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PROPERTY (P ) AND STEIN NEIGHBORHOOD BASES ON C1

DOMAINS

PHILLIP S. HARRINGTON

Abstract. Let Ω be a bounded domain in C
n satisfying Catlin’s

Property (P ). Sibony has shown that Ω possesses a Stein neigh-
borhood basis when the boundary is of class C3. In this paper,

we use an alternative characterization of such domains to show
that Sibony’s result holds when the boundary is of class C1.

1. Introduction

Let Ω be a pseudo-convex domain in C
n, n ≥ 2. We say that Ω has a

Stein neighborhood basis if for every open set U containing Ω there exists a
pseudo-convex domain ΩU such that Ω ⊂ ΩU ⊂ U (see [11] for the necessary
background on pseudo-convex domains and Stein manifolds). Diederich and
Fornaess have shown in [6] that there exist smooth bounded pseudo-convex
domains with no Stein neighborhood basis, even though all pseudo-convex
domains can be exhausted from within by strictly pseudo-convex domains.

Catlin’s Property (P ) was introduced in [2] as a sufficient condition for com-
pactness of the ∂-Neumann operator (an overview of the ∂-Neumann problem
can be found in [1] with more detailed accounts in [8] or [3]; see [9] for details
on compactness). A pseudo-convex domain Ω satisfies Property (P ) if for
every M > 0 there exists a smooth plurisubharmonic function λ on Ω such
that 0 ≤ λ ≤ 1 on Ω and i∂∂λ ≥ iM∂∂|z|2 on ∂Ω. As demonstrated in [15],
Property (P ) implies compactness even if λ is not smooth.

In [14], Sibony shows that Property (P ) also implies the existence of a
Stein neighborhood basis on all C3 pseudo-convex domains. In fact, Sibony
demonstrates that Property (P ) implies the stronger condition of uniform H-
convexity (as defined by Cirka in [4]). Let δ(z) denote the geodesic distance
from z to ∂Ω. We say that ∂Ω is uniformly H-convex if there exist constants
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b > a > 0 such that for every ε > 0 there is a pseudo-convex domain Ωε con-
taining ∂Ω such that bε > δ(z) > aε for all z ∈ ∂Ωε. Sibony’s argument also
works for McNeal’s more general Property (P̃ ) [12] (see [13] for a more general
sufficient condition).

Our goal is to demonstrate that Property (P ) implies uniform H-convexity
even when the boundary is only of class C1. To that end, we will use the
equivalent formulation of Property (P ) proved in [10]. Let Ω be a bounded
Lipschitz domain in C

n satisfying Property (P ). Then there exists a func-
tion ρ ∈ C(Ω) satisfying 1

c δ(z) < −ρ(z) < cδ(z) in Ω for some c > 1, and
i∂∂(− log(−ρ)) ≥ iφ(−ρ)∂∂|z|2 for some positive function φ ∈ C(0, ∞) sat-
isfying limx→0+ φ(x) = ∞. In effect, ρ provides an exhaustion of Ω by strictly
pseudo-convex domains with Levi forms that decay at a singular rate. In this
paper, we will show that such an exhaustion can be “pushed out” of Ω to
provide a Stein neighborhood basis. Our main theorem is as follows.

Theorem 1.1. Let Ω ⊂ C
n be a pseudo-convex domain with C1 boundary

such that for every p ∈ ∂Ω there exists an open neighborhood p ∈ U and a
function ρ ∈ C(U ∩ Ω) satisfying:

1
c
δ(z) < −ρ(z) < cδ(z)

for some c > 1 and:

i∂∂(− log(−ρ)) ≥ iφ(−ρ)∂∂|z|2

in U ∩ Ω for some positive function φ ∈ C(0, ∞) such that limx→0+ φ(x) = ∞.
Then ∂Ω is uniformly H-convex, and hence Ω has a Stein neighborhood basis.

The existence of Stein neighborhood bases is particularly relevant on do-
mains with low boundary regularity. For example, uniform H-convexity can
be used to solve the inhomogeneous Cauchy–Riemann equation ∂u = f in
C∞

(p,q)(Ω) when ∂f = 0 (as shown in Dufresnoy [7]). On smooth domains this
result can be obtained from Kohn’s method using the weighted ∂-Neumann
operator [8], but this approach will not work on C1 domains. Hence, the above
theorem implies that Property (P ) suffices for solvability of the ∂ operator in
C∞

(p,q)(Ω) when ∂Ω is only C1. See [16] for applications of stronger conditions
on Stein neighborhood bases to the ∂-Neumann problem.

