FINITE DIMENSIONAL POINT DERIVATIONS FOR GRAPH ALGEBRAS

BENTON L. DUNCAN

Abstract

This paper focuses on finite dimensional point derivations for the non-self-adjoint operator algebras corresponding to directed graphs. We begin by analyzing the derivations corresponding to full matrix representations of the tensor algebra of a directed graph. We determine when such a derivation is inner, and describe situations that give rise to noninner derivations. We also analyze the situation when the derivation corresponds to a multiplicative linear functional.

1. Introduction

The non-self-adjoint operator algebras associated to directed graphs have undergone significant scrutiny of late. Specifically, the algebra $\mathcal{T}^{+}(Q)$, the norm closed algebra generated by the left regular representation of a directed graph Q, and \mathcal{L}_{Q}, the WOT-closure of $\mathcal{T}^{+}(Q)$, are studied abstractly as special cases of tensor algebras over C^{*}-correspondences in [17]. The case of tensor algebras corresponding to directed graphs were first studied in [18] in the case of the graph with a single vertex and n-edges. The weakly closed version was studied around the same time in [6], [7]. General directed graphs were taken up in [15]. Since that time the study has expanded significantly to various facets of these non-self-adjoint algebras; see, for example, [5], [10], [13], [14], [16].

Important in the analysis of these algebras is a recent paper [5] which analyzed finite dimensional representations and faithful irreducible representations for strongly transitive directed graphs. Building on their work, and combining with a recent paper [8], we undertake a description of noncommutative point derivations of directed graph algebras. This work was motivated

[^0]by attempts to describe the automorphism group of the non-self-adjoint operator algebras associated to directed graphs, further described in [9]. Often times the group of derivations is more tractable than the automorphism group. However, we do not have a complete description for either the group of derivations or the group of automorphisms. We would suggest that one approach to either of these groups is to look at how derivations or automorphisms factor through subalgebras. For derivations, this is the approach of this paper. For automorphisms, we refer the reader to [9].

When one views the classical situation of uniform algebras a strong connection is found between the point derivations and analytic structure [3]. In particular, for the disk algebra, there exist point derivations at a character if and only if the character corresponds to a point on the interior of the unit disk; see Section 9 of [11]. In the present paper, we find similar results when one looks at point derivations at characters.

On the other hand, when dealing with noncommutative algebras, it is clear that the characters are not enough to say much about the algebra. We have thus taken a look at point derivations at certain irreducible finite dimensional representations of directed graph operator algebras. Here, too, we find a sense of analytic structure, but we have not developed that theory to its full extent.

This work is developed as further strengthening of the connection between the disk algebra and directed graph operator algebras which was begun in [8] in the case of a directed cycle graph. There we developed the theory in direct analogy with the standard results for uniform algebras. Here, however, we take a different approach, since the finite dimensional representations are more diverse. More importantly, the general situation of $\mathcal{T}+(Q)$ and \mathcal{L}_{Q}-valued derivations of $\mathcal{T}^{+}(Q)$ have not so far yielded to the approach of [8] where the finite dimensional representations are used to make statements about general derivations.

In the first part of the paper, we develop a description of a rich class of finite dimensional representations, generalizing a specific case from [5]. We then factor our representations through the algebras given by the directed cycle graphs. It is then a simple application of the results of [8] to describe the noncommutative point derivations into M_{n} for general directed graph algebras. This suggests a notion of noncommutative analyticity coming from the finite dimensional representations.

We take a similar approach to studying the point derivations at characters for a general directed graph operator algebra. Once again, we factor such a representation through the a well understood example, the noncommutative analytic Toeplitz algebras of [6]. Thus the discussion of point derivations and commutative analytic structure reduces to the discussion of point derivations on these well understood graph algebras.

We close the paper with a result concerning the range of a derivation $D: A_{n} \rightarrow A_{n}$. We show that such a derivation must have range contained
in the commutator ideal of A_{n}. Of course, an inner derivation will satisfy this property. However, our result says nothing to suggest that every derivation on A_{n} is inner. In fact, we have little evidence at this point that such a result is even true.

2. Notation and background

We begin with a review of background material and we fix some notation. To a directed graph Q, there exists two non-self-adjoint operator algebras which we will study below. Both arise from the left regular representation of the graph acting on ℓ^{2} of the finite path space. The first algebra, $\mathcal{T}^{+}(Q)$ will be the norm closure of this representation. The second \mathcal{L}_{Q} will be the WOT closure of this representation.

For a directed graph Q, we denote the edge set of Q by $E(Q)$ and the vertex set of Q by $V(Q)$. To each edge there are maps $r: E(Q) \rightarrow V(Q)$ and $s: E(Q) \rightarrow V(Q)$ which give the range and source of an edge, respectively. We will write \mathcal{C}_{n} for the cycle graph given by n distinct edges $\left\{e_{i}\right\}$ and n vertices $\left\{v_{i}\right\}$, with $s\left(e_{i}\right)=r\left(e_{i+1}\right)$ for $1 \leq i \leq n-1$ and $s\left(e_{n}\right)=r\left(e_{1}\right)$. Recall that this algebra can be written as a matrix function algebra of the form

$$
\left[\begin{array}{ccccc}
f_{1,1}\left(z^{n}\right) & z f_{1,2}\left(z^{n}\right) & z^{2} f_{1,3}\left(z^{n}\right) & \cdots & z^{n-1} f_{1, n}\left(z^{n}\right) \\
z^{n-1} f_{2,1}\left(z^{n}\right) & f_{2,2}\left(z^{n}\right) & z f_{2,3}\left(z^{n}\right) & \cdots & z^{n-2} f_{2, n}\left(z^{n}\right) \\
z^{n-2} f_{3,1}\left(z^{n}\right) & z^{n-1} f_{3,2}\left(z^{n}\right) & f_{3,3}\left(z^{n}\right) & \cdots & z^{n-3} f_{3, n}\left(z^{n}\right) \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
z f_{n, 1}\left(z^{n}\right) & z^{2} f_{n, 2}\left(z^{n}\right) & z^{3} f_{n, 3}\left(z^{n}\right) & \cdots & f_{n, n}\left(z^{n}\right)
\end{array}\right]
$$

where $f_{i, j} \in A(\mathbb{D})$ for all $1 \leq i, j \leq n$.
We will denote by B_{n} the graph with 1 vertex and n edges. For shorthand, the algebras $\mathcal{T}^{+}\left(B_{n}\right)$ and $\mathcal{L}_{B_{n}}$ will be denoted by A_{n} and \mathcal{L}_{n}, respectively. In this case, we will assign an ordering to the edges and denote the isometry associated to the i th edge by L_{i}.

We now establish some standard definitions and notation. A path in Q will be a finite sequence $e_{1} e_{2} \cdots e_{n}$ with $e_{i} \in E(Q)$ and $r\left(e_{i}\right)=s\left(e_{i-1}\right)$ for $2 \leq i \leq n$. Recall that a directed graph is transitive if for every pair of vertices, v and w there is a directed path beginning at v and ending at w. We say that a path w in a directed graph is primitive if $w \neq v^{n}$ for any paths v. We say that a path $w=e_{1} e_{2} \cdots e_{n}$ is a cycle if $r\left(e_{1}\right)=s\left(e_{n}\right)$.

We will write M_{n} to mean the $n \times n$ matrices with entries from \mathbb{C}. We denote by $e_{i, j}$ the elementary matrix in M_{n} with 1 in the $i-j$ position and 0 everywhere else.

We now state a standard result concerning representations of graph operator algebras which will be useful in what follows. This result follows from work in [17] or [12] and is given explicitly in the case of countable directed graphs in Section 3 of [5].

Corollary 2.1. Let Q be a directed graph and A an operator algebra. Let $\pi: Q \rightarrow A$ be a map with $\pi(v)=P_{v}$ a projection for all $v \in V(Q), \pi(e)=L_{e}$ is a nonzero contraction for all edges $e \in E(Q)$, and:
(1) P_{v} is orthogonal to P_{w} for all vertices $v, w \in V(Q)$.
(2) $P_{r(e)} L_{e} P_{s(e)}=L_{e}$ for all edges $e \in E(Q)$.
(3) $\left[L_{e}\right]_{e \in E(Q)}$ is a row contraction in A.

Then π extends to a completely contractive representation of $\mathcal{T}^{+}(Q)$.

3. Irreducible representations into M_{n}

Let Q be a directed graph and let $w=e_{1} e_{2} \cdots e_{n}$ be a finite path in Q. For $\lambda \in \overline{\mathbb{D}}, \mu \in \mathbb{T}, v \in V(Q)$, and $e \in E(Q)$ define

$$
\pi_{w, \lambda, \mu}\left(P_{v}\right)=\sum_{s\left(e_{j}\right)=v} e_{j, j} \quad \text { and } \quad \pi_{w, \lambda, \mu}\left(L_{e}\right)=\sum_{e_{j}=e} \lambda e_{j-1, j},
$$

where for the sake of the notation, we denote by $e_{0,1}$ the matrix $\mu e_{n, 1}$. This map then extends to a representation $\pi_{w, \lambda, \mu}: \mathbb{F}^{+}(Q) \rightarrow M_{n}$.

Corollary 3.1. Let w be a finite path in $Q, \lambda \in \overline{\mathbb{D}}$, and $\mu \in \mathbb{T}$, then the representation $\pi_{w, \lambda, \mu}: \mathbb{F}^{+}(Q) \rightarrow M_{n}$ extends to a completely contractive representation of $\mathcal{T}^{+}(Q)$ into M_{n}. Moreover, if w is a primitive cycle, and $\lambda \neq 0$, then the extension is onto.

Proof. The extension to a completely contractive representation of the algebra $\mathcal{T}^{+}(Q)$ follows from Proposition 2.1. We discuss the other conclusion now. The details of the argument are in the proof of [5, Lemma 4.3]. We only sketch the proof here.

Let $w=e_{1} e_{2} \cdots e_{n}$ and notice that

$$
\pi_{w, \lambda, \mu}\left(L_{e_{j} e_{j-1} e_{j-2} \cdots e_{1} e_{n} e_{n-1} \cdots e_{j}}\right)=\lambda^{-k-1} \mu e_{j, j+1}
$$

Since $\lambda \neq 0$, letting j vary yields a generating set for M_{n} in the range of $\mathcal{T}^{+}(Q)$, and hence the extension is onto.

Remark 3.2. If $|\lambda|<1$, then the map is w^{*}-continuous by Corollary 3.2 in [5] so that the representation extends to a w^{*}-continuous completely contractive representation of \mathcal{L}_{Q}.

Notice that in the special case of $\lambda=\frac{1}{2}$ this representation is the representation $\varphi_{w, \mu}$ given in Section 4 of [5], with respect to the usual orthonormal basis of \mathbb{C}^{n} with reverse ordering. It follows by [5, Theorem 4.4] that in the case of transitive graphs, by letting w, φ, and μ vary, we get a family of irreducible representations which separate the points of $\mathcal{T}^{+}(Q)$. Here, however, the finite dimensional representations are richer and will allow for a more detailed discussion of the noncommutative point derivations.

Definition 3.3. Let A, B, and C be operator algebras. Let $\pi: A \rightarrow B$ be a completely contractive representation of the operator algebra A. We say that π factors through C if there exist completely contractive representations, $\iota: A \rightarrow C$ and $\tilde{\pi}: C \rightarrow B$ such that $\pi(a)=\tilde{\pi} \circ \iota(a)$ for all $a \in A$.

We will show that the representations $\pi_{w, \lambda, \mu}: \mathcal{T}^{+}(Q) \rightarrow M_{n}$ factor through $\mathcal{T}^{+}\left(\mathcal{C}_{n}\right)$. We begin by constructing the map $\iota: \mathcal{T}^{+}(Q) \rightarrow \mathcal{T}^{+}\left(\mathcal{C}_{n}\right)$. For notation sake, with $1 \leq i<n$ let $Z_{i} \in \mathcal{T}^{+}\left(\mathcal{C}_{n}\right)$ be the matrix with z in the $i-(i+1)$ position and zeroes everywhere else. Denote by Z_{n} the matrix in $\mathcal{T}^{+}\left(\mathcal{C}_{n}\right)$ with a z in the $n-1$ position and zeroes everywhere else.

For a finite path w in Q given by $w=e_{1} e_{2} \cdots e_{n}$ define the representation $\iota_{w}: \mathbb{F}^{+}(Q) \rightarrow \mathcal{T}^{+}\left(\mathcal{C}_{n}\right)$ by first setting, for $v \in V(Q)$,

$$
\iota_{w}\left(P_{v}\right)=\sum_{s\left(e_{j}\right)=v} e_{j, j} \in \mathcal{T}^{+}\left(\mathcal{C}_{n}\right)
$$

Next, for $e \in E(Q)$, define

$$
\iota_{w}\left(L_{e}\right)=\sum_{e_{j}=e} Z_{j} .
$$

The map ι_{w} will then be the natural extension to $\mathbb{F}^{+}(Q)$. The next proposition follows immediately from Proposition 2.1.

Corollary 3.4. Given a finite path w, the map ι_{w} extends to a completely contractive representation $\iota_{w}: \mathcal{T}^{+}(Q) \rightarrow \mathcal{T}^{+}\left(\mathcal{C}_{n}\right)$.

Remark 3.5. This map is also w^{*}-continuous and sends \mathcal{L}_{Q} into $\mathcal{L}_{\mathcal{C}_{n}}$. This follows from Corollary 3.2 of [5], by noticing that the left regular representation of $\mathcal{L}_{\mathcal{C}_{n}}$ is pure.

An easy consequence of the definition is the following lemma.
Lemma 3.6. For a primitive cycle w, the map $\iota_{w}: \mathcal{T}^{+}(Q) \rightarrow \mathcal{T}^{+}\left(\mathcal{C}_{n}\right)$ is onto if and only if $s\left(e_{i}\right) \neq s\left(e_{j}\right)$ for all $i \neq j$.

Proof. If ι_{w} is onto, then for each i there is $X_{i, i} \in \mathcal{T}^{+}(Q)$ with $\iota_{w}\left(X_{i, i}\right)=e_{i, i}$. But notice that by definition $\iota_{w}\left(X_{i, i}\right)=e_{i, i}$ if and only if $X_{i, i}=P_{v_{i}}$ where $v_{i}=s\left(e_{i}\right)$ and $v_{i} \neq v_{j}$ for all $i \neq j$.

Notice that if $s\left(e_{i}\right) \neq s\left(e_{j}\right)$ for all $i \neq j$ then in particular we know that $e_{i} \neq e_{j}$ for all $i \neq j$. It follows that $\iota_{w}\left(L_{e_{i}}\right)=Z_{i}$. Similarly, $\iota_{w}\left(P_{s\left(e_{i}\right)}\right)=$ $e_{i+1, i+1}$, and hence the range of ι_{w} contains a generating set for $\mathcal{T}^{+}\left(\mathcal{C}_{n}\right)$.

Notice that even when ι_{w} is not onto the same argument as in the proof of Proposition 3.1 will tell us that if $A_{0}\left(z^{n}\right)$ is the nonunital subalgebra of $A\left(z^{n}\right)$
generated by z^{n} then

$$
\left[\begin{array}{ccccc}
A_{0}\left(z^{n}\right) & z A_{0}\left(z^{n}\right) & z^{2} A_{0}\left(z^{n}\right) & \cdots & z^{n-1} A_{0}\left(z^{n}\right) \\
z^{n-1} A_{0}\left(z^{n}\right) & A_{0}\left(z^{n}\right) & z A_{0}\left(z^{n}\right) & \cdots & z^{n-2} A_{0}\left(z^{n}\right) \\
z^{n-2} A_{0}\left(z^{n}\right) & z^{n-1} A_{0}\left(z^{n}\right) & A_{0}\left(z^{n}\right) & \cdots & z^{n-3} A_{0}\left(z^{n}\right) \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
z A_{0}\left(z^{n}\right) & z^{2} A_{0}\left(z^{n}\right) & z^{3} A_{0}\left(z^{n}\right) & \cdots & A_{0}\left(z^{n}\right)
\end{array}\right] \subseteq \operatorname{ran}\left(\iota_{w}\right)
$$

It follows that the complement of $\operatorname{ran} \iota_{w}$ is a finite dimensional subspace of $\mathcal{T}^{+}\left(\mathcal{C}_{n}\right)$, and hence is complemented. This will be important when we construct derivations.

Now, for $\lambda \in \overline{\mathbb{D}}$ and $\mu=e^{i \theta} \in \mathbb{T}$, we define a completely contractive representation $\pi_{\lambda, \mu}: \mathcal{T}^{+}\left(\mathcal{C}_{n}\right) \rightarrow M_{n}$. The map $\pi_{\lambda, \mu}$ will be chosen so that $\pi_{\lambda, \mu}\left(e_{i, i}\right)=$ $e_{i, i}, \pi\left(Z_{i}\right)=\lambda e_{i, i+1}$ for $1 \leq i<n$, and $\pi\left(Z_{n}\right)=\mu \lambda e_{n, 1}$. We begin this by noticing that the inner automorphism $\pi_{\mu}: \mathcal{T}^{+}\left(\mathcal{C}_{n}\right) \rightarrow \mathcal{T}^{+}\left(\mathcal{C}_{n}\right)$ induced by the matrix

$$
\left[\begin{array}{cccccc}
e^{i \frac{\theta}{n}} & 0 & 0 & \cdots & 0 & 0 \\
0 & e^{-i \frac{\theta(n-2)}{n}} & 0 & \cdots & 0 & 0 \\
0 & 0 & e^{-i \frac{\theta(n-3)}{n}} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & e^{-i \frac{\theta}{n}} & 0 \\
0 & 0 & 0 & \cdots & 0 & 1
\end{array}\right] .
$$

A technical calculation tells us that for all $i, \pi_{\mu}\left(e_{i, i}\right)=e_{i, i}, \pi_{\mu}\left(Z_{i}\right)=Z_{i}$ for $1 \leq i<n$ and $\pi_{\mu}\left(Z_{n}\right)=\mu Z_{n}$. Following the automorphism by the completely contractive representation $\tau_{\lambda}: \mathcal{T}^{+}\left(\mathcal{C}_{n}\right) \rightarrow M_{n}$, which is given by evaluation at λ, yields a map $\pi_{\lambda, \mu}$ as described.

TheOrem 3.7. For $\lambda \in \overline{\mathbb{D}}, \mu \in \mathbb{T}$ and w a finite path in Q, the representation $\pi_{w, \lambda, \mu}: \mathcal{T}^{+}(Q) \rightarrow M_{n}$ factors through $\mathcal{T}^{+}\left(\mathcal{C}_{n}\right)$ via the representation $\tau_{\lambda} \circ \pi_{\mu} \circ \iota_{w}$.

Proof. Notice that ι_{w} is completely contractive by construction. Further, π_{μ} is completely contractive as it is given as an inner automorphism by an invertible of norm 1. For τ_{λ}, notice that the automorphism $a_{\lambda}: A(\mathbb{D}) \rightarrow A(\mathbb{D})$ given by $a_{\lambda}(f(z))=f(\lambda)$ is contractive, and hence completely contractive. Thus, the matricial version of the automorphism $a_{\lambda}^{(n)}: M_{n} \otimes A(\mathbb{D}) \rightarrow M_{n} \otimes$ $A(\mathbb{D})$ is completely contractive. Notice however that τ_{λ} is the restriction to $\mathcal{T}^{+}\left(\mathcal{C}_{n}\right)$ of the map $a_{\lambda}^{(n)}$, and hence τ_{λ} is completely contractive.

It follows that the composition, $\tau_{\lambda} \circ \pi_{\mu} \circ \iota_{w}$ is a completely contractive representation of $\mathcal{T}^{+}(Q)$ into M_{n}. Notice that $\tau_{\lambda} \circ \pi_{\mu} \circ \iota_{w}\left(L_{e}\right)=\pi_{w, \lambda, \mu}\left(L_{e}\right)$ for all $e \in E(Q)$ and $\tau_{\lambda} \circ \pi_{\mu} \circ \iota_{w}\left(P_{v}\right)=\pi_{w, \lambda, \mu}\left(P_{v}\right)$ for all $v \in V(Q)$. It follows
that as $\mathcal{T}^{+}(Q)$ is generated by

$$
\left\{P_{v}, L_{e}: v \in V(Q), e \in E(Q)\right\}
$$

we know that $\tau_{\lambda} \circ \pi_{\mu} \circ \iota_{w}(a)=\pi_{w, \lambda, \mu}(a)$ for all $a \in \mathcal{T}^{+}(Q)$.
REmARK 3.8. Notice that π_{μ} and ι_{w} are completely contractive and $w^{*}-$ continuous. Thus, if $|\lambda|<1$ we know that the w^{*}-continuous extension of $\pi_{w, \lambda, \mu}$ to all of \mathcal{L}_{Q} factors through $\mathcal{L}_{\mathcal{C}_{n}}$ via w^{*}-continuous representations.

4. Noncommutative point derivations into M_{n}

Given a completely contractive representation $\pi: A \rightarrow B$ we say that a continuous linear map $D: A \rightarrow B$ is a derivation at π if $D(a b)=D(a) \pi(b)+$ $\pi(a) D(b)$ for all $a, b \in A$. It was shown in [8, Proposition 1] that if $x \in B$ the linear map $\delta_{X}(a)=\pi(a) X-X \pi(a)$ for all $a \in A$ is a derivation at π. Any derivation at π of this form is said to be inner at π.

For w a finite primitive cycle, $\lambda \in \overline{\mathbb{D}}$, and $\mu \in \mathbb{T}$ we will be interested in continuous linear maps $D: \mathcal{T}^{+}(Q) \rightarrow M_{n}$ which are derivations at $\pi_{w, \lambda, \mu}$. We first find a method to recognize whether a derivation is inner.

Lemma 4.1. Let Q be a directed graph, w a primitive cycle in $Q, \lambda \in \overline{\mathbb{D}}$ with $\lambda \neq 0$, and $\mu \in \mathbb{T}$. For $D: \mathcal{T}^{+}(Q) \rightarrow M_{n}$, a continuous derivation at $\pi_{w, \lambda, \mu}$, D is inner if and only if $D(a)=0$ for all $a \in \operatorname{ker}\left(\pi_{w, \lambda, \mu}\right)$.

Proof. If D is inner there exists, by definition, an $X \in M_{n}$ such that $D(a)=$ $\pi_{w, \lambda, \mu}(a) X-X \pi_{w, \lambda, \mu}(a)$ for all $a \in \mathcal{T}^{+}(Q)$. Now if $a \in \operatorname{ker} \pi_{w, \lambda, \mu}$ then $D(a)=$ $0 X-X 0=0$, and hence $\left.D\right|_{\operatorname{ker}\left(\pi_{w, \lambda, \mu}\right)}=0$.

Now assume that $D(a)=0$ for all $a \in \operatorname{ker}\left(\pi_{w, \lambda, \mu}\right)$. Define a map $\widehat{D}: M_{n} \rightarrow$ M_{n} by $\widehat{D}(x)=D(a)$ where $\pi_{w, \lambda, \mu}(a)=x$. Notice that if $\pi_{w, \lambda, \mu}(a)=$ $\pi_{w, \lambda, \mu}(b)=x$ then $a-b \in \operatorname{ker} \pi_{w, \lambda, \mu}$, and hence $D(a-b)=0$. Thus, \widehat{D} is well defined. Since $\pi_{w, \lambda, \mu}$ is onto, for every $x, y \in M_{n}$, we have $a, b \in \mathcal{T}^{+}(Q)$ such that $\pi_{w, \lambda, \mu}(a)=x$ and $\pi_{w, \lambda, \mu}(b)=y$. Notice that $\widehat{D}(x y)=D(a b)$ by definition, but $D(a b)=D(a) \pi_{w, \lambda, \mu}(b)+\pi_{w, \lambda, \mu}(a) D(b)=\widehat{D}(x) y+x \widehat{D}(y)$, and hence \widehat{D} is a derivation on M_{n}.

