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ON B-INJECTORS OF THE COVERING GROUPS OF AN

M. ALALI, CH. HERING, AND A. NEUMANN

Abstract. A B-injector in an arbitrary finite group G is defined
as a maximal nilpotent subgroup of G, containing a subgroup A

of G of maximal order satisfying class(A) ≤ 2. The aim of this
paper is to determine the B-injector of the covering groups of An.

1. Introduction

Let G be a finite group. A subgroup U ≤ G is an N -injector of G, if for
every subnormal subgroup S of G, U ∩ S is a maximal nilpotent subgroup of
S. N -injectors for nonsolvable groups have been introduced first by Mann [8].
He extended Fischer’s results to N -constrained groups, that is, to groups G,
such that CG(F (G)) ⊆ F (G), where F (G) denotes the Fitting subgroup of G.
It is well known that a solvable group is always N -constrained. In [5], Fis-
cher, Gaschutz, and Hartley proved that if G is solvable, then N -injectors
exist and any two of them are conjugate. It was (Förster [6], Iranso and
Perez-Monasor [7]) who proved that N -injectors exist in all finite groups.
Arad and Chillag [2] proved that if G is an N -constrained group, then A is an
N -injector of G if and only if A is a maximal nilpotent subgroup of G contain-
ing an element of a2(G) where a2(G) is the set of all nilpotent subgroups of G
of class at most 2 and having order d2(G) where d2(G) denotes the maximum
of the orders of all nilpotent subgroups of class at most 2. A subgroup A
of G is called a B-injector of G if A is a maximal nilpotent subgroup of G
containing an element of a2(G). This definition has been used here and in [1].
In N -constrained groups the definition of N -injectors and the definition of
B-injectors yield the same class of subgroups. If U is a B-injector of G, then
U contains every nilpotent subgroup of G which is normalized by U [2]. In [9],
Neumann proved that in any finite group G, B-injectors are N -injectors. The
motivation behind this work is that B-injectors will lead to theorems similar
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to Glauberman’s ZJ-theorem and it is hoped that they provide tools and argu-
ments for a modified and shortened the proof of the classification theorem of
finite simple groups, in particular where the Thompson factorization theorem
might fail [11]. The B-injectors of Sn and An have been determined in [3]
and [4]. In [10], it is proved that the B-injectors of Sn and An are conjugate
apart from some trivial cases which can be enumerated.

2. Preliminaries and notations

Our notation is fairly standard: throughout all groups are finite. If G is a
group, Z(G) denotes the center of G. If H and X are subsets of G, CH(X)
and NH(X) denote respectively the centralizer and normalizer of X in H .

The generalized Fitting group F ∗(G) is defined by F ∗(G) = F (G)E(G)
where E(G) = 〈L | L � � G and L is quasisimple〉 is a subgroup of G,
A group L is called quasisimple if and only if L′ = L where L′ is the de-
rived group of L, and L′/Z(L) is non-Abelian simple. Op(G) denotes the
unique maximal normal p-subgroup of G, it is the Sylow p-subgroup of F (G)
and Op′ (G) =

∏
Oq(G), q �= p and q is prime. If Ω = {1,2, . . . , n}, SΩ will

denote the symmetric group of degree n. Sometimes we write Sn for SΩ. As
is customary, we shall denote the alternating group on n points by An. Let
Φ(G) denotes the Frattini subgroup of G, the intersection of all maximal sub-
groups of G. The integer part of the real number x is denoted by [x]. We
denoted by a2,p(G) the set of p-subgroups, of class at most two and of largest
possible order, of G.

We introduce the following definition.

Definition 1. Let G be a finite group, a nilpotent subgroup Uof G is called
a BG-injector of G if it contains every nilpotent subgroup it normalizes.

It is clear that BG-injector is maximal nilpotent and containing F (G).
Also, if U is a BG-injector of G and if U ≤ H ≤ G, then U is a BG-injector of
H . Also, B-injectors are BG-injectors [9]. Schur [12] showed that if G is a non-
Abelian simple group, then there exists a unique quasisimple group Ĝ such
that Ĝ/Z(Ĝ) ∼= G, and given any quasisimple group H with H/Z(H) ∼= G,
then H is isomorphic to Ĝ/Z for some subgroup Z ⊆ Z(Ĝ), Z(Ĝ) is called
the Schur multiplier of G and denotes by M(G) and H ∼= Ĝ/Z is called a
universal covering group of G. The Schur multipliers M(An) for alternating
groups An, have been determined in [12] and they are

M(An) =

{
Z6, n = 6,7,

Z2, n ≥ 5, n �= 6,7.

Hence, the universal covering groups of An, are 6A6,6A7, and 2An where
n �= 6,7. Schur showed that there are two types of groups of shape 2Sn which

denoted by 2
+

Sn,2
−
Sn, and 2An is then the commutator group of any of these.
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So, 2An = (2
+

Sn)′ = (2
−
Sn)′ where G′ denotes the commutator group of G. 2

+

Sn

can be easily described by defining relations.

