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ON B-INJECTORS OF THE COVERING GROUPS OF Ay

M. ALALI, CH. HERING, AND A. NEUMANN

ABSTRACT. A B-injector in an arbitrary finite group G is defined
as a maximal nilpotent subgroup of G, containing a subgroup A
of G of maximal order satisfying class(A) < 2. The aim of this
paper is to determine the B-injector of the covering groups of A,,.

1. Introduction

Let G be a finite group. A subgroup U < G is an N-injector of G, if for
every subnormal subgroup S of G, U NS is a maximal nilpotent subgroup of
S. N-injectors for nonsolvable groups have been introduced first by Mann [8].
He extended Fischer’s results to IN-constrained groups, that is, to groups G,
such that Cq(F(G)) C F(G), where F(G) denotes the Fitting subgroup of G.
It is well known that a solvable group is always N-constrained. In [5], Fis-
cher, Gaschutz, and Hartley proved that if G is solvable, then N-injectors
exist and any two of them are conjugate. It was (Forster [6], Iranso and
Perez-Monasor [7]) who proved that N-injectors exist in all finite groups.
Arad and Chillag [2] proved that if G is an N-constrained group, then A is an
N-injector of G if and only if A is a maximal nilpotent subgroup of G contain-
ing an element of a3(G) where as(G) is the set of all nilpotent subgroups of G
of class at most 2 and having order do(G) where da(G) denotes the maximum
of the orders of all nilpotent subgroups of class at most 2. A subgroup A
of GG is called a B-injector of GG if A is a maximal nilpotent subgroup of G
containing an element of a3(G). This definition has been used here and in [1].
In N-constrained groups the definition of N-injectors and the definition of
B-injectors yield the same class of subgroups. If U is a B-injector of G, then
U contains every nilpotent subgroup of G which is normalized by U [2]. In [9],
Neumann proved that in any finite group G, B-injectors are N-injectors. The
motivation behind this work is that B-injectors will lead to theorems similar
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to Glauberman’s ZJ-theorem and it is hoped that they provide tools and argu-
ments for a modified and shortened the proof of the classification theorem of
finite simple groups, in particular where the Thompson factorization theorem
might fail [11]. The B-injectors of S, and A, have been determined in [3]
and [4]. In [10], it is proved that the B-injectors of S, and A,, are conjugate
apart from some trivial cases which can be enumerated.

2. Preliminaries and notations

Our notation is fairly standard: throughout all groups are finite. If G is a
group, Z(G) denotes the center of G. If H and X are subsets of G, Cy(X)
and Ny (X) denote respectively the centralizer and normalizer of X in H.

The generalized Fitting group F*(G) is defined by F*(G) = F(G)E(G)
where E(G) = (L | L < < G and L is quasisimple) is a subgroup of G,
A group L is called quasisimple if and only if L' = L where L’ is the de-
rived group of L, and L'/Z(L) is non-Abelian simple. O,(G) denotes the
unique maximal normal p-subgroup of G, it is the Sylow p-subgroup of F/(G)
and Oy (G) =1]04(G), ¢# p and ¢ is prime. If Q={1,2,...,n}, Sq will
denote the symmetric group of degree n. Sometimes we write S, for Sq. As
is customary, we shall denote the alternating group on n points by A,. Let
® (@) denotes the Frattini subgroup of G, the intersection of all maximal sub-
groups of G. The integer part of the real number z is denoted by [z]. We
denoted by as ,(G) the set of p-subgroups, of class at most two and of largest
possible order, of G.

We introduce the following definition.

DEFINITION 1. Let G be a finite group, a nilpotent subgroup Uof G is called
a BG-injector of G if it contains every nilpotent subgroup it normalizes.

It is clear that BG-injector is maximal nilpotent and containing F(G).
Also, if U is a BG-injector of G and if U < H < G, then U is a BG-injector of
H. Also, B-injectors are BG-injectors [9]. Schur [12] showed that if G is a non-
Abelian simple group, then there exists a unique quasisimple group G such
that G/Z(G) = G, and given any quasisimple group H with H/Z(H) =G,
then H is isomorphic to G/Z for some subgroup Z C Z(G), Z(G) is called
the Schur multiplier of G and denotes by M(G) and H = G/Z is called a
universal covering group of G. The Schur multipliers M (A,,) for alternating
groups A,, have been determined in [12] and they are

M(An):{zﬁa 77,26,77

Zy, n>5n#£6,17.
Hence, the universal covering groups of A,,, are 6A4¢,6A7, and 2A4,, where
n # 6,7. Schur showed that there are two types of groups of shape 2.5,, which

+ —
denoted by 25,25, and 2A4,, is then the commutator group of any of these.
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+ — +
So, 24, = (25,,) = (25,)" where G’ denotes the commutator group of G. 25,
can be easily described by defining relations.

+
So, let H =25, and denote Z(H) = (—1), then we have the following. If

+
t € S, is a transposition and 7T is its preimage in H =2S,,, then 72 = —1
and if s,¢ are two transpositions in S, and disjoint support with preimages
+
S,T in H, then [s,T] = —1. So, