪U

α (x,dv)]
∫

U

ωS∪V
α (v, du)ωS∪U

α (u,B) = 0.

Because of (5.3) and (5.5), the equality (5.6) implies that for every v ∈ V , the
measure

ωS∪V̂
α (v̂, du) − ωS∪V

α (v, du)
is the zero measure on U . In particular,

(5.7) ωS∪V̂
α (v̂,U) = ωS∪V

α (v,U), v ∈ V.

Because of Lemma 1, (5.7) implies that

(5.8) U is S ∪ V̂ -null.

If S = ∅, then U is a nonempty open set (it contains the point x) and V is
a nonempty open set; this contradicts (5.8). Hence, S �= ∅. Let s ∈ S. Then

(5.9) ωS∪U
α (s,B) = ωS

α(s,B) +
∫

U

ωS(s, du)ωS∪U
α (u,B).
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But B is S-null (by (5.5)) and U is S-null (by (5.8)). Therefore, (5.9) implies
that

(5.10) B is S ∪ U -null.

Since B is both S ∪ V̂ -null and S ∪ U -null but it is not D∗-null, Lemma 2
yields

(5.11) 0 = ωD
α (x,B) < ωD∗

α (x,B), x ∈ D+.

This contradicts (5.2). Hence, V̂ is S ∪ U -null. By [8, Lemma 3],
Cα(V ) = 0. �

Proof of part (iii) of Theorem 5. Suppose that B ⊂ Rn
+. Seeking for a con-

tradiction, we suppose that

(5.12) ωD
α (xo,B) = ωD∗

α (x̂o,B),

for some xo ∈ D−. By the proof of Theorem 4,

Pxo([S] ∪ [V ]) = Px̂o([S] ∪ [V̂ ]∗)

which means that
ωS∪V

α (xo,B) = ωS∪V̂
α (x̂o,B).

Lemma 1 implies that

(5.13) B is S ∪ V̂ -null.

Again by the proof of Theorem 4,

Pxo([U ] ∪ [V 1U ]) = Px̂o([U ] ∪ [V̂ 1U ]∗)

which means that∫
U

ωS∪V
α (xo, du)ωS∪U

α (u,B) =
∫

U

ωS∪V̂
α (x̂o, du)ωS∪U

α (u,B),

or, equivalently,

(5.14)
∫

U

[ωS∪V̂
α (x̂o, du) − ωS∪V

α (xo, du)]ωS∪U
α (u,B) = 0.

Then either B is S ∪ U -null, or ωS∪V̂
α (x̂o, du) − ωS∪V

α (xo, du) is the zero
measure on U . In the first case, Lemma 2 implies that

ωD
α (xo,B) = 0 < ωD∗

α (x̂o,B)

contradicting (5.12). In the second case, we have

ωS∪V̂
α (x̂o,U) = ωS∪V

α (xo,U) = ωS∪V̂
α (x̂o, Û),

and thus Lemma 1 implies that

(5.15) U is S ∪ V̂ -null.
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Then (5.13), (5.15), and the proof of Theorem 4 imply that

ωD∗

α (x̂o,B) = ωS∪V̂
α (x̂o,B) = 0,

i.e., B is D∗-null; contradiction. �

Proof of part (viii) of Theorem 5. Suppose that B ⊂ Rn
+, and that

Cα(V ) = 0. Then V̂ is S ∪ U -null. It follows from the proof of Theorem 4
that

ωD
α (s,B) = ωD∗

α (s,B) = ωS∪U
α (s,B), s ∈ S.

Therefore,

(5.16) ωD
α (s,B) + ωD

α (ŝ,B) = ωD∗

α (s,B) + ωD∗

α (ŝ,B)

for all s ∈ S.
Conversely, suppose that (5.16) holds for some s ∈ S+. By the strong

Markov property,

ωD
α (s,B) = ωS∪U

α (s,B) +
∫

V

ωS∪U
α (s, dv)ωD

α (v,B),

ωD
α (ŝ,B) = ωS∪U

α (ŝ,B) +
∫

V

ωS∪U
α (ŝ, dv)ωD

α (v,B),

ωD∗

α (s,B) = ωS∪U
α (s,B) +

∫
V

ωS∪U
α (s, d̂v)ωD∗

α (v̂,B),

ωD∗

α (ŝ,B) = ωS∪U
α (ŝ,B) +

∫
V

ωS∪U
α (ŝ, d̂v)ωD∗

α (v̂,B).

Therefore, (5.16) implies that

0 =
∫

V

[ωS∪U
α (s, d̂v) + ωS∪U

α (ŝ, d̂v)]ωD∗

α (v̂,B)

−
∫

V

[ωS∪U
α (s, dv) + ωS∪U

α (ŝ, dv)]ωD
α (v,B)

=
∫

V

[ωS∪U
α (s, d̂v) + ωS∪U

α (ŝ, d̂v)][ωD∗

α (v̂,B) − ωD(v,B)]

+
∫

V

[ωS∪U
α (s, d̂v) + ωS∪U

α (ŝ, d̂v) − ωS∪U
α (s, dv) − ωS∪U

α (ŝ, dv)]ωD(v,B).

It follows from the results in [8] that ωS∪U
α (s, d̂v) is the zero measure on V̂ , and

hence V̂ is S ∪ U -null. By [8, Lemma 3], Cα(V ) = 0 which means D
Cα= D∗. �

6. Proofs of Theorems 6 and 7

In this section, we prove Theorem 6 for the behavior of the convex integral
means of α-harmonic measure under polarization. We also prove Theorem 7
which describes the corresponding equality cases. The proof of these results
uses the following elementary lemma whose easy proof is omitted (see [25]).
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Lemma 3. Let a1, b1, a2, b2 ∈ R be such that

a2 + b2 ≤ a1 + b1 and 0 ≤ a1 ≤ a2 ≤ b2 < b1.

Let Φ : R → R be a nonconstant, convex, increasing function. Then

(6.1) Φ(a2) + Φ(b2) ≤ Φ(a1) + Φ(b1).

Equality holds in (6.1) if and only if Φ is affine on [a1, b1] and a1+b1 = a2+b2.

Proof of Theorem 6. The inequality (3.13) is equivalent to∫
Σ+

[Φ(ωD
α (x,B)) + Φ(ωD

α (x̂,B))]mk(dx)(6.2)

≤
∫

Σ+

[Φ(ωD∗

α (x,B∗)) + Φ(ωD∗

α (x̂,B∗))]mk(dx)

and this follows from Theorem 4 and Lemma 3. �

Proof of Theorem 7.

(i) Suppose that D
Cα= D̂ and that Φ is affine function. It follows from the

strong Markov property that for s ∈ S,

ωD
α (s,B) = ωS

α(s,B) and ωD∗

α (s,B∗) = ωS
α(s,B∗).

Also, because of symmetry, for s ∈ S+,

ωS
α(s,B) + ωS

α(ŝ,B) = ωS
α(s,B∗) + ωS

α(ŝ,B∗).

Since Φ is affine, it follows that equality holds in (3.13).

(ii) Suppose that D
Cα= D̂. Assume first that B

D∗
= B∗. Then

ωD
α (s,B) = ωS

α(s,UB ∪ SB) = ωS
α(s,B∗), s ∈ S,

and therefore, for s ∈ Σ+,

Φ(ωS
α(s,B)) + Φ(ωS

α(ŝ,B)) = Φ(ωS
α(s,B∗)) + Φ(ωS

α(ŝ,B∗)).

Hence, (6.2) holds with equality. Similarly, if B
D∗
= B̂∗, again (6.2) holds with

equality. So (3.13) holds with equality.
Conversely, assume that (3.13) holds with equality. Then for s ∈ Σ+,

Φ(ωS
α(s,B)) + Φ(ωS

α(ŝ,B)) = Φ(ωS
α(s,B∗)) + Φ(ωS

α(ŝ,B∗)).

Since Φ is not affine in any interval, it follows from Lemma 3 that for every
s ∈ Σ+,

ωS
α(s,B∗) = ωS

α(s,B) or ωS
α(s,B∗) = ωS

α(ŝ,B).