So, let H = 2
+

Sn and denote Z(H) = 〈−1〉, then we have the following. If

t ∈ Sn is a transposition and T is its preimage in H = 2
+

Sn, then T 2 = −1
and if s, t are two transpositions in Sn and disjoint support with preimages

S,T in H , then [s,T ] = −1. So, H = 2
+

Sn is uniquely determined by these
two relations. Also, if s, t are two pairwise commuting transpositions with
preimages T1, T2, . . . , Tm, then

(T1, T2, . . . , Tm)2 = (−1)(
m+1

2 ).

Let Ω be a finite set, and let π = (A1,A2, . . . ,Am) be a partition of Ω into
pairwise disjoint nonempty subsets of Ω, we denote its stabilizer by Yπ , Yπ is
also called the Young subgroup of π, that is,

Yπ = {g ∈ SΩ | Ag
i = Ai for all i}.

It is obvious that

Yπ = YA1 × YA2 × · · · × YAm ≤ SΩ,

where YAi = {g ∈ SΩ | g fixes all points not in Ai} and YAi ≡ SAi .
Furthermore, we define Y ∗

Ai
≡ YAi ∩ AΩ, where AΩ is the alternating group

of Ω and we have

Y ∗
π = 〈Y ∗

A1
, Y ∗

A2
, . . . , Y ∗

Am
〉 = Y ∗

A1
× Y ∗

A2
× · · · × Y ∗

Am
≤ AΩ.

Note 1. If σ : K −→ AΩ be a surjective homomorphism, where K =

(2
+

Sn)′, then kerσ = 〈−1〉 and for any subgroup X ≤ AΩ we have the preimage
X̂ = {x ∈ K | xσ ∈ X}.

We prove the following lemma.

Lemma 1. Ŷ ∗
π = Ŷ ∗

A1
◦ Ŷ ∗

A2
◦ · · · ◦ Ŷ ∗

Am
, is the central product of Ŷ ∗

A1
, Ŷ ∗

A2
, . . . ,

Ŷ ∗
Am

, where Ŷ ∗
π is the preimage of Y ∗

π and Ŷ ∗
Ai

is the preimage of Y ∗
Ai

, i =
1,2, . . . ,m, Ai, Ω and Y ∗

Ai
are defined above.

Proof. Let σ : K −→ AΩ be a surjective homomorphism and let x ∈ Ŷ ∗
π ,

then xσ ∈ Y ∗
π , so xσ = y1y2 · · · ym for yi ∈ Y ∗

Ai
. Choose xi ∈ Ŷ ∗

Ai
such that

xσ
i = yi. Thus, (x1, x2, . . . , xm) ∈ K and

(x1, x2, . . . , xm)σ = xσ
1xσ

2 · · · xσ
m = y1y2 · · · ym = xσ,

so xσ = (x1x2 · · · xm)σ , it follows that [(x1x2 · · · xm)x−1]σ = 1. This implies
that (x1x2 · · · xm)x−1 ∈ kerσ = 〈−1〉, thus x1x2 · · · xm = x or −x. It remains
to prove that [Ŷ ∗

Ai
, Ŷ ∗

Aj
] = 1, for i �= j.

Let g ∈ YAi , h ∈ YAj , then g = t1t2 · · · tk where ti’s are transpositions
in YAi and h = s1s2 · · · sm where si’s are transpositions in YAj . If Ti, Si
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are the corresponding preimages of ti, si respectively, then [Ti, Si] = −1 and
ĝ = T1T2 · · · Tk, ĥ = S1S2 · · · Sm are the preimages of g,h, respectively. So,
[ĝ, ĥ] = ĝ−1(ĝ)ĥ = (T1T2 · · · Tk)S1S2···Sm = (−1)mk(T1T2 · · · Tk)−1T1T2 · · · Tk =
(−1)mk as

TS1S2···Sm
i = (−1)mTi.

So,

[ĝ, ĥ] =

{
−1, if g,h ∈ SΩ \ AΩ,

1, otherwise

and it follows that [Ŷ ∗
Ai

, Ŷ ∗
Aj

] = 1 for i �= j. This completes the proof of the
lemma. �

Note 2. If Ω is a set of size n, and π = (A1,A2, . . . ,Am) is a partition
of Ω, then the preimage Ŷ ∗

Ai
of the Young subgroup Y ∗

Ai
is isomorphic to:

(i) 2Ani , if |Ai| = ni ≥ 5.
(ii) Z2, if ni = 1,2.
(iii) Z6, if ni = 3 or SL(2,3) if |Ai| = 4.

Lemma 2. Let G be a finite group and U be a BG-injector of it.
(i) If Z ≤ Z(G), then Z ≤ U and U/Z is a BG-injector of G/Z.
(ii) If F ∗(G) = Op(G), for some prime p, then U is a Sylow p-subgroup of G.
(iii) If G is a central product of two subgroups G1,G2 of G, that is, G =

G1G2, [G1,G2] = 1, then U = (U ∩ G1)(U ∩ G2) and U ∩ Gi is a BG-injec-
tor of Gi, for i = 1,2.

Proof. The proof is easy and is omitted. �

Remark 1 ([6]). Let H be a finite group such that H ∼= Zp � Sk; the Wreath
product of the cyclic group Zp, p a prime, with Sk, then F ∗(H) = Op(H).