It is well known that every derivation on M_{n} is inner, and hence there is $X \in M_{n}$ with $\widehat{D}(y)=y X-X y$ for all $x \in M_{n}$. By definition, for any a in $\mathcal{T}^{+}(Q)$ with $\pi_{w, \lambda, \mu}(a)=y$ we know that

$$
\begin{aligned}
D(a) & =\widehat{D}(y) \\
& =y X-X y \\
& =\pi_{w, \lambda, \mu}(a) X-X \pi_{w, \lambda, \mu}(a)
\end{aligned}
$$

and hence D is inner.

We now look at derivations in the special case where Q is the graph \mathcal{C}_{n}, as developed in [8].

Corollary 4.2. Let w be a primitive cycle in \mathcal{C}_{n} and $\lambda \in \overline{\mathbb{D}}, \mu \in \mathbb{T}$. Then every derivation of $\mathcal{T}^{+}\left(\mathcal{C}_{n}\right)$ at $\pi_{w, \lambda, \mu}$ is inner if and only if $|\lambda|=1$.

Proof. Notice that the only primitive cycles in \mathcal{C}_{n} are given by

$$
e_{j} e_{j+1} \cdots e_{n} e_{1} e_{2} \cdots e_{j-1},
$$

where $1 \leq j \leq n$. In this case, notice that ι_{w} is a cyclic automorphism, in the sense of [1, Section 2]. It follows that $\pi_{w, \lambda, \mu}$ factors through $\mathcal{T}^{+}\left(\mathcal{C}_{n}\right)$ as a completely contractive automorphism followed by evaluation at λ. Let π_{λ} denote the representation of $\mathcal{T}^{+}\left(\mathcal{C}_{n}\right)$ given by evaluation at λ. It was shown in [8] that every continuous derivation of $\mathcal{T}^{+}\left(\mathcal{C}_{n}\right)$ at π_{λ} is inner if and only if $|\lambda|=1$. The result now follows.

Notice that there exist nonzero inner derivations for $\mathcal{T}^{+}\left(\mathcal{C}_{n}\right)$ at $\pi_{w, \lambda, \mu}$ for all λ and μ. Now, as we did in the case of representations, we will use the derivations of $\mathcal{T}^{+}\left(\mathcal{C}_{n}\right)$ to tell us about the derivations of $\mathcal{T}^{+}(Q)$ for an arbitrary graph.

Definition 4.3. Let $\pi: A \rightarrow B$ be a completely contractive representation which factors through C, via $\tilde{\pi} \circ \iota$. We say that a continuous derivation, $D: A \rightarrow B$, at factors (continuously) through C if there exists a (continuous) derivation, $\tilde{D}: C \rightarrow B$, at $\tilde{\pi}$ such that $D(a)=\tilde{D} \circ \iota(a)$ for all $a \in A$.

If w is a primitive cycle of length n in $Q, \lambda \in \overline{\mathbb{D}}$, and $\mu \in \mathbb{T}$, recall that the representation $\pi_{w, \lambda, \mu}: \mathcal{T}^{+}(Q) \rightarrow M_{n}$ factors through $\mathcal{T}^{+}\left(\mathcal{C}_{n}\right)$ via the map $\pi_{\lambda, \mu} \circ \iota_{w}$. Now, if $D: \mathcal{T}^{+}\left(\mathcal{C}_{n}\right) \rightarrow M_{n}$ is a continuous derivation at $\pi_{\lambda, \mu}$, then the map $D \circ \iota_{w}$ induces a derivation on $\mathcal{T}^{+}(Q)$. It is clear that the induced derivation will factor through $\mathcal{T}^{+}\left(\mathcal{C}_{n}\right)$. It follows that the derivations of $\mathcal{T}^{+}(Q)$ at $\pi_{w, \lambda, \mu}$ that factor through $\mathcal{T}^{+}\left(\mathcal{C}_{n}\right)$ are completely determined by the derivations of $\mathcal{T}^{+}\left(\mathcal{C}_{n}\right)$ at $\pi_{\lambda, \mu}$. Thus, the description of derivations that factor continuously through $\mathcal{T}^{+}\left(\mathcal{C}_{n}\right)$ can be easily understood from [8], where the continuous point derivations of $\mathcal{T}^{+}\left(\mathcal{C}_{n}\right)$ are studied. The following is just a restatement of the description of continuous derivations of $\mathcal{T}^{+}\left(\mathcal{C}_{n}\right)$ at the representation given by evaluation of $\mathcal{T}^{+}\left(\mathcal{C}_{n}\right)$ at λ.

Corollary 4.4. Let w be a primitive cycle of length n in $Q, \lambda \in \overline{\mathbb{D}}$, and $\mu \in \mathbb{T}$. Assume that $D: \mathcal{T}^{+}(Q) \rightarrow M_{n}$ is a non-inner derivation at $\pi_{w, \lambda, \mu}$ which factors continuously through $\mathcal{T}^{+}\left(\mathcal{C}_{n}\right)$, then $|\lambda|<1$.

We now determine those derivations that do not factor through $\mathcal{T}^{+}\left(\mathcal{C}_{n}\right)$. We begin by describing a method to check whether a derivation factors through $\mathcal{T}^{+}\left(\mathcal{C}_{n}\right)$.

Corollary 4.5. Let Q be a directed graph, w a primitive cycle of length n in $Q, \lambda \in \mathbb{D}$, and $\mu \in \mathbb{T}$. If $D: \mathcal{T}^{+}(Q) \rightarrow M_{n}$ is a continuous derivation at $\pi_{w, \lambda, \mu}$, then D factors through $\mathcal{T}^{+}\left(\mathcal{C}_{n}\right)$ if and only if $\left.D\right|_{\operatorname{ker} \iota_{w}} \equiv 0$, where ι_{w} is the canonical map from $\mathcal{T}^{+}(Q)$ into $\mathcal{T}^{+}\left(\mathcal{C}_{n}\right)$.

Proof. Certainly if $a \in \operatorname{ker} \iota_{w}$ and $D(a) \neq 0$ then D cannot factor through $\mathcal{T}^{+}\left(\mathcal{C}_{n}\right)$, else the induced derivation would send 0 to a nonzero element of M_{n}.

We next assume that $\left.D\right|_{\operatorname{ker} \iota_{w}}=0$. Since the range of ι_{w} is complemented as a Banach subspace of $\mathcal{T}^{+}\left(\mathcal{C}_{n}\right)$, every element $x \in \mathcal{T}^{+}\left(\mathcal{C}_{n}\right)$ can be written uniquely as $x_{r}+x_{k}$ where $x_{r} \in \operatorname{ran} \iota_{w}$ and x_{k} is in the orthogonal complement of $\operatorname{ran} \iota_{w}$. We need only define a continuous derivation on $\operatorname{ran} \iota_{w}$ and extend it continuously to $\mathcal{T}^{+}\left(\mathcal{C}_{n}\right)$ by sending the orthogonal complement of $\operatorname{ran} \iota_{w}$ to zero.

This follows by defining a map $\widehat{D}: \operatorname{ran}\left(\iota_{w}\right) \rightarrow M_{n}$ via the definition $\widehat{D}\left(\iota_{w}(x)\right)=D(x)$. We need only show that this map defines a derivation at $\tau_{\lambda} \circ \pi_{\mu}$. Notice that

$$
\begin{aligned}
\widehat{D}\left(\iota_{w}(x) \iota_{w}(y)\right) & =\widehat{D}\left(\iota_{w}(x y)\right) \\
& =\pi_{w, \lambda, \mu}(x) D(y)+D(x) \pi_{w, \lambda, \mu}(y) \\
& =\tau_{\lambda} \circ \pi_{\mu}\left(\iota_{w}(x)\right) \widehat{D}\left(\iota_{w}(y)\right)+\widehat{D}\left(\iota_{w}(x)\right) \tau_{\lambda} \circ \pi_{\mu}\left(\iota_{w}(y)\right)
\end{aligned}
$$

Thus, \widehat{D} defines a derivation at $\tau_{\lambda} \circ \pi_{\mu}$, with $\widehat{D} \circ \iota_{w}=D$.

COROLLARY 4.6. For the representation $\pi_{w, \lambda, \mu}: \mathcal{T}^{+}(Q) \rightarrow M_{n}$ with $w a$ primitive cycle in Q let D be a derivation at $\pi_{w, \lambda, \mu}$. If D is inner, then D factors continuously through $\mathcal{T}^{+}\left(\mathcal{C}_{n}\right)$, where n is the length of the primitive cycle w.

Proof. Since D is inner we know that $\left.D\right|_{\operatorname{ker}\left(\pi_{w, \lambda, \mu}\right)} \equiv 0$. But notice that $\operatorname{ker}\left(\iota_{w}\right) \subseteq \operatorname{ker}\left(\pi_{w, \lambda, \mu}\right)$ and the result follows.

Thus, we do not get any new inner derivations on $\mathcal{T}^{+}(Q)$ besides those obtained via $\mathcal{T}^{+}\left(\mathcal{C}_{n}\right)$. We do, however, get noninner derivations that do not factor through $\mathcal{T}^{+}\left(\mathcal{C}_{n}\right)$. We describe some of these derivations now.

THEOREM 4.7. Let $w=e_{1} e_{2} \cdots e_{n}$ be a primitive cycle in $Q, \lambda \in \mathbb{D}$, and $\mu \in \mathbb{T}$. There exist derivations at $\pi_{w, \lambda, \mu}: \mathcal{T}^{+}(Q) \rightarrow M_{n}$ which do not factor through $\mathcal{T}^{+}\left(\mathcal{C}_{n}\right)$ if and only if either:
(i) there is an edge $e \neq e_{i}$ for all i such that there are j and k with $r(e)=s\left(e_{j}\right)$ and $s(e)=s\left(e_{k}\right)$ or
(ii) there is an edge e_{i} such that $r\left(e_{i}\right)=s\left(e_{i}\right)$.

Proof. Notice that if v is a vertex with $v \neq s\left(e_{j}\right)$ for all j, then

$$
\begin{aligned}
D\left(P_{v}\right) & =D\left(P_{v} P_{v}\right) \\
& =\pi_{w, \lambda, \mu}\left(P_{v}\right) D\left(P_{v}\right)+D\left(P_{v}\right) \pi_{w, \lambda, \mu}\left(P_{v}\right) \\
& =0 D\left(P_{v}\right)+D\left(P_{v}\right) 0 \\
& =0
\end{aligned}
$$

Now, if e is an edge with $r(e) \neq s\left(e_{j}\right)$ for all j, then

$$
\begin{aligned}
D\left(L_{e}\right) & =D\left(P_{r(e)} L_{e}\right) \\
& =\pi_{w, \lambda, \mu}\left(P_{r(e)}\right) D\left(L_{e}\right)+D\left(P_{r(e)}\right) \pi_{w, \lambda, \mu}\left(L_{e}\right) \\
& =0 D\left(L_{e}\right)+0 \cdot 0 \\
& =0
\end{aligned}
$$

Similarly, if e is an edge with $s(e) \neq s\left(e_{j}\right)$ for all j, then $D\left(L_{e}\right)=0$. Hence, if $D\left(L_{e}\right) \neq 0$, then $s(e)=s\left(e_{j}\right)$ for some j and $r(e)=s\left(e_{k}\right)$ for some k.

Thus, if there are no edges that satisfy case (i) or case (ii), then for any edge with $\iota_{w}\left(L_{e}\right)=0$, we know that $D\left(L_{e}\right)=0$. Similarly, if $\iota_{w}\left(P_{v}\right)=0$, then $D\left(P_{v}\right)=0$. Further, if X is in the ideal generated by such P_{v} and L_{e}, then $D(X)=0$. But notice that the ideal generated by such P_{v} and L_{e} contains the ideal $\operatorname{ker} \iota_{w}$ and hence D factors through $\mathcal{T}^{+}\left(\mathcal{C}_{n}\right)$.

For the converse, we assume that $|\lambda|<1$.
Let e be an edge with $e \neq e_{i}$ for all i such that $P_{r(e)}$ and $P_{s(e)}$ are not in $\operatorname{ker} \pi_{w, \lambda, \mu}$. Notice that the ideal generated by L_{e} is complemented as a Banach subspace of \mathcal{L}_{Q}, denote the ideal by $\left\langle L_{e}\right\rangle$ and the orthogonal complement by $\left\langle L_{e}\right\rangle^{c}$. We define a derivation on \mathcal{L}_{Q} at $\pi_{w, \lambda, \mu}$ by first letting $\left.D\right|_{\left\langle L_{e}\right\rangle^{c}}$ be constantly zero. We now define $D\left(L_{e}\right)=e_{j, i}$ where $s(e)=s\left(e_{i}\right)$ and $r(e)=s\left(e_{j}\right)$. We claim that this induces a continuous derivation on $\left\langle L_{e}\right\rangle$. The restriction of this derivation to A_{Q} will be a derivation at $\pi_{w, \lambda, \mu}$ which does not factor through $A_{\mathcal{C}_{n}}$. Notice first that $P_{r(e)} L_{e} P_{s(e)}=L_{e}$, and hence the derivation property implies that $D\left(L_{e}\right)=e_{j, j} D\left(L_{e}\right) e_{i, i}$ which is satisfied by $e_{j, i}$.

Next notice that every element $X \in\left\langle L_{e}\right\rangle$ can be written as $X=L_{e} \tilde{X}$ where $\tilde{X} \in \mathcal{L}_{Q}$; see [13]. As L_{e} is an isometry we also know that $\|X\|=\|\tilde{X}\|$. By the derivation property, we know that $D(X)=D\left(L_{e}\right) \pi_{w, \lambda, \mu}(\tilde{X})$. Now

$$
\begin{aligned}
\|D(X)\| & =\left\|D\left(L_{e}\right)\right\|\left\|\pi_{w, \lambda, \mu}(\tilde{X})\right\| \\
& \leq\left\|D\left(L_{e}\right)\right\|\|X\|
\end{aligned}
$$

and hence D is continuous. Restricting the derivation to $\mathcal{T}^{+}(Q)$ gives a continuous noninner derivation at $\pi_{w, \lambda, \mu}$.

For the case in which $\pi_{w, \lambda, \mu}\left(L_{e}\right) \neq 0$, but $r(e)=s(e)$, we use the same proof as in the preceding case except here we let $D\left(L_{e}\right)=\sum_{r\left(e_{i}\right)=r(e)} e_{i, i}$ to
construct the derivation. The same proof of continuity will work in this case as in the previous. Notice however that $D\left(L_{e}^{\left|\left\{i: e_{i}=e\right\}\right|+1}\right) \neq 0$ but $L_{e}^{\left|\left\{i: e_{i}=e\right\}\right|+1} \in$ $\operatorname{ker}\left(\iota_{w}\right)$, and hence the derivation does not factor through $\mathcal{T}^{+}\left(\mathcal{C}_{n}\right)$.

Remark 4.8. In the previous proof, we needed to assume that $\lambda \in \mathbb{D}$ to use the special structure of ideals of \mathcal{L}_{Q} to get continuity of the derivation. It is possible that the derivation will also be continuous at $\pi_{w, \lambda, \mu}$ with $|\lambda|=1$, but we have not been able to construct a proof of continuity of the described derivation in this case.

It might be reasonable to expect a result along the lines of [8, Corollary 2]. However, it is not clear how one would piece together different copies of $\mathcal{T}^{+}\left(\mathcal{C}_{n}\right)$ arising from different primitive cycles to make a general statement about a transitive graph algebra. The previous proposition also suggests that dealing with loop edges will complicate the situation.

We close this section by noticing that this approach will provide little help in dealing with graphs which are not transitive. In fact, there are nontransitive graphs which have derivations that are not inner. As examples, notice that the algebras $\mathcal{A}_{2 n}$ of [4], which have noninner derivations, can be viewed completely isometric isomorphically, as the graph algebra arising from nontransitive graphs with $2 n$ vertices of the form

5. Representations and point derivations into \mathbb{C}

In this section, we will deal with point derivations at π where π is a multiplicative linear functional on $\mathcal{T}^{+}(Q)$. In this case, the only inner derivation at π is the zero derivation, since the range of a multiplicative linear functional is \mathbb{C}. We begin by looking at the multiplicative linear functionals of $\mathcal{T}^{+}(Q)$ for an arbitrary graph Q. These were described in [14] as an isomorphism invariant for the algebra $\mathcal{T}^{+}(Q)$. The next result is just a restatement of their description in a manner suitable for our analysis.

Corollary 5.1. For a directed graph Q, let $\pi: \mathcal{T}^{+}(Q) \rightarrow \mathbb{C}$ be a multiplicative linear functional. Then there exists an n with $0<n \leq \infty$ such that π factors through A_{k}, for all $k \geq n$.

Proof. Notice that as π is a representation it will send projections to projections and hence $\pi\left(P_{v}\right) \in\{0,1\}$ for all $v \in V(Q)$. As the projections $\left\{P_{v}: v \in V(Q)\right\}$ are orthogonal, it follows that if there is a vertex v_{0} with $\pi\left(P_{v_{0}}\right)=1$ then $\pi\left(P_{v}\right)=0$ for all $v \in V(Q) \backslash\left\{v_{0}\right\}$. If, however, $\pi\left(P_{v}\right)=0$ for all $v \in V(Q)$, then $\pi\left(L_{e}\right)=\pi\left(L_{e} P_{s(e)}\right)=0$ for all edges e, and hence π is identically 0 and not a multiplicative linear functional.

Now fix v_{0} the unique vertex with $\pi\left(P_{v_{0}}\right)=1$. Notice that if e is an edge with either $r(e)$ or $s(e)$ not equal to v_{0} then $\pi\left(L_{e}\right)=\pi\left(P_{r(e)} L_{e} P_{s(e)}\right)=0$. It follows that $\pi\left(L_{e}\right) \neq 0$ only if $r(e)=s(e)=v_{0}$. Let n be the number of edges with $r(e)=s(e)=v_{0}$ and put an label these edges $e_{1}, e_{2}, \ldots, e_{n}$. Now, for $k \geq n$, let $f_{1}, f_{2}, \ldots, f_{k}$ be the edges in B_{k} and define a representation $\iota: \mathcal{T}^{+}(Q) \rightarrow A_{k}$ by $\iota\left(P_{v}\right)=1$ if and only if $v=v_{0}, \iota\left(L_{e_{i}}\right)=f_{i}$ for all i and $\iota\left(L_{e}\right)=0$ if $e \neq e_{i}$.

It is easy to see that this map extends to a completely contractive representation $\iota: \mathcal{T}^{+}(Q) \rightarrow A_{k}$. Now look at the multiplicative linear functional, call it $\tilde{\pi}: A_{k} \rightarrow \mathbb{C}$, which satisfies $\tilde{\pi}\left(f_{i}\right)=\pi\left(e_{i}\right)$. This multiplicative linear functional completes the result.

Next, we notice that the same is true of a derivation at π, where π is a multiplicative linear functional.

Corollary 5.2. For Q a countable directed graph, let π be a multiplicative linear functional for $\mathcal{T}^{+}(Q)$, and assume that $D: \mathcal{T}^{+}(Q) \rightarrow \mathbb{C}$ is a continuous derivation at π. Then there exists an $0<n \leq \infty$ such that D factors continuously through A_{n}.

Proof. As before, there exists a vertex v_{0} with $\pi\left(P_{v_{0}}\right)=1$ such that $\left\{e: r(e)=s(e)=v_{0}\right\}=\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$, recall that $\pi\left(P_{v}\right)=0$ for any $v \neq v_{0}$. Now let $\iota: \mathcal{T}^{+}(Q) \rightarrow A_{n}$ be as in the preceding proposition. Notice that $D\left(P_{v}\right)=D\left(P_{v} P_{v}\right)=\pi\left(P_{v}\right) D\left(P_{v}\right)+D\left(P_{v}\right) \pi\left(P_{v}\right)=0$ for all vertices with $v \neq v_{0}$. Similarly, if e is an edge with either $r(e) \neq v_{0}$ or $s(e) \neq 0$, then $D\left(L_{e}\right)=$ $D\left(P_{r(e)} L_{e}\right)=D\left(L_{e} P_{s(e)}\right)$ one of which must be zero since L_{e} and one of $P_{r(e)}$ or $P_{s(e)}$ must be in $\operatorname{ker} \pi$.

Now notice that $D\left(P_{v_{0}}\right)=D\left(P_{v_{0}} P_{v_{0}}\right)=D\left(P_{v_{0}}\right) \pi\left(P_{v_{0}}\right)+\pi\left(P_{v_{0}}\right) D\left(P_{v_{0}}\right)$ and since \mathbb{C} is a field it follows that $D\left(P_{v_{0}}\right)=0$. Define a map $\tilde{D}: A_{n} \rightarrow \mathbb{C}$ by first assigning $\tilde{D}(1)=0$ and $\tilde{D}\left(L_{f_{i}}\right)=D\left(L_{e_{i}}\right)$ and extending using linearity and the definition of a derivation at $\tilde{\pi}$ (i.e., $\tilde{D}(x y)=\tilde{D}(x) \tilde{\pi}(y)+\tilde{\pi}(x) \tilde{D}(y))$. It is easy to see that $\tilde{D} \circ \iota(a)=D(a)$ for all $a \in \mathcal{T}^{+}(Q)$. We need only see that \tilde{D} is a continuous linear functional. This, however, is not difficult as $\|\iota(a)\|=\|a\|$ for all a in the subalgebra of $\mathcal{T}^{+}(Q)$ generated by $P_{v_{0}}$ and $L_{e_{i}}$. Thus, for any $b \in A_{n}$, there is $\widehat{b} \in \mathcal{T}^{+}(Q)$ with $\iota(\widehat{b})=b$. By construction $\|\tilde{D}(b)\|=\|D(\widehat{b})\| \leq\|D\|\|\widehat{b}\|=\|D\|\|b\|$, and hence \tilde{D} is bounded.

It follows that we need only understand the multiplicative linear functionals and derivations for the algebras A_{n}. In what follows, we will use notation as if n is finite since the infinite case will follow in a manner similar to the finite case.

Recall from [6, Theorem 3.3] or [18] that a multiplicative linear functional $\pi: A_{n} \rightarrow \mathbb{C}$ is uniquely given by evaluation at a point $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right) \in \overline{\mathbb{B}_{n}}$
where $\pi\left(L_{e_{i}}\right)=\lambda_{i}$ for all $1 \leq i \leq n$. Here, by $\overline{\mathbb{B}_{n}}$, we mean the unit ball in \mathbb{C}_{n} with the usual norm. We will denote the multiplicative linear functional arising from evaluation at λ by π_{λ}.

A further consequence of [6, Theorem 3.3] is that the Gelfand map, $\widehat{a}(\lambda)=$ $\pi_{\lambda}(a)$, induces a homomorphism from A_{n} into $A\left(\mathbb{B}_{n}\right)$, the analytic functions on \mathbb{B}_{n} with continuous extensions to $\overline{\mathbb{B}_{n}}$.

Lastly, notice following the arguments of [6, Proposition 2.4] that the commutator ideal of A_{n}, denoted \mathfrak{C}_{n}, is equal to $\bigcap_{\lambda \in \overline{\mathbb{B}_{n}}} \pi_{\lambda}$. Putting these facts together, we see that $A_{n, \mathfrak{C}}:=A_{n} / \mathfrak{C}_{n}$ is a semisimple subalgebra of $A\left(\mathbb{B}_{n}\right)$. This will allow us to use well-known results about point derivations of uniform algebras to discuss the point derivations of A_{n}. We summarize the preceding discussion in the following proposition.

Corollary 5.3. Let $\pi_{\lambda}: A_{n} \rightarrow \mathbb{C}$ be a multiplicative linear functional, then π_{λ} factors through $A_{n, \mathfrak{C}}$.

A similar result holds for derivations.
Corollary 5.4. Let $\pi_{\lambda}: A_{n} \rightarrow \mathbb{C}$ be a multiplicative linear functional and D be a derivation at π_{λ}. Then D factors through $A_{n, \mathfrak{c}}$.

Proof. Notice that

$$
\begin{aligned}
D(a b-b a) & =D(a b)-D(b a) \\
& =(D(a) \pi(b)+\pi(a) D(b))-(D(b) \pi(a)+\pi(b) D(a)) \\
& =0
\end{aligned}
$$

as \mathbb{C} is commutative. It follows that $\left.D\right|_{\mathfrak{C}} \equiv 0$. Further define $\tilde{D}: A_{n, \mathfrak{C}} \rightarrow \mathbb{C}$ by $\tilde{D}(a)=D(\widehat{a})$ where $\widehat{a}=a+k$ for some $k \in \mathfrak{C}$. Notice that \tilde{D} is well defined since $D(k)=0$ for all $k \in \mathfrak{C}$.