By Lemma 1, UB is S-null or VB is S-null which means B
D∗
= B∗ or B

D∗
= B̂∗.
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(iii) Suppose that the condition D
Cα= D̂ is not true. If D

Cα= D∗, B
D∗
= B∗

or if D
Cα= D̂∗, B

D∗
= B̂∗, then it is easy to show that equality holds in (3.13).

Conversely, assume that equality holds in (3.13), and hence in (6.2). Then
for all s ∈ Σ+,

Φ(ωD
α (s,B)) + Φ(ωD

α (ŝ,B)) = Φ(ωD∗

α (s,B∗)) + Φ(ωD∗

α (ŝ,B∗)).

By Lemma 3, for each s ∈ Σ+, at least one of the following three equalities
must be satisfied.

ωD
α (s,B) + ωD

α (ŝ,B) = ωD∗

α (s,B∗) + ωD∗

α (ŝ,B∗),(6.3)

ωD∗

α (s,B∗) = ωD
α (s,B),(6.4)

ωD∗

α (s,B∗) = ωD
α (ŝ,B).(6.5)

By using the various parts of Theorem 5, we conclude that the equalities
(6.3), (6.4), and (6.5) imply the following three conditions, respectively.

Condition 1: [Cα(V ) = 0 or UB is D∗-null] and [Cα(U) = 0 or VB is D∗-
null] and [Cα(U) = 0 or Cα(V ) = 0 or SB is D∗-null].

Condition 2: [Cα(V ) = 0 or UB is D∗-null] and [VB is D∗-null] and
[Cα(V ) = 0 or SB is D∗-null].

Condition 3: [Cα(U) = 0 or VB is D∗-null] and [UB is D∗-null] and
[Cα(U) = 0 or SB is D∗-null].

We perform the logical operations and using the assumptions that D
Cα= D̂

is not true and that B∗ is not D∗-null, we find that [D Cα= D∗ and B
D∗
= B∗]

or [D Cα= D̂∗ and B
D∗
= B̂∗]. �

7. Proofs of Theorems 1, 2 and 3

In the proof of Theorem 1, we will use the following two lemmas.

Lemma 4. Let {Dk } be a sequence of open sets in Rn such that for every
k ∈ N, Dk ⊂ Dk+1. Set D :=

⋃∞
k=1 Dk. Let B be a compact set in Rn. Assume

that one of the following two conditions holds:
(i) B ⊂ (D)c.
(ii) B ⊂ ∂Dk for all k ∈ N and there exists an open neighborhood O of B

such that D1 ∩ O = D ∩ O.
Then for x ∈ D,

(7.1) lim
k→∞

ωDk
α (x,B) = ωD

α (x,B).

Proof. By domain monotonicity, the sequence ωDk
α (x,B) is increasing. We

set
h(x) = lim

k→∞
ωDk

α (x,B), x ∈ Rn.
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Then 0 ≤ h(x) ≤ ωD
α (x,B). As in the classical case (by Harnack’s inequality),

h is α-harmonic in D. Let

u(x) = h(x) − ωD
α (x,B).

The function u is α-harmonic in D and u = 0 in (D)c. Let E be the set of
points in ∂D which are irregular for the Dirichlet problem for α-harmonic
functions in D. Then Cα(E) = 0; see e.g., [22, p. 296]. Let ζ ∈ ∂D \ E. If
ζ ∈ ∂D (in case (i)), or if ζ ∈ ∂D \ B (in case (ii)), then

lim inf
D�x→ζ

u(x) = lim inf
D�x→ζ

h(x) ≥ 0.

If ζ ∈ ∂D ∩ B (this can occur only in case (ii)), then by the strong Markov
property and the fact that ζ is an interior point of ∂D1 \ (D \ D1) (in the
topology of ∂D1),

lim inf
D�x→ζ

u(x) = lim inf
D�x→ζ

[h(x) − ωD
α (x,B)]

≥ lim inf
D�x→ζ

[ωD1
α (x,B) − ωD

α (x,B)]

= lim inf
D�x→ζ

[
−

∫
D\D1

ωD1
α (x,dy)ωD

α (y,B)
]

≥ lim inf
D�x→ζ

[−ωD1
α (x,D \ D1)] = 0.