Remark 2. If Ω is a finite set, we denote by SΩ,AΩ the corresponding
symmetric and alternating group of Ω. For a partition Σ = (A1,A2, . . . ,Am)
of Ω into pairwise disjoint nonempty subsets of Ω,

YΣ = {g ∈ SΩ | Ai
g = Ai,1 ≤ i ≤ m}

denotes the Young subgroup of Ω. It is obvious that

YΣ = YA1 × YA2 × · · · × YAm ≤ SΩ,

where YAi = {g ∈ SΩ | g fixes all points not in Ai} and YAi
∼= SAi . We de-

fine Y ∗
Ai

∩ AΩ and Y ∗
Σ = 〈Y ∗

A1
, Y ∗

A2
, . . . , Y ∗

Am
〉 = Y ∗

A1
× Y ∗

A2
× · · · × Y ∗

Am
≤ AΩ.

Consider an element g ∈ SΩ of prime order p �= 2. Let A = {α ∈ Ω|αg �= α},
Γ = {α ∈ Ω|αg = α}. So Σ = (A,Γ) is a partition of Ω. If |A| = pk, then g is
a product of k pairwise commuting p-cycles t1, t2, . . . , tk and ti ∈ YA corre-
sponding to the orbits of g in A. Since CSΩ(g) permutes these ti’s, and in
particular normalizes V = 〈t1, t2, . . . , tk 〉 ∼= Zp

k.
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We infer that V ⊆ Op(CSΩ(g)), and CSΩ(g) ≤ Yz = YA × Γ, hence:

CSΩ(g) = CYA
(g) × YΓ.

As CYA
(g) ∼= Zp � Sk, by Remark 1, it follows that

F ∗(CYA
(g)) = Op(CYA

(g))

and
C(V ) = V × YΓ.

Lemma 3. Let U be a BG-injector in AΩ and let g ∈ Z(U) with o(g) =
p �= 2, p prime, where o(g) denotes the order of g. Then

U =
(
U ∩ CY ∗

A
(g)

)
× (U ∩ Y ∗

Γ ).

Proof. Since g ∈ Z(U), U ≤ CAΩ(g) ≤ CSΩ(g) = CYA
(g) × YΓ ≤ YA × YΓ. If

V is as defined above, it follows that

V ⊆ Op(CSΩ(g)) = Op(CAΩ(g)) = F ∗(CAΩ(g)),

as p is odd.
As U is a BG-injector of CAΩ(g), this implies that V ⊆ Op(CAΩ(g)) ⊆ U ,

but U is nilpotent, so
U = Op(U) × Op′ (U).

Also, V ⊆ Op(U) and Op′ (U) ⊆ C(Op(U)), thus

Op′ (U) ⊆ CAΩ(V ).

So,
Op′ (U) ≤ CSΩ(V ) = V × YΓ.

As U ≤ AΩ and V ≤ AΩ (p �= 2), we obtain

Op′ (U) = Op′ (U) ∩ AΩ ≤ (V × YΓ) ∩ AΩ = V × (YΓ ∩ AΩ) = V × Y ∗
Γ .

Thus, Op′ ≤ Y ∗
Γ as p | |V | and, therefore,

U = Op(U) × Op′ (U) ≤ CYA
(g) × Y ∗

Γ ,

this implies that U ≤ CY ∗
A
(g) × Y ∗

Γ ≤ Y ∗
A × Y ∗

Γ , as p �= 2. Hence, by Lemma 2
we have

U =
(
U ∩ CY ∗

A
(g)

)
× (U ∩ Y ∗

Γ ) = (U ∩ Y ∗
A) × (U ∩ Y ∗

Γ ). �
Lemma 4. Let Ω be a finite set and let U be a BG-injector of AΩ, then

there exists a partition Σ = (A1,A2, . . . ,Am) of Ω such that U ≤ Y ∗
A1

× Y ∗
A2

×
· · · × Y ∗

Am
and U = (U ∩ Y ∗

A1
) × · · · × (U ∩ Y ∗

Am
). Also, for i = 1,2, . . . ,m, there

exists a prime pi such that (U ∩ Y ∗
Ai

) is a Sylow pi-subgroup of Y ∗
Ai

.

Proof. We consider two cases:

Case 1. U is a 2-group. Let Σ be the partition consisting of Ω alone, that
is, Σ = (Ω). So, Y ∗

Σ = AΩ and U = U ∩ Y ∗
Σ . As U is a BG-injector of AΩ, it is

maximal nilpotent, and thus U is a Sylow 2-subgroup of AΩ.
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Case 2. U is not a 2-group, so there exists a prime p �= 2 such that p | |U |.
As U is nilpotent, it follows that there exists z ∈ Z(U), o(z) = p. Let A1 be

the set of nonfixed points of Z = Z(U) and Γ be the set of fixed points of Z.
By Lemma 3, we get

U ≤ CAΩ(z) = CY ∗
A1

(z) × Y ∗
Γ ≤ Y ∗

A1
× Y ∗

Γ .