2. Special defining functions

In the proof of the main theorem, we will need to work with three different
defining functions: a local defining function ρ(z) satisfying a strong form
of Oka’s lemma, the geodesic distance function δ(z) for the boundary, and
a local defining function derived by representing the boundary as a graph.
When comparing these three functions, the constants of comparison will need
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to be small. On C1 domains, this is always possible. When working in special
coordinate charts {z1, . . . , zn}, we will use z′ to denote {z1, . . . , zn−1}.

Lemma 2.1. Let Ω ⊂ C
n be a domain with C1 boundary, and let p ∈ ∂Ω

be a point with a neighborhood U and a local defining function ρ on Ω ∩ U
satisfying:

i∂∂(− log(−ρ)) ≥ iφ(−ρ)∂∂|z|2,
in the sense of currents on Ω ∩ U where φ is a positive continuous function on
(0, ∞) satisfying limx→0+ φ(x) = ∞. Then for any constant c̃ > 1, there exists
an open neighborhood p ∈ Ũ ⊂ U with local orthonormal coordinates centered
at p and a local defining function ρ̃ on Ω ∩ Ũ satisfying the following:
(1) There is a C1 function ϕ on Cn−1 × R such that

Ω ∩ Ũ = {z ∈ Ũ : Imzn < ϕ(z′,Re zn)}.

(2) On Ω ∩ Ũ , − 1
c̃ ρ̃(z) < | Imzn − ϕ(z′,Re zn)| < −c̃ρ̃(z) and

i∂∂(− log(−ρ̃)) ≥ iφ̃(−ρ̃)∂∂|z|2,
in the sense of currents where φ̃ is a positive continuous function on
(0, ∞) satisfying limx→0+ φ̃(x) = ∞.

(3) On Ũ , 1
c̃ δ(z) < | Imzn − ϕ(z′,Re zn)| < c̃δ(z).

Proof. Since ∂Ω is C1, we can choose orthonormal coordinates {z1, . . . , zn}
such that p = 0 and the unit outward normal at p is ∂

∂yn , where zn = xn + iyn.
Let δ̃(z) denote the signed distance function for ∂Ω, i.e., δ̃(z) = −δ(z) inside
Ω and δ̃(z) = δ(z) outside Ω. If we represent ∂Ω locally as the graph of a
function ϕ, then Im zn − ϕ(z′,Re zn) and δ̃(z) are both C1 defining functions
for Ω near 0, so h(z) = Imzn −ϕ(z′,Re zn)

δ̃(z)
is a continuous positive function near

0 and hdδ̃ = d(Imzn − ϕ(z′,Re zn)) on ∂Ω. At 0, we have hdδ̃ = dyn, and since
|dδ̃| ≡ 1, we can conclude h(0) = 1. We can now choose a neighborhood Ũ of
0 where 1√

c̃
< h(z) <

√
c̃. Since

√
c̃ < c̃, statement (3) follows immediately.

By Oka’s lemma, we can shrink Ũ as necessary so that i∂∂(− log δ) ≥
0 on Ω ∩ Ũ in the sense of currents. Since ρ is a local defining function,
there is a constant c > 1 such that 1

c δ(z) < −ρ(z) < cδ(z) on Ω ∩ Ũ . Setting
ρt = −(−ρ)tδ1−t for any 0 < t ≤ 1, we have 1

ct δ(z) < −ρt(z) < ctδ(z) and
i∂∂(− log(−ρt)) ≥ itφ(−ρ)∂∂|z|2. If we choose t small enough so that ct ≤

√
c̃

and set ρ̃ = ρt, statement (2) will follow. �

Remark 2.2. We will see that Lemma 2.1 is only needed for a single value

of c̃ satisfying 1 < c̃ <
√

4
3 . Hence, Theorem 1.1 will hold even for Lipschitz

domains if Lemma 2.1 is satisfied for such a c̃. For example, if Ω is a piecewise
C1 domain such that all interior and exterior angles are greater than 2π

3 , then
Theorem 1.1 still follows.



148 P. S. HARRINGTON

3. Proof of the main theorem

We will begin by constructing plurisubharmonic functions near each bound-
ary point satisfying certain estimates. In order to patch these functions to-

gether we will adapt an idea from [5]. Fix some constant 1 < c <
√

4
3 . For each

p ∈ ∂Ω, let Up be a neighborhood where the conclusions of Lemma 2.1 hold
for c̃ = c. Let B(p, rp) ⊂ Up denote a ball of radius rp centered at p. Choose
some finite subcollection of {B(p,

rp

3 )} covering ∂Ω indexed by P ⊂ ∂Ω and
for each p ∈ P let χp ∈ C∞

0 (B(p,
rp

2 )) be a function satisfying 0 ≤ χp ≤ 1 and
χp ≡ 1 on B(p,

rp

3 ).
Fix some p ∈ P and let {z1, . . . , zn}, ρ̃, and ϕ be as in Lemma 2.1. Hence-

forth, we will suppress the subscript p and take ρ = ρ̃ and φ = φ̃. Since
1 < c2 < 4

3 , we can choose a satisfying 4−3c2

c > a > 0 and b satisfying 2−c2

c >

b > a + 2c2−2
c . For ε > 0 sufficiently small, let Kε = {z ∈ B(0, r

2 ) \ Ω : aε ≤
δ(z) ≤ bε} and define ρ̃ε(z) = ρ(z′, zn − iε) on Kε. Note that on Kε:

Im(zn − iε) − ϕ(z′,Re zn) < cδ(z) − ε ≤ (bc − 1)ε < (1 − c2)ε < 0,

so (z′, zn − iε) ∈ Ω and ρ̃ε is well defined on Kε. In fact, on Kε we have the
estimates:

(3.1) −ρ̃ε(z) < c
(
ϕ(z′,Re zn) − Im(zn − iε)

)
< c

(
ε − 1

c
δ(z)

)
= cε − δ(z),

and

(3.2) −ρ̃ε(z) >
1
c

(
ϕ(z′,Re zn) − Im(zn − iε)

)
>

1
c

(
ε − cδ(z)

)
=

1
c
ε − δ(z).

Since ρ̃ε is only a translation of ρ, we have

i∂∂(− log(−ρ̃ε)) ≥ iφ(−ρ̃ε)∂∂|z|2

on Kε. We may assume φ is decreasing (if not, we may replace φ with the
function whose graph is the convex hull of the graph of the original φ), so

(3.3) i∂∂(− log(−ρ̃ε)) > iφ(cε − δ)∂∂|z|2 ≥ iφ
(
(c − a)ε

)
∂∂|z|2.

Since the relevant estimates [(3.1), (3.2), and (3.3)] are strict inequalities,
they will apply to ρ̃ε in a small neighborhood of Kε. Using the standard
construction to regularize − log(−ρ̃ε) by convolution, we can obtain a smooth
function ρε on Kε satisfying

1
c
ε − δ(z) < −ρε(z) < cε − δ(z),(3.4)

i∂∂(− log(−ρε)) > iφ
(
(c − a)ε

)
∂∂|z|2.(3.5)

Next, we let f(x) = − 1
x and g(x) = f(x − ( c2−1

c )ε) − f(x). Note that f(x)
and f ′ ′(x) are increasing while f ′(x) is decreasing, and hence g(x) and g′ ′(x)
are negative while g′(x) is positive. Set

λε = −f(−ρε) − g(−ρε)χ.
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On ∂B(0, r
2 ), when χ ≡ 0, we estimate

λε = −f(−ρε) < −f

(
1
c
ε − δ

)
,

while on B(0, r
3 ), where χ ≡ 1, we have

λε = −f(−ρε) − g(−ρε) = −f

(
−ρε −

(
c2 − 1

c

)
ε

)

> −f

(
cε − δ −

(
c2 − 1

c

)
ε

)
= −f

(
1
c
ε − δ

)
.

Note that both bounds on λε are independent of p. This will be crucial when
patching the local functions together to obtain a global function.

Since g is negative, we can estimate λε when δ(z) = aε by

λε ≤ −f(−ρε) − g(−ρε) = −f

(
−ρε −

(
c2 − 1

c

)
ε

)

< −f

(
1
c
ε − aε −

(
c2 − 1

c

)
ε

)
= −f

((
2 − c2

c
− a

)
ε

)
.

Similarly, when δ(z) = bε, we have

λε ≥ −f(−ρε) > −f(cε − bε)

> −f

((
c − a − 2c2 − 2

c

)
ε

)
= −f

((
2 − c2

c
− a

)
ε

)
.

Now we can set kε = −f(( 2−c2

c − a)ε) and have λε > kε when δ(z) = bε and
λε < kε when δ(z) = aε.

It remains to see that λε is strictly plurisubharmonic on Kε when ε is
sufficiently small. Note that

i∂∂(− log(−ρε)) = i∂((−ρε)−1∂ρε) = i(−ρε)−1∂∂ρε + i(−ρε)−2∂ρε ∧ ∂ρε,

so:
i∂∂ρε = i(−ρε)∂∂(− log(−ρε)) − i(−ρε)−1∂ρε ∧ ∂ρε.