By the minimum principle for α-harmonic functions [8, Lemma 5], u = 0
in Rn. �

Lemma 5. Let D be an open set in Rn lying in a striplike set G. Let Σ
be a vertical line intersecting D. Let Φ : R → R be a nonconstant, convex,
increasing function. Let B be a closed set in Gc. Suppose that D = D�. Then

(7.2)
∫

Σ

Φ(ωD
α (p,B))m1(dp) ≤

∫
Σ

Φ(ωD
α (p,B�))m1(dp).

Proof. We may assume that B is compact. By [14, Lemma 7.2], there exist
horizontal, oriented planes Hj with corresponding polarizations Pj , j ∈ N,
such that for the sequence of sets Fk := Pk · · · P2P1(B), we have

lim
k→∞

dHaus(Fk,B�) = 0.

Here, dHaus denotes the Hausdorff metric. Thus, for ε > 0, there exists k ∈ N
such that

(7.3) Fk ⊂ (B�)ε,

where
(B�)ε = {x ∈ Gc : d(x,B�) ≤ ε}.
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By Theorem 6 and (7.3),∫
Σ

Φ(ωD
α (p,B))m1(dp) ≤

∫
Σ

Φ(ωD
α (p,Fk))m1(dp)(7.4)

≤
∫

Σ

Φ(ωD
α (p, (B�)ε))m1(dp).

But
ωD

α (p, (B�)ε) − ωD
α (p,B�) ≤ ωD

α (p,Kε) ≤ ωG
α (p,Kε),

where Kε is the intersection of Gc with a finite union of balls of radius ε.
Clearly,

lim
ε→0

ωD
α (p,Kε) = 0.

We take limits in (7.4) as ε → 0 and obtain (7.2). �

Proof of Theorem 1. We may assume that B is compact. Let B = B1 ∪ B2

with B1 = B ∩ (G)c, B2 = B ∩ ∂G ∩ ∂D. We may assume that B1 and B2 are
both compact. We prove first that

(7.5)
∫

Σ

Φ(ωD
α (p,B1))m1(dp) ≤

∫
Σ

Φ(ωD�

α (p,B�
1))m1(dp).

Let {Dk } be sequence of bounded open sets in Rn such that Dk ⊂ Dk+1

and
⋃∞

k=1 Dk = D. By [14, Lemma 7.1], for each Dk, there exist horizontal,
oriented planes Hj , j = 1,2, . . . ,Nk such that

(7.6) Ωk := PNk
· · · P2P1(Dk) ⊂ D�.

Here, we denote by Pj the polarization with respect to Hj . We also set

(7.7) Fk := PNk
· · · P2P1(B1).

By applying Theorem 6 Nk times, we obtain

(7.8)
∫

Σ

Φ(ωDk
α (p,B1))m1(dp) ≤

∫
Σ

Φ(ωΩk
α (p,Fk))m1(dp).

By (7.6) and the domain monotonicity of α-harmonic measure,

(7.9)
∫

Σ

Φ(ωΩk
α (p,Fk))m1(dp) ≤

∫
Σ

Φ(ωD�

α (p,Fk))m1(dp).

By Lemma 5,

(7.10)
∫

Σ

Φ(ωD�

α (p,Fk))m1(dp) ≤
∫

Σ

Φ(ωD�

α (p,B�
1))m1(dp).

The inequalities (7.8)–(7.10) yield

(7.11)
∫

Σ

Φ(ωDk
α (p,B1))m1(dp) ≤

∫
Σ

Φ(ωD�

α (p,B�
1))m1(dp).

The inequality (7.5) follows from (7.11) by taking limits as k → ∞ and using
Lemma 4(i).
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Next, we prove the inequality

(7.12)
∫

Σ

Φ(ωD
α (p,B2))m1(dp) ≤

∫
Σ

Φ(ωD�

α (p,B�
2))m1(dp).