Also, by Lemma 3, we obtain

U = U ∩ CY ∗
A1

(z) × (U ∩ Y ∗
Γ ) = (U ∩ Y ∗

A1
) × (U ∩ Y ∗

Γ ),

U ∩ CY ∗
A1

(z) is a BG-injector of Y ∗
A1

, and U ∩ Y ∗
Γ is a BG-injector of YΓ. As

U ∩ CY ∗
A1

(z) is a BG-injector of CY ∗
A1

(z) and Γ∗(CY ∗
A1

(z)) = Op(CY ∗
A1

(z)), we
get that U ∩ CY ∗

A1
(z) is a Sylow p-subgroup of Y ∗

A1
∼= AA1 and U ∩ Y ∗

Γ is a
BG-injector of Y ∗

Γ
∼= AΓ. Repeating the argument for U ∩ YΓ and Y ∗

Γ
∼= AΓ,

the claim follows. �

Theorem 1. Let K be a group isomorphic to 2AΩ, where Ω is a finite
set of size n. If B is a B-injector of K, then there exists a partition π =
(A1,A2, . . . ,Am) of Ω such that:

(i) For each i,B ∩ Ŷ ∗
Ai

is a B-injector of Ŷ ∗
Ai

.
(ii) Let Z = Z(K) and Bi = B ∩ Ŷ ∗

Ai
, then Bi

∼= Z × Opi(Bi), for some prime
pi �= 2.

(iii) d2(2AAi) = 2pi
ni/pi and for any odd prime p, p[ni/p] ≤ pi

ni/pi .
(iv) There is at most one i with pi = 5 and the union of the Ai’s with pi = 3

has size at most 6, and there are no i, j such that pi = 3 and pj = 5.

Proof. (i) As B/Z is a B-injector of K/Z ∼= AΩ, there exists by Lemma 4,
a partition π = (A1,A2, . . . ,Am) of Ω such that

Ŷ ∗
π = Ŷ ∗

A1
× · · · × Ŷ ∗

Am
.

Let B/Z = U , then U ≤ Y ∗
π and U = (U ∩ Y ∗

A1
) × · · · × (U ∩ Y ∗

Am
). Thus,

B ≤ Ŷ ∗
π = Ŷ ∗

A1
◦ Ŷ ∗

A2
◦ · · · ◦ Ŷ ∗

Am
,

the central product of Ŷ ∗
Ai

, by Lemma 1. Hence,

B = (B ∩ Ŷ ∗
A1

) × · · · × (B ∩ Ŷ ∗
Am

)

and B ∩ Ŷ ∗
Ai

is a B-injector of B ∩ Ŷ ∗
Ai

.
(ii) As Z ≤ B ∩ Ŷ ∗

Ai
= Bi and Bi/Z ∼= U ∩ Y ∗

Ai
, then for any prime pi �= 2,

we have Bi =
∏

p-prime Op(Bi) and Z ≤ O2(Bi). So,

Bi/Z ∼= O2(Bi)/Z ×
∏
p�=2

Op(Bi).
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As Bi/Z ∼= U ∩ Y ∗
Ai

is a Sylow pi-subgroup of Y ∗
Ai

by Lemma 4, it follows that
Bi = Z × Opi(Bi) and U ∩ Y ∗

Ai

∼= Opi(Bi), which is a Sylow pi-subgroup of
Y ∗

Ai

∼= AAi = Ani where |Ai| = ni.
(iii)

d2(2AAi) = d2(Ŷ ∗
Ai

) = d2(Bi) = d2(Z)d2(Opi(Bi))

= 2d2,p(AAi) = 2pi
ni/p.

Also, if p is a prime �= 2, we have d2,p(2An) = 2d2,p(An), because 2An and An

have isomorphic Sylow p-subgroups. As d2,p(2An) ≤ d2(2An), we get

2p[ni/p] = 2d2,p(Ani) = d2,p(2Ani) ≤ d2(2Ani) = 2p
ni/pi

i

or p[ni/p] ≤ p
ni/pi

i for all odd primes.
(iv) Let I ⊆ {1,2, . . . , n}, so that pi is an odd prime for all i ∈ I . Then for

A =
⋃

i∈I Ai, it follows that the central product∏
◦

Ŷ ∗
Ai

≤ Ŷ ∗
A,

B ∩ Ŷ ∗
A =

∏
◦(B ∩ Ŷ ∗

Ai
) and (B ∩ Ŷ ∗

A) is a B-injector in Ŷ ∗
A

∼= 2AA.
Consider the following cases.

Case 1. Assume that there are disjoint Ai,Aj such that pi = pj = 5. So,
|Ai| = |Aj | = 5. Set A = Ai ∪ Aj . It follows that

B ∩ Ŷ ∗
A = (B ∩ Ŷ ∗

Ai
)(B ∩ Ŷ ∗

Aj
)

is a B-injector in Ŷ ∗
A of order 2 · 52: this is a contradiction, as d2(2A10) ≥

d2(2A8) ≥ 26.

Case 2. Let J be the set of numbers j such that pj = 3 and let A =⋃
j∈J Aj , then (B ∩ Ŷ ∗

A) is a B-injector of Ŷ ∗
A and it is of the form Z × P for

some Sylow 3-subgroup P of Ŷ ∗
A . Hence, if |A| = 3k, then

d2(2AA) = d2(Ŷ ∗
A) = 2 · 36.

So, d2,2(2AA) � 2 · 3k. By Corollary 3, we have 3k < 8 or 3k = 15, but
d2(2A15) ≥ 2 · d2,2(2A8)

2 · d2,2(2A4)
2 · d2,2(2A3)

2 ≥ 2 · 64
2 · 8

2 · 6
2 . Hence, 64 · 24 ≤

d2(2A15) = d2(Ŷ ∗
A) = 2 · 35 is a contradiction.

Case 3. Assume that there exist i, j such that pi = 5 and pj = 3, then
|Ai| = 5 and |Aj | = 3 or 6. Set A = Ai ∪ Aj , it follows that (B ∩ Ŷ ∗

A) is
a B-injector of Ŷ ∗

A
∼= 2AA, and hence |Aj | = 3, thus |A| = 8 and d2(2A8) =

d2(Ŷ ∗
A) = 2 · 3 · 5 = 30, a contradiction, as 64 ≤ d2,2(2A8) ≤ d2(2A8).

If |Aj | = 6, then |A| = 11 and d2(2A11) = d2(Ŷ ∗
A) = 2 · 5 · 32 = 90, a contra-

diction, as d2(2A11) ≥ 2 · d2,2(2A8)
2 · d2,2(2A3) ≥ 2 · 64

2 · 6
2 > 90. �
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Lemma 5. Let Ω be a finite set of size n, and let P be a transitive p-subgroup
of SΩ of class ≤ 2. Then there exist integers a ≥ 0, b ≥ 0 such that n = pa+b

and |P | ≤ pa+b+ab.

Proof. As P is transitive on Ω, Z = Z(P ) acts semiregularly on Ω that
Zα = 1 ∀α ∈ Ω, because let z ∈ Zα, so z ∈ Z(P ), it follows that P leaves
invariant the set of fixed points of Z, so fix(z) = Ω, and thus z = 1. As class
P ≤ 2, it follows that P ′ ≤ Z(P ), and hence

(Pα)′ ≤ (P ′)α ≤ Zα = 1.

So, Pα is Abelian, and M = 〈Z,Pα〉 = Z × Pα is an Abelian normal subgroup
of P , as P ′ ≤ Z ≤ M and Z ∩ Zα = Zα = 1. Set |P/M | = Pα and |Z| = pb,
then there exist t1, t2, . . . , ta ∈ P such that P/M = 〈Mt1,Mt2, . . . ,Mta〉. Next,
consider the map σ : Pα −→ (P ′)a defined by σ(x) = ([x, t1], . . . , [x, ta]). As
class(P ) ≤ 2, it follows that σ is a homomorphism. This can be seen as follows.
In groups of class, at most two, we have the following relation:

[xy, t] = y−1[x, t]yt = [x, t]y−1yt

as [x, t] ∈ P ′ ⊆ Z(P ). So, [xy, t] = [x, t][y, t], where yt = t−1yt and kerσ = 1,
because let x ∈ kerσ, it follows that [x, ti] = 1, i = 1, . . . , a, thus t1, . . . , ta are
in Cp(x). Furthermore, x ∈ Pα ⊆ M = Z × Pα and M ⊆ Cp(x), as M is
Abelian. Thus, 〈M,t1, . . . , ta〉 ⊆ Cp(x). As P/M = 〈Mt1, . . . ,Mta〉, it follows
that P = 〈M,t1, . . . , ta〉 ⊆ Cp(x), thus x ∈ Z(P ) ∩ Pα = (Z(P ))α = 1. Hence,
x = 1. So, σ is injective. Therefore, |Pα| ≤ |P ′ |a ≤ |Z(P )|a = pba and n =
[P : Pα] = [P : M ][M : Pα] as Pα ≤ M ≤ P , it follows that

[P : Pα] = pa |M |
|Pα| = pa |Z| |Pα|

|Pα| = papb = pa+b

and |P | = n|Pα| ≤ npab = pa+b+ab. This completes the proof. �
Corollary 1. Let Ω be a finite set of size n and let P be a transitive

p-subgroup of Ω of class ≤ 2, if p �= 2, then |P | ≤ p[n/p], where equality holds
if and only if for n = p or n = 9 and p = 3.

Proof. Since p �= 2, by Lemma 4, there exist two integers a ≥ 0, b ≥ 0 such
that n = pa+b, |P | ≤ pa+b+ab. As p �= 2, it follows that pa+b+ab ≤ pn/p if and
only if a + b + ab ≤ n/p = pa+b−1, where equality occurs if and only if n = p
or n = 9 and p = 3. �

Lemma 6. Let Ω be a finite set of size n and let P be a transitive p-subgroup
of Ω of class ≤ 2, then
(i) If p �= 2, d2,p(Sn) = d2,p(An) = p[n/p].
(ii) If p = 2, d2,2(Sn) = εn8[n/4] where

εn =

{
1, n ≡ 0,1 (mod 4),
2, n ≡ 2,3 (mod 4).
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and if n > 1, d2,2(An) = 1
2d2,2(Sn) = 1

2εn8[n/4].

Proof. Sn contains subgroups of order p[n/p] for any prime p. These groups
are generated by [n/p] cycles with disjoint support and p[n/p] ≤ d2,p(Sn). This
can be explained as follows. Let n = mp + r, 0 ≤ r < p, m = [n/p], and let
π = (A1,A2, . . . ,Am,A) be a partition of Ω where |Ai| = p, i = 1,2, . . . ,m, and
|A| = r. Let ti = (a1a2 · · · ap) be a p-cycle in Ai, i = 1,2, . . . ,m. It follows that
〈t1, t2, . . . , tm〉 is an elementary Abelian group of order p[n/p] and of class at
most two. Also, Sn contains 2-subgroups of order εn8[n/4] ≤ d2,2(Sn). This
can be explained as follows.

Let π = (A1,A2, . . . ,Am,A) be a partition of Ω where |Ai| = 4, i = 1,
2, . . . ,m and |A| = r. Let n = 4m + r, 0 ≤ r < 4. It follows that

H = YA1 × YA2 × · · · × YAm × Yr ≤ Sn,

where YAi
∼= S4 and Yr

∼= Zεn .
Hence, H ∼= Sm

4 × Sr contains Dm
8 × Zεn of class ≤ 2. It remains to show

that for p �= 3, these groups are exactly all possible p-subgroups of class ≤2 and
order d2,p(Sn). Let P ∈ a2,p(Sn). Assume that P has orbits A1,A2, . . . ,Am,
it follows that

P ≤ YΣ = YA1 × · · · × YAm ,

where YAi are the Young subgroups corresponding to the partition Σ = (A1,
A2, . . . ,Am).

Furthermore, by Lemma 2, we have that

P = (P ∩ YA1) × · · · × (P ∩ YAm)

and P ∩ YAi ∈ a2,p(YAi). As Ai is an orbit of P , P ∩ YAi is a transitive
subgroup of YAi

∼= SAi of class ≤2.
Now we consider two cases.

Case 1. p = 2. Let |Ai| = ni, if p �= 2, it follows that

p[ni/p] = pni/p ≤ d2,p(SAi) = |P ∩ YAi |.
By Corollary 1, |P ∩ YAi | ≤ pni/p. Therefore,

pni/p = d2,p(SAi) = |P ∩ YAi |.
Also, by Corollary 1, it follows that ni = p or ni = 9 and p = 3. If p �= 3, then
all orbits of P have lengths 1 or p. Thus, P is conjugate to the subgroup
constructed above, and hence d2,p(Sn) = p[n/p]. As p �= 2, it follows that

d2,p(Sn) = d2,p(An).

Case 2. p = 2. Let P ∈ a2,2(Sn) and let P ≤ YΣ = YA1 × · · · × YAm where
YAi , i = 1,2, . . . ,m, be the Young subgroups corresponding to the partition
Σ = (A1,A2, . . . ,Am).

As above P = (P ∩ YA1) × · · · × (P ∩ YAm) where P ∩ YAi ∈ a2,2(YAi) and
P ∩ YAi is a transitive subgroup of YAi . By Lemma 6, |Ai| = 1 or 2 and 8ni/4 ≤
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d2(SAi) = |P ∩ YAi | ≤ 8ni/4. This implies that |P ∩ YAi | = 8ni/4 and this
occurs if and only if ni = 4. Hence again, P is a group conjugate to the group
constructed above. As P � An, this implies that d2,2(An) = 1

2d2,2(Sn). �
Lemma 7.

(i) If p is a prime at least 7, then pk � 3[pk/3] for all k ≥ 1.
(ii) 5k � 3[5k/3] for k ≥ 2.

Proof. Easy. �

Remark 3. By Theorem 1 and Lemma 7, we have 3[ni/3] ≤ p
ni/pi

i and
5[ni/5] ≤ p

ni/pi

i which implies that pi = 3 or 5 and if pi = 5, then |Ai| = ni = 5.
We need some information about d2,2(2An). This is a bit more complicated,
as we cannot use our information about An directly, because if X ≤ 2An,
Z ≤ X , then X/Z ≤ An and class(X/Z) ≤ class(X), but if Y ≤ An and it is a
2-group of class ≤ 2, then Ŷ might have class equal to 3.

First, we know that in Sn, n = 4m + r,0 ≤ r < 4,Dm
8 ≤ Sn and in 2An, n =

8m + r,0 ≤ r < 7, we have the central product

X1 ◦ X2 ◦ · · · ◦ Xm ◦ Y ≤ 2Am,

where Xi
∼= 2A8 and Y ∼= 2Ar. In each Xi, we take a 2-group Pi of class ≤ 2

and in Y a 2-group Q of class ≤ 2, with Z ≤ Pi,Z ≤ Q, then it follows that

〈P1, . . . , Pm,Q〉 = P1 ◦ · · · ◦ Pm ◦ Q

has class ≤ 2 and |P1 ◦ · · · ◦ Pm ◦ Q| = 2|P1/Z| |P2/Z| · · · |Pm/Z| |Q/Z|.

Remark 4. Let π = (A1, . . . ,Am) is a partition of Ω and Y ∗
π = Y ∗

A1
× · · · ×

Y ∗
Am

. Assume that in each Y ∗
A1

, a nilpotent subgroup Xi of class ≤ 2 such that
its preimage X̂i has also class ≤ 2, then the group 〈X̂1, . . . , X̂m〉 is a central
product of the X̂i’s of class ≤ 2 and of order

2|X̂1/Z| |X̂2/Z| · · · |X̂m/Z| = 2|X1| |X2| · · · |Xm|.

To get an estimation for d2,2(2An), we prove the following lemma.

Lemma 8. d2,2(2A8) = 26.

Proof. As d2,2(A8) = 1
2d2,2(S8) = 1

282 = 25 (use Lemma 6), it follows that

d2,2(2A8) ≤ 2d2,2(A8) = 26.

Furthermore,
d2,2(2An) ≤ 2d2,2(An),

because, if P ≤ 2An a 2-group of class ≤ 2 with Z ≤ P , then we have class
(P/Z) ≤ 2, and this implies that |P/Z| ≤ d2,2(An), and hence

|P |
2

≤ d2,2(An). �
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Lemma 9. Let H ∼= 21+4 be the extra special group of A8
∼= GL(4,2), then

the preimage Ĥ of H has class at most 2.

Proof. Let

H1 =

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

1
∗ 1
∗ 0 1
∗ 0 0 1

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭ and H2 =

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

1
0 1
0 0 1
∗ ∗ ∗ 1

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭ .

It is clear that H = H1H2 where H1
∼= H2

∼= Z2
3 and Ĥ = Z2.

Also, [H1,H2] = H1 ∩ H2 = Z(H) ∼= Z2, where

H1 ∩ H2 =

〈⎡
⎢⎢⎣

1
0 1
0 0 1
1 0 0 1

⎤
⎥⎥⎦

〉
.

All nonidentity elements of H1 ∪ H2 are transfection, and in particular are
conjugate elements in H1 ∪ H2 \ {1}. From this, it follows that the preimages
Ĥ1, Ĥ2 are elementary Abelian. This can be proved as follows.

Let x, y ∈ Ĥ1\Z(K),K = 2A8, such that x, y /∈ Z(k), then we have

xZ(K) ∼ yZ(K) ∼ xyZ(K),

and hence
x2 = y2 = (xy)2 = z ∈ Z(K).

So,
z = xyxy = xy2y−1xy = xy2xy = xzxy.

This implies x = zx−1 and xy = xz. As |H1| = 8, there exists a, b, c ∈ Ĥ1,
where a, b, c, ab, ac, bc /∈ Z(K). So,

z = (abc)2 = zbacabc = z3(bc)2 = z4 = 1.

Hence, o(z) = 1 or 2, so z = 1 and a2 = b2 = c2 = 1 = [a, b]. Therefore, Ĥ1, Ĥ2

are elementary Abelian groups. So,

Ĥ = Ĥ1Ĥ2, Ĥ1 ≤ Ĥ, Ĥ ′ = (Ĥ1Ĥ2)′

= (Ĥ1)′[Ĥ1, Ĥ2](Ĥ2)′ = [Ĥ1, Ĥ2] ⊆ Ĥ1 ∩ Ĥ2.

As Ĥ1, Ĥ2 are elementary Abelian, it follows that Ĥ1 ∩ Ĥ2 ⊆ Z(Ĥ). Hence,
Ĥ ′ ⊆ Z(Ĥ) and class Ĥ ≤ 2. �

Theorem 2. If Ω is a set of size n, and π = (A1,A2, . . . ,Am) is a partition
of Ω with |Ai| = ni, then

d2,2(2AΩ) ≥ 2 · d2,2(2AA1)
2

· d2,2(2AA2)
2

· · · · · d2,2(2AAm)
2

.
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Proof. Consider the Young subgroup Y ∗
π = Y ∗

A1
× · · · × Y ∗

Am
. The preimage

Ŷ ∗
π = Ŷ ∗

A1
◦ Ŷ ∗

A2
◦ · · · ◦ Ŷ ∗

Am
,

is the central product of Ŷ ∗
Ai

∼= 2AAi , i = 1,2, . . . ,m. By Lemma 8 and Re-
mark 4, we have in each Ŷ ∗

Ai
, there exists a 2-group of class ≤ 2 and of order

d2,2(2AAi). These groups generate a subgroup of 2AΩ of class at most 2 and
of order 2 · d2,2(2AA1 )

2 · d2,2(2AA2 )

2 · · · · · d2,2(2AAm )
2 . �

Corollary 2. Let n = 8.k + r,0 ≤ r < 8, then

d2,2(2An) ≥ 2 · (32)k d2,2(2Ar)
2

.

Corollary 3. If n ≥ 8, n �= 15, then

d2,2(2An) � 2.d2,3(2An).

Proof. Use the inequality

d2,2(2An) ≥ 2 · (32)k d2,2(2Ar)
2

if n = 8.k + r,0 ≤ r < 8, and Table 1. �

Corollary 4. Let 8 | |Ω|, then

d2,2(2AΩ) ≥ 2 · 32n/8.