We can now compute

i∂∂λε = i∂
((

f ′(−ρε) + g′(−ρε)χ
)
∂ρε − g(−ρε)∂χ

)
= i

(
f ′(−ρε) + g′(−ρε)χ

)
∂∂ρε − i

(
f ′ ′(−ρε) + g′ ′(−ρε)χ

)
∂ρε ∧ ∂ρε

− ig(−ρε)∂∂χ + ig′(−ρε)(∂ρε ∧ ∂χ + ∂χ ∧ ∂ρε)

= i
(
f ′(−ρε) + g′(−ρε)χ

)
(−ρε)∂∂(− log(−ρε))

− i
(
f ′ ′(−ρε) + (−ρε)−1f ′(−ρε)

)
∂ρε ∧ ∂ρε

− i
((

g′ ′(−ρε) + (−ρε)−1g′(−ρε)
)
χ
)
∂ρε ∧ ∂ρε

− ig(−ρε)∂∂χ + ig′(−ρε)(∂ρε ∧ ∂χ + ∂χ ∧ ∂ρε).
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Since

−
(

f ′ ′(x) +
1
x

f ′(x)
)

=
2
x3

− 1
x3

=
1
x3

is a decreasing function, we can conclude that −(g′ ′(x) + 1
xg′(x)) is a positive

function, so we have

i∂∂λε > i(−ρε)−1φ
(
(c − a)ε

)
∂∂|z|2 + i(−ρε)−3∂ρε ∧ ∂ρε

− ig(−ρε)∂∂χ + ig′(−ρε)(∂ρε ∧ ∂χ + ∂χ ∧ ∂ρε).

Clearly,

i
(
(−ρε)− 3

2 ∂ρε + (−ρε)
3
2 g′(−ρε)∂χ

)
∧

(
(−ρε)− 3

2 ∂ρε + (−ρε)
3
2 g′(−ρε)∂χ

)
≥ 0,

so

i(−ρε)−3∂ρε ∧ ∂ρε + ig′(−ρε)(∂ρε ∧ ∂χ + ∂χ ∧ ∂ρε)

≥ −i(−ρε)3(g′(−ρε))2∂χ ∧ ∂χ,

and

i∂∂λε > i(−ρε)−1φ
(
(c − a)ε

)
∂∂|z|2 − ig(−ρε)∂∂χ − i(−ρε)3(g′(−ρε))2∂χ ∧ ∂χ.

From (3.4), we know that(
1
c

− b

)
ε < −ρε < (c − a)ε,

so since g(−ρε) = O(ε−1) and g′(−ρε) = O(ε−2), there exist positive constants
A and B independent of ε such that

−ig(−ρε)∂∂χ > −iAε−1∂∂|z|2,(3.6)

−i(−ρε)3(g′(−ρε))2∂χ ∧ ∂χ > −iBε−1∂∂|z|2.(3.7)

Hence, we conclude

i∂∂λε > i
((

(c − a)ε
)−1

φ
(
(c − a)ε

)
− Aε−1 − Bε−1

)
∂∂|z|2.

By assumption, φ((c − a)ε) > (c − a)(A+B) for all sufficiently small ε > 0, so
λε is strictly plurisubharmonic on Kε for all such ε > 0.

Let K̃ε = {z ∈ Cn \ Ω : aε ≤ δ(z) ≤ bε} and define

λ̃ε(z) = sup
{p∈P :z∈Kε,p }

λε,p(z).

If we choose ε > 0 sufficiently small so that {B(p,
rp

3 )} cover K̃ε and each
λε,p is strictly plurisubharmonic then λ̃ε is strictly plurisubharmonic since it
is locally the supremum over a finite collection of strictly plurisubharmonic
functions (this is guaranteed since each λε,p > −f( 1

c ε − δ) on B(p,
rp

3 ), but
λε,p < −f( 1

c ε − δ) on ∂B(p,
rp

2 )).
Since λ̃ε > kε when δ(z) = bε and λ̃ε < kε when δ(z) = aε, we can conclude

that the level curve {z ∈ K̃ε : λ̃ε(z) = kε} is contained in the interior of K̃ε,
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and hence defines a piecewise smooth strictly pseudoconvex neighborhood of
Ω. Since this construction holds for all sufficiently small ε > 0, we have a Stein
neighborhood basis for Ω.
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