Since B2 is compact, we may assume that B2 lies in the cube [−1,1]n.
Recall that for x ∈ Rn, we denote by x� the orthogonal projection of x on the
horizontal plane Π. Let also BΠ

2 denote the orthogonal projection of B2 on Π.
We first prove (7.12) under the additional assumption that for some ε > 0,
the open set

{x ∈ Rn : dist(x�,BΠ
2 ) < ε}

is subset of D. This assumption means that D contains an ε-neighborhood
of the cylinder generated by BΠ

2 .
We construct now a special cube-approximation Dk ↑ D with B2 ⊂ ∂Dk

for all k ∈ N. Let GΠ be the projection of G on Π. This is an open set in
Π. For k ∈ N, we consider the set Qk

1 of all closed, nonoverlapping, (n − 1)-
dimensional cubes in Π, with sides parallel to the coordinate planes, side-
length 1

k , and all lying inside the cube [−k, k]n−1. Let

Qk
2 := {Q ∩ GΠ : Q ∈ Qk

1 }, k ∈ N.

Next, consider the set Lk of all closed, nonoverlapping intervals in R, with
length 1

k , lying inside the interval [−k, k]; that is Lk contains the intervals[
0,

1
k

]
,

[
1
k

,
2
k

]
, . . . ,

[
k − 1

k
, k

]
,

[
−1
k

,0
]
, . . . ,

[
−k, −k +

1
k

]
.

Let
Qk := {Q × l ⊂ D : Q ∈ Qk

2 , l ∈ Lk }, k ∈ N.

Let Dk be the interior of the union of all sets in Qk:

Dk :=
( ⋃

Q∈Qk

Q

)◦
.

Then {Dk } is an increasing sequence of open subsets of D and
⋃

k Dk = D.
Note that each Dk is a finite union of cube-like sets in Qk. Note also that an
open set of the form

{x ∈ Rn : dist(x�,BΠ
2 ) < ε′ },

with 0 < ε′ ≤ ε, is subset of Dk for all k ∈ N; therefore B2 ⊂ ∂Dk, for all k ∈ N.
By a standard technique (cf. [17], [18]), there exists a finite number of hor-
izontal, oriented planes Hj , j = 1,2, . . . ,Nk with corresponding polarizations
Pj such that

D�
k = PNk

· · · P2P1(Dk).
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Moreover, it is clear that D�
k ⊂ D�. By Theorem 6 and Lemma 5,∫

Σ

Φ(ωDk
α (p,B2))m1(dp) ≤

∫
Σ

Φ(ωD�
k

α (p,PNk
. . . P2P1(B2)))m1(dp)(7.13)

≤
∫

Σ

Φ(ωD�
k

α (p,B�
2))m1(dp)

≤
∫

Σ

Φ(ωD�

α (p,B�
2))m1(dp).

By Lemma 4(ii),

(7.14) lim
k→∞

ωDk
α (p,B2) = ωD

α (p,B2), p ∈ D.

The inequality (7.12) follows from (7.13) and (7.14). So it remains to remove
the additional assumption we made after the statement of (7.12).

We will use another approximation technique (see [1]). For j ∈ N, let

Dj := D ∪
{

x ∈ Rn : dist(x�,BΠ
2 ) <

1
j

}
and

uj(x) := ωDj
α (x,B2), x ∈ Rn.

We also set

vj(x) := ω
D�

j
α (x,B�

2), x ∈ Rn.

Then each of the sets Dj contains D and satisfies the additional assumption,
and therefore, by what we have proved so far,

(7.15)
∫

Σ

Φ(ωD
α (p,B2))m1(dp) ≤

∫
Σ

Φ(uj(p))m1(dp) ≤
∫

Σ

Φ(vj(p))m1(dp).

The sequence {vj } is decreasing and therefore it converges to a function v∞.
As in the classical case, the convergence vj → v∞ is uniform on compact
subsets of D� and the function v∞ is α-harmonic in D�. Because of (7.15), in
order to prove (7.12), it suffices to prove that

(7.16) v∞(x) = ωD�

α (x,B�
2), x ∈ D�.

Since vj(x) ≥ ωD�

α (x,B�
2) for all x ∈ D� and all j ∈ N, we have v∞(x) ≥

ωD�

α (x,B�
2). To prove the converse inequality we consider a function h in

the upper Perron family for the function χB�
2
. Thus, h is α-superharmonic

and bounded below in D� and satisfies the following inequalities:

lim inf
D� �x→b

h(x) ≥ 1 ∀b ∈ B�
2

and
lim inf

D� �x→ζ
h(x) ≥ 0 ∀ζ ∈ ∂D� \ B�

2.
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Figure 6. The set Dj is of type Gj , j = 1,2,3.

Consider the function h − v∞ which is α-superharmonic in D�. Since 0 ≤
v∞ ≤ 1, we have

(7.17) lim inf
D� �x→b

(
h(x) − v∞(x)

)
≥ 0 ∀b ∈ B�

2.

Next, let ζ ∈ ∂D� \ B�
2 be regular point for the α-Dirichlet problem. Since

∂D� \ B�
2 is an open subset of ∂D�, we have

lim
D� �x→ζ

vj(x) = 0 ∀j ∈ N.

Using the fact that the sequence vj decreases to v∞, we conclude that

lim
D� �x→ζ

v∞(x) = 0

and therefore

(7.18) lim inf
D� �x→ζ

(
h(x) − v∞(x)

)
≥ 0.

By (7.17), (7.18) and the minimum principle for α-superharmonic functions
[8, Lemma 5], h(x) ≥ v∞(x), x ∈ D�. Taking infimum for all h, we conclude
that ωD�

α (x,B�
2) ≥ v∞(x). Therefore, (7.12) is proved. This completes the

proof of the inequality (1.1). The inequality (1.2) is proved similarly. �
For the proof of Theorem 2, we need some definitions; see Figure 6.

Definition 1. (i) Let Ω be a Borel set in Rn. We say that Ω ∈ A1 if
there exists a horizontal plane H such that for every vertical line Σ that
intersects Ω, the set Σ ∩ (Rn \ Ω) is either empty or a nonempty, bounded,
vertical segment, symmetric with respect to H . We say that Ω ∈ A2 if for
every vertical line Σ that intersects Ω, the set Σ ∩ Ω is either the whole line
Σ or an upward half-line. We say that Ω ∈ A3 if for every vertical line Σ that
intersects Ω, the set Σ ∩ Ω is either the whole line Σ or a downward half-line.

(ii) Let D be an open set such that D
Cα

�= C for any striplike set C. We say
that D ∈ Gj if D

Cα= Ω, for some Ω ∈ Aj , j = 1,2,3.

(iii) Let B be a closed set such that B
mn

�= C for any striplike set C. We
say that B ∈ Fj if B

mn= Ω, for some Ω ∈ Aj , j = 1,2,3.
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We will also need the following two lemmas taken from [9].

Lemma 6. Let D be an open set in Rn. Assume that D /∈ G1 ∪ G2 ∪ G3.
There exists a horizontal plane Ho such that SHoD

Cα= D if and only if for
every horizontal plane H , either D

Cα= PHD or RHD
Cα= PHD.

Lemma 7. Let B be a closed set in Rn. Assume that B /∈ F1 ∪ F2 ∪ F3.
There exists a horizontal plane Ho such that SHoB

mn= B if and only if for
every horizontal plane H, either B

mn= PHB or RHB
mn= PHB.

We now prove Theorem 2. The proof of Theorem 3 is similar, and so we
omit it.

Proof of Theorem 2.
(a) By [14, Lemma 7.2], there exist horizontal, oriented planes Hj with

corresponding polarizations Pj , j ∈ N, such that for the sequence of sets Fk :=
Pk · · · P2P1(B), we have

lim
k→∞

dHaus(Fk,B�) = 0.

Thus, for ε > 0, there exists k ∈ N such that

B� ⊂ (Fk)ε := {x ∈ Gc : d(x,Fk) ≤ ε}.

By Theorems 7(i) and 1, the domain monotonicity of α-harmonic measure,
and the boundedness of B, we obtain:∫

Σ

Φ(ωD
α (p,B))m1(dp) =

∫
Σ

Φ(ωD
α (p,Fk))m1(dp)(7.19)

≤
∫

Σ

Φ(ωD
α (p,B�))m1(dp)

≤
∫

Σ

Φ(ωD
α (p, (Fk)ε))m1(dp)

≤
∫

Σ

Φ(ωD
α (p,Fk))m1(dp) + o(ε)

=
∫

Σ

Φ(ωD
α (p,B))m1(dp) + o(ε).