Proof. As 8 | |Ω|, there exists a partition π = (A1,A2, . . . ,Am) of Ω such
that |Ai| = 8. By Theorem 2, it follows that

d2,2(2A8) ≥ 2 ·
d2,2(Ŷ ∗

A1
)

2
· · ·

d2,2(Ŷ ∗
Am

)
2

≥ 2 · (32)m

as d2,2(Ŷ ∗
Ai

) = d2,2(2A8) ≥ 64. �

Table 1.

n d2,2(2An)
0 1
1 1
2 2
3 2
4 8 2A4

∼= SL(2,3)
5 8 2A5

∼= SL(2,5)
6 8 2A6

∼= SL(2,9)
7 8 2A6 and 2A7 have isomorphic Sylow 2-groups
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Corollary 5. If X ∈ a22(2AΩ), then Z = Z(2AΩ) ⊆ X, and any orbit of
X/Z in Ω has length ≤ 8, or |Ω| ≤ 7; also if A is an orbit of length 8, then

CX(A) ∈ a22(Ŷ ∗
Ω\A).

Proof. Let A be an orbit of X/Z of length ≥ 8, and let Γ = Ω \ A.
The partition π = (A,Γ) implies 2d2,2(Ŷ ∗

A)d2,2(Ŷ ∗
Γ ) ≤ d2,2(2AΩ) = |X|. So,

CX(A) = {x ∈ X,x fixes all points in A ≤ Ŷ ∗
Γ and it is of class ≤ 2}.

So, |CX(A)| ≤ d2,2(Ŷ ∗
Γ ), also X/CX(A) is a transitive subgroup of SA of class

≤2. Furthermore,

2
d2,2(Ŷ ∗

A)
2

d2,2(Ŷ ∗
Γ )

2
≤ |X| = |X/CX(A)| · |CX(x)| ≤ |X/CX(A)| · d2,2(Ŷ ∗

Γ ).

This implies that |X/CX(A)| ≥ 32|A|/8. By Lemma 5, there exist integers a, b
such that |A| = 2a+b and |X/CA(A)| ≤ 2a+b+ab. So,

2a+b+ab ≥ |X/CX(A)| ≥ 32|A|/8,

then it follows that a + b + ab ≥ 5|A|/8 = 5.2a+b−3. Hence, |A| = 8. We also
see that in all estimations equality must hold. Thus, CX(A) ∈ a22(Ŷ ∗

Ω\A). �

Corollary 6. If |Ω| is even, then

d2,2(2AΩ) =

{
2 · 32[n/8], if |Ω| ≡ 0,2 mod 8,

2 · 4 · 32[32/8], if |Ω| ≡ 4,6 mod 8.

Corollary 7. Let |Ω| = n. The B-injectors in 2AΩ are as follows:
• n ≡ 0,1,4 mod 8, the B-injectors are Sylow 2-subgroups.

• n ≡ 3,7 mod 8, the B-injectors correspond to the partition π = (A,Γ),
|A| = 3. So, the B-injectors are Z3 × T2, where T2 is a Sylow 2-subgroup
in Ŷ ∗

Γ .
• n ≡ 6,2 mod 8, the B-injectors correspond to the partition π = (A,Γ),

|A| = 6. So, the B-injectors are Z3 × Z3 × T2, where T2 is a Sylow 2-
subgroup in Ŷ ∗

Γ .
• n ≡ 5 mod 8, the B-injectors correspond to the partition π = (A,Γ), |A| = 5.

Hence, the B-injectors are Z5 × T2, where T2 is a Sylow 2-subgroup in Ŷ ∗
Γ .

Theorem 3. B-injectors in 3A6 are the Sylow 3-subgroups.

Proof. As 3-subgroups of 3A6 have order 33, and hence have class ≤ 2. It
suffices to show that there are no nilpotent subgroups of class at most 2 and
of order > 27. So, let X be a nilpotent subgroup of 3A6. If 5 | |X|, it follows
that X ≤ C(z) for some element z of order 5. As elements of order 5 in A6

are self centralizing, it follows that |X| ≤ 3 · 5 = 15. If 2 | |X|, then X ≤ C(z)
for some involution z ∈ 3A6. As centralizers of involutions in A6 have order
8, it follows that |X| ≤ 3 · 8 = 24 < 27. So, the claim follows. �
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Theorem 4. B-injectors in 3A7 are the groups of order 36, and are the
preimages in 3A7 of subgroups Z2

2 × Z3 of Young subgroups A4 × A3 ≤ A7.

Proof. As elements of order 5 or 7 are self-centralizing in A7, it follows that
nilpotent subgroups of 3A7 which are divisible by 5 or 7 can have orders at
most 15 or 21, respectively. As Sylow 3-subgroups of 3A7 have order 27 < 36,
then any nilpotent subgroup of 3A7 of class ≤ 2 and order ≥ 36 must be
contained in a centralizer of an involution. As centralizers of involutions in
A7 have order 24 and are not nilpotent, the claim follows. �

Theorem 5. B-injectors in 6A6 are the groups Z.T3, where Z is the center
and T3 is a Sylow 3-subgroup of order 54.

Proof. As element of order 5 in A6 are self-centralizing, it follows that
nilpotent subgroups in 6A6, whose order is divisible by 5 can have at most
order 30 < 54. As centralizers of involutions in A6 have order 8. It follows
that nilpotent subgroups of whose Sylow 2-subgroups are not contained in
the center of 6A6 can have order at most 48 < 54. So, the claim follows.

�

Theorem 6. B-injectors in 6A7 are groups of order 72 corresponding to
subgroups Z2

2 × Z3 in Young subgroups A4 × A3 ≤ A7.

Proof. Similar as above. �
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