Now, there exist $k, k_{1}, k_{2} \in \mathfrak{C}$ with

$$
\begin{aligned}
\tilde{D}(a b) & =D(\widehat{a b}) \\
& =D(a b+k) \\
& =D(a b) \\
& =D(a) \pi_{\lambda}(b)+\pi_{\lambda}(a) D(b) \\
& =D\left(a+k_{1}\right) \pi_{\lambda}\left(b+k_{2}\right)+\pi_{\lambda}\left(a+k_{1}\right) D\left(b+k_{2}\right) \\
& =\tilde{D}(a) \tilde{\pi_{\lambda}} \circ \iota\left(b+k_{2}\right)+\tilde{\pi_{\lambda}} \circ \iota\left(a+k_{1}\right) \tilde{D}(b) \\
& =\tilde{D}(a) \tilde{\pi_{\lambda}}(b)+\tilde{\pi_{\lambda}}(a) \tilde{D}(b) .
\end{aligned}
$$

Hence, \tilde{D} is a derivation at π_{λ} satisfying the appropriate property for factoring through A_{n}.

It is not clear that the factorization must be continuous, we will see later that it is. On the other hand, we will not need continuity of the induced
derivation for what follows. We now describe the point derivations of $A_{n, \mathfrak{C}}$ by viewing it as a subalgebra of $A\left(\mathbb{B}_{n}\right)$. As a corollary, we will pull back the derivations and describe when nontrivial derivations can occur for A_{n} at a representation π_{λ}.

Lemma 5.5. Let $\lambda \in \mathbb{B}_{n}$, then $\pi_{\lambda}: A_{n} \rightarrow \mathbb{C}$ factors through $A_{m, \mathfrak{C}}$ where m is the number of λ_{i} with $\lambda_{i} \neq 0$.

Proof. Let $\left\{e_{i}: 1 \leq i \leq n\right\}$ be the edges in B_{n} and assume without loss of generality that $\pi_{\lambda}\left(e_{i}\right)=0$ if and only if $m+1 \leq i \leq n$. Now let $\Omega: A_{n} \rightarrow A_{m}$ be the completely contractive representation that sends, for $1 \leq i \leq m, L_{e_{i}}$ to $L_{f_{i}}$ where $\left\{f_{i}\right\}$ is the set of edges in B_{m}, and sends $L\left(e_{i}\right)$ to zero when $m+1 \leq$ $i \leq n$. Then notice that π_{λ} will factor through A_{m} via $\pi_{\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\right)} \circ \Omega$. But now $\pi_{\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\right)}: A_{m} \rightarrow \mathbb{C}$ factors through $A_{m, \mathfrak{C}}$. Putting the appropriate maps together, we get that $\pi_{\lambda}: A_{n} \rightarrow \mathbb{C}$ factors through $A_{m, \mathfrak{C}}$.

Notice that if A is a commutative operator algebra with identity, and $\pi: A \rightarrow \mathbb{C}$ is a completely contractive representation, then $\operatorname{ker} \pi$ is complemented as a Banach subspace of A. Denote by $\overline{(\operatorname{ker} \pi)^{2}}$ the norm closure of the ideal generated by $\{f g: f, g \in \operatorname{ker} \pi\}$. If $D: A \rightarrow \mathbb{C}$ is a linear functional such that $D(1)=0$ and $\left.D\right|_{(\operatorname{ker} \pi)^{2}}=0$ then we claim that D is a derivation at π. To see this, let $f, g \in A$ and notice that $(f-\pi(f) \cdot 1)(g-\pi(g) \cdot 1) \in(\operatorname{ker} \pi)^{2}$. Hence, $D((f-\pi(f) \cdot 1)(g-\pi(g) \cdot 1))=0$. Multiplying out and using linearity of D, we get that $D(f g)=D(f) \pi(g)+\pi(f) D(g)$, and hence D is a derivation at π. This argument, which appears in [3], will be used in the proof of the next result.

Corollary 5.6. If $\pi_{\lambda}\left(L_{i}\right)=0$ for some i, then there is a unique continuous derivation induced by sending $D\left(L_{i}\right)$ to 1 , and $D\left(L_{k}\right)=0$ for all $k \neq i$.

Proof. Since the range of π_{λ} is finite dimensional, we know that $\operatorname{ker}\left(\pi_{\lambda}\right)$ is complemented as a Banach subspace of A_{n}. Notice further that $L_{i} \in \operatorname{ker}\left(\pi_{\lambda}\right)$ and yet $L_{i} \notin\left(\operatorname{ker}\left(\pi_{\lambda}\right)\right)^{2}$, and hence the map which sends L_{i} to 1 and all other L_{j} to zero extends by Hahn-Banach, to a continuous derivation on A_{n}.

We say that a derivation at π_{λ} of this form is the canonical derivation at L_{i}, denoted D_{i}. Notice that the canonical derivation does not factor through $A_{m, \mathfrak{C}}$, where m is the number of nonzero λ_{i}.

Corollary 5.7. Let $D: A_{n} \rightarrow \mathbb{C}$ be a continuous derivation at π_{λ}, and let m be the number of λ_{i} such that $\lambda_{i} \neq 0$, then $D=D_{1}+D_{2}$ where D_{1} factors through $A_{m, \mathfrak{C}}$ and D_{2} is a linear combination of canonical derivations at L_{j} where $\lambda_{j}=0$.

Proof. For each λ_{i} with $\lambda_{i}=0$, let $\omega_{i}=D\left(L_{i}\right)$. Then notice that

$$
D_{1}=D-\sum_{\lambda_{i}=0} \omega_{i} \cdot D_{i}
$$

is a derivation on A_{n} such that D_{1} factors through $A_{m, \mathfrak{C}}$ and the result follows.

Theorem 5.8. Let $D: A_{n} \rightarrow \mathbb{C}$ be a nontrivial point derivation at λ which factors through $A_{m, \mathfrak{C}}$ where m is the number of λ_{i} with $\lambda_{i} \neq 0$. Then $|\lambda|<1$. Further the nontrivial point derivation factors continuously through $A_{m, \mathfrak{C}}$.

Proof. We will assume without loss of generality that $m=n$.
Let $f\left(z_{1}, z_{2}, \ldots, z_{n}\right)$ denote an arbitrary element of $A_{n, \mathfrak{C}}$ and assume that $|\lambda|=1$, where $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$. By assumption $\lambda_{1} \neq 0$. We will see that this implies that any point derivation at λ, call it D, sends $z_{1}-\lambda_{1}$ to zero. It will then follow by linearity of D that $D\left(z_{1}\right)=0$. A similar argument will then prove that any point derivation at λ is the zero derivation. Notice that the subalgebra $A:=\left\{f \in A_{n, \mathfrak{C}}: f\left(z_{1}, z_{2}, \ldots, z_{n}\right)=f\left(z_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)\right\}$ is a function algebra in the variable z_{1}. Further, $z_{i}-\mu \in A$, and hence A separates the points of $\left\{z_{1}:\left\|\left(z_{1}, \lambda_{2}, \lambda_{3}, \ldots, \lambda_{n}\right)\right\| \leq 1\right\}$.

Now define $\pi: A \rightarrow \mathbb{C}$ by $\pi(f)=f\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$. This is a multiplicative linear functional on A, and by [3] there does not exist a nonzero point derivation at π if there exists a function $g \in A$ with $\left\|g\left(z, \lambda_{2}, \lambda_{3}, \ldots, \lambda_{n}\right)\right\|<$ $\left\|g\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots, \lambda_{n}\right)\right\|$ for all $z \neq \lambda_{1}$. Notice that the function $g(z)=\frac{z+\lambda_{1}}{2 \lambda_{1}}$ satisfies this property, and hence any point derivation at π is the zero derivation. Now, since any point derivation on $A_{m, \mathfrak{C}}$ at λ will induce a point derivation on A at π_{λ}, the point derivation must send L_{1} to zero.

To see that a nontrivial point derivation factors continuously through $A_{n, \mathfrak{C}}$ we need only see that any nonzero point derivation of $A_{n, \mathfrak{C}}$ at λ is unique. Notice that since $|\lambda|<1$ we know that the representation at λ extends to a $w k^{*}$ continuous representation of \mathcal{L}_{n}. Now notice, from [6, Theorem 2.10 and Theorem 1.3], that the ideal $\operatorname{ker}\left(\pi_{\lambda}\right) \subset \mathcal{L}_{n}$ is equal to the algebraic ideal generated by n elements, $\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$. In particular, every element $a \in A_{n}$ can be written uniquely as $a_{0}+Y_{1} X_{1} Z_{1}+Y_{2} X_{2} Z_{2}+\cdots+Y_{n} X_{n} Z_{n}+a_{1}$ where $a_{0} \notin \operatorname{ker}\left(\pi_{\lambda}\right), Y_{i}, X_{i} \notin \operatorname{ker} \pi_{\lambda}$ for all i, and $a_{1} \in \operatorname{ker}\left(\pi_{\lambda}\right)^{2}$. Now applying the quotient map q, we get a decomposition of every element of $f \in \mathcal{L}_{n, \mathfrak{C}}$ as

$$
\begin{aligned}
& f=f(\lambda)+\sum_{i=1}^{n} q\left(X_{i}\right) g_{i}(z)+q\left(a_{1}\right) \\
& \quad \text { where } g_{i}(z) \notin \operatorname{ker}\left(\pi_{\lambda}\right) \text { and } q\left(a_{1}\right) \in\left(\operatorname{ker}\left(\pi_{\lambda}\right)\right)^{2}
\end{aligned}
$$

Notice that any derivation at π_{λ} will send $q\left(a_{1}\right)$ to zero. Now

$$
\begin{aligned}
D(f) & =D(f(\lambda))+\sum_{i=1}^{n} D\left(q\left(X_{i}\right) g_{i}(z)\right)+D\left(q\left(a_{1}\right)\right) \\
& =0+\sum_{i=1}^{n}\left(D\left(q\left(X_{i}\right)\right) g_{i}(\lambda)+\pi_{\lambda}\left(X_{i}\right) D\left(g_{i}(z)\right)\right)+0 \\
& =\sum_{i=1}^{n} D\left(q\left(X_{i}\right)\right) g_{i}(\lambda) .
\end{aligned}
$$

Hence, every derivation when restricted to $A_{n, \mathfrak{C}}$ is a linear combination of scalar multiples of the continuous derivation that sends X_{i} to 1 and every other X_{j} to zero.

Corollary 5.9. Let $D: A_{n} \rightarrow \mathbb{C}$ be a nontrivial continuous point derivation at π_{λ} then, either $\lambda_{i}=0$ for some i, or $|\lambda|<1$.

Also notice that any derivation that factors through $A_{m, \mathfrak{C}}$ is unique and the above results describe all point derivations of A_{n}, and hence of $\mathcal{T}^{+}(Q)$ where Q is a directed graph. This extends the results of Popescu [18], where a description of the point derivations was given for the representation sending L_{i} to zero for all i.

We close with a result concerning A_{n}-valued derivations of A_{n}. This is a simple application of an idea in [2, Theorem 16, page 92].

Corollary 5.10. Let $D: A_{n} \rightarrow A_{n}$ be a continuous derivation, then $D\left(A_{n}\right) \subseteq \mathfrak{C}$.

Proof. For all $z \in \mathbb{C}$, we know that $e^{z D}$ is a continuous automorphism of A_{n}. Thus, for lambda in $\overline{\mathbb{B}_{n}}$, the mapping $\pi_{\lambda} \circ\left(e^{z D}\right)$ is a multiplicative linear functional on A_{n}, and hence $\left|\pi_{\lambda}\left(e^{z D}\right)(a)\right| \leq\|a\|$ for all $a \in A_{n}$. Now, for a in A_{n}, the mapping $z \mapsto \pi_{\lambda}\left(e^{z D}\right)(a)$ is a bounded entire function, and hence is constant. But examining the power series of this function tells us that the coefficient of z is $\pi_{\lambda}(D a)$ which must be zero. As λ was arbitrary, the result follows.

The upshot of this result is that if D is a derivation on A_{n} then the induced automorphism is quasi-inner in the sense of [6] (i.e., the automorphism is trivial modulo the commutator ideal). Of course, it is not the case that every quasi-inner automorphism arises via a derivation.

Remark 5.11. The above proof can be extended to arbitrary graphs using a characterization of the commutator ideal [13, Corollary 5.5] and noting that this ideal is the intersection of the kernels of all multiplicative linear functionals as is the case for A_{n}.

It is of course left open whether one can describe the continuous $\mathcal{T}^{+}(Q)$ valued derivations of $\mathcal{T}^{+}(Q)$ for an arbitrary transitive graph Q, as was done in [8] for the graph \mathcal{C}_{n}. We have also not made an attempt to discuss the higher point cohomology for the graph algebras as an analogue of the results in Section 9 of [11].

References

[1] M. Alaimia, Automorphisms of some Banach algebras of analytic functions, Linear Algebra Appl. 298 (1999), 87-97. MR 1723117
[2] F. Bonsall and J. Duncan, Complete Normed Algebras, Springer-Verlag, New York, 1973. MR 0423029
[3] A. Browder, Introduction to Function Algebras, W. A. Benjamin, New York, 1969. MR 0246125
[4] F. Gilfeather, Derivations on certain CSL algebras, J. Operator Theory 11 (1984), 145-156. MR 0739799
[5] K. Davidson and E. Katsoulis, Nest representations of directed graph algebras, Proc. London Math. Soc. 92 (2006), 762-790. MR 2223543
[6] K. Davidson and D. Pitts, The algebraic structure of non-commutative analytic Toeplitz algebras, Math. Ann. 311 (1998), 275-303. MR 1625750
[7] K. Davidson and D. Pitts, Nevanlinna-Pick interpolation for non-commutative analytic Toeplitz algebras, Integral Equations Operator Theory 31 (1998), 321-337. MR 1627901
[8] B. Duncan, Noncommutative point derivations for matrix function algebras, to appear in Linear Algebra Appl.
[9] B. Duncan, Automorphisms of nonselfadjoint directed graph operator algebras, to appear in J. Austral. Math. Soc.
[10] F. Jaeck and S. Power, Hyper-reflexivity of free-semigroupoid algebras, Proc. Amer. Math. Soc. 134 (2006), 2027-2035. MR 2215772
[11] B. Johnson, Cohomology in Banach Algebras, Mem. Amer. Math. Soc., vol. 127, Amer. Math. Soc, Providence, RI, 1972. MR 0374934
[12] M. Jury and D. Kribs, Partially isometric dilations of noncommuting N-tuples of operators, Proc. Amer. Math. Soc. 133 (2005), 213-222. MR 2085172
[13] M. Jury and D. Kribs, Ideal structure in free semigroupoid algebras from directed graphs, J. Operator Theory 53 (2005), 273-302. MR 2153149
[14] E. Katsoulis and D. Kribs, Isomorphisms of algebras associated with directed graphs, Math. Ann. 330 (2004), 709-728. MR 2102309
[15] D. Kribs and S. Power, Free semigroupoid algebras, J. Ramanujan Math. Soc. 19 (2004), 75-114. MR 2076898
[16] D. Kribs and S. Power, Partly free algebras from directed graphs, Current Trends in Operator Theory and Its Applications, Birkhäuser, Basel, 2004, pp. 373-385. MR 2063759
[17] P. Muhly and B. Solel, Tensor algebras over C^{*}-correspondences: representations, dilations, and C^{*}-envelopes, J. Funct. Anal. 158(2) (1998), 389-457. MR 1648483
[18] G. Popescu, Non-commutative disc algebras and their representations, Proc. Amer. Math. Soc. 124(7) (1996), 2137-2148. MR 1343719
Benton L. Duncan, Department of Mathematics, \# 2750, North Dakota State University, Fargo, ND 58108-6050, USA

E-mail address: benton.duncan@ndsu.edu

[^0]: Received October 17, 2006; received in final form January 1, 2007.
 2000 Mathematics Subject Classification. Primary 47L40. Secondary 47L55, 47L75, 46L80.