We take limits as ε → 0 and obtain (1.3).
(b) The sufficiency of the conditions SHB1

mn= B1 and SHB2
D= B2 for the

equality

(7.20)
∫

Σ

Φ(ωD
α (p,B))m1(dp) =

∫
Σ

Φ(ωD�

α (p,B�))m1(dp)

is easy to prove. Conversely, assume that (7.20) holds. If mn(B1) = 0,
then trivially SHB1

mn= B1. Suppose that mn(B1) > 0. Note that if B1 ∈
F1 ∪ F2 ∪ F3, then B1 � B�

1 and mn(B�
1 \ B1) > 0; therefore (7.20) cannot
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hold. Hence, B1 /∈ F1 ∪ F2 ∪ F3. Assume that the condition SHB1
mn= B1 does

not hold for any horizontal plane H . Then Lemma 7 implies that there exists a
plane H for which neither of the conditions B1

mn= PHB1 and RHB1
mn= PHB1

hold. By Theorem 7(ii) and Theorem 1, we obtain∫
Σ

Φ(ωD
α (p,B1))m1(dp) <

∫
Σ

Φ(ωPHD
α (p,PHB1))m1(dp)(7.21)

≤
∫

Σ

Φ(ωD�

α (p,B�
1))m1(dp).

This contradicts (7.20). Hence, SHB1
mn= B1. Finally, applying Theorem 7

for a suitable horizontal plane, we see that SHB2
D= B2. Note that Lemma 7

implies that the condition B1
mn= PH(B1) is false, while Theorem 7 involves

the condition B1
D= PH(B1); this is not a problem since the harmonic measure

is absolutely continuous with respect to mn in (D)c.
(c) If SHD

Cα= D, SHB1
mn= B1 and SHB2

D= B2 for some horizontal
plane H , then we trivially have

(7.22)
∫

Σ

Φ(ωD
α (p,B))m1(dp) =

∫
Σ

Φ(ωD�

α (p,B�))m1(dp).

Conversely, assume that (7.22) holds. If D ∈ G1 ∪ G2 ∪ G3, then D� is a

striplike set with D � D� and D
Cα

�= D�; therefore∫
Σ

Φ(ωD
α (p,B))m1(dp) <

∫
Σ

Φ(ωD�

α (p,B))m1(dp) ≤
∫

Σ

Φ(ωD�

α (p,B�))m1(dp)

contradicting (7.22). Hence, D /∈ G1 ∪ G2 ∪ G3.
Suppose that the condition SHD

Cα= D does not hold for any plane H . By
Lemma 6, there exists a horizontal plane H such that neither of the conditions
D

Cα= PHD or RHD
Cα= PHD hold. By Theorem 7(iii) and Theorem 1, we

obtain ∫
Σ

Φ(ωD
α (p,B))m1(dp) <

∫
Σ

Φ(ωPHD
α (p,PHB))m1(dp)(7.23)

≤
∫

Σ

Φ(ωD�

α (p,B�))m1(dp).

This contradicts (7.22). Therefore, there exists a horizontal plane H such
that SHD

Cα= D. We may assume that H = Π; so it remains to prove that
B�

1
mn= B1 and B�

2
D= B2.

Suppose that the condition B�
1

mn= B1 is not true. Then by Lemma 7, there
exists a horizontal plane H such that neither of the conditions B1

mn= PHB1 or
RHB1

mn= PHB1 hold. We continue as above and using Theorems 7 and 1, we
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arrive at a strict inequality that contradicts (7.22). The proof of the condition
B�

2
D= B2 is similar. �

8. Special cases

8.1. Classical harmonic measure (α = 2). In this subsection, we assume
that α = 2. So, we deal with classical harmonic measure and Brownian motion
on a domain D. The various results of the previous sections hold for α = 2
with some modifications.

The corresponding equality cases (the analogs of Theorems 2 and 3) are
the following below.

Theorem 8. Let D be a domain in Rn lying in a striplike set G. Let Σ
be a vertical line intersecting D. Let Φ : R → R be a nonconstant, convex,
increasing function. Let B be a closed set in ∂G ∩ ∂D. Assume that B is not
D-null and that ∫

Σ

Φ(ωD
2 (p,B))m1(dp) < ∞.

(a) Suppose that D is an essentially striplike set, B is bounded, and Φ is
affine function. Then

(8.1)
∫

Σ

Φ(ωD
2 (p,B))m1(dp) =

∫
Σ

Φ(ωD�

2 (p,B�))m1(dp).

(b) Suppose that D is an essentially striplike set and Φ is not affine in any
interval. Then

(8.2)
∫

Σ

Φ(ωD
2 (p,B))m1(dp) =

∫
Σ

Φ(ωD�

2 (p,B�))m1(dp)

if and only if there exists a horizontal plane H such that SHB
D= B.

(c) Suppose that D is not an essentially striplike set. Then

(8.3)
∫

Σ

Φ(ωD
2 (p,B))m1(dp) =

∫
Σ

Φ(ωD�

2 (p,B�))m1(dp)

if and only if there exists a horizontal plane H such that SHD
C2= D and

SHB
D= B.

An illustration for Theorem 8 appears in Figure 7.

Theorem 9. Let D,G,B be as in Theorem 8. Let p ∈ D. Assume that B
is not D-null. Then

(8.4) ωD
2 (p,B) = ωD�

2 (p�,B�)

if and only if there exists a horizontal plane H , such that p ∈ H , SHD
C2= D,

and SHB
D= B.
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Figure 7. A domain D and its symmetrization D�. The set
B is on the boundary of D and its symmetrization B�

is on the boundary of D�. Then
∫
Σ

Φ(ωD
2 (p,B))m1(dp) ≤∫

Σ
Φ(ωD�

2 (p,B�))m1(dp), ωD
2 (p,B) ≤ ωD�

2 (p�,B�).

The proof of Theorems 8 and 9 parallels the proofs of Theorems 2 and 3. So,
one must first prove polarization inequalities with the corresponding equality
cases (the analogs of Theorems 4, 5, 6, 7). These polarization results are also
proved in a similar way; in fact their proof follows closely the probabilistic
method in Sections 4–6.

8.2. Regular sets. We examine in this subsection what happens if we as-
sume that D is an open set, regular for the Dirichlet problem (for α-harmonic
functions; 0 < α ≤ 2).

Lemma 8. Let D be an open set in Rn, regular for the Dirichlet problem.
Let U,V be the upper and lower nonsymmetric parts of D with respect to the
plane Π. If Cα(V ) = 0, then V = ∅. If Cα(U) = 0, then U = ∅.

Proof. Suppose that Cα(V ) = 0. Then V has empty interior. Assume that
V �= ∅. Let x ∈ V . It is easy to see that x̂ ∈ ∂D. Moreover, if B(x̂, r) is
any ball centered at x̂ with sufficient small radius r, then B(x̂, r) ∩ Dc ⊂ V̂ .
By Wiener’s regularity criterion [22, Chapter V, Section 1], x̂ is an irregular
point of ∂D. This proves to be a contradiction. �

Remarks 1. Using Lemma 8, we see that in Theorems 8 and 9, with
the additional assumption that D is regular, we can replace the condition
SHD

C2= D by the condition SHD = D (of course, the condition SHB
D= B

cannot be replaced by SHB = B).

2. The condition SHB2
D= B2 which appears in Theorems 5 and 6 is not

geometric because there is no known geometric characterization of D-null sets.
The condition SHD

Cα= D is geometric because the α-capacity is connected to
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the α-transfinite diameter which is a geometric quantity; see [22, Chapter II,
Section 3].

3. If in Theorems 2 and 3, we make the assumption that G is a half-space
(or some other similar assumption), then B2 is a D-null set and therefore we
can remove the condition SHB2

D= B2. Also, if B2 lies on a vertical straight
line (or any other lower dimensional vertical plane), isolated from the rest of
the boundary of D, then we can use [27, Theorem 3] and replace the condition
SHB2

D= B2 by the geometric condition SHB2
Cα= B2.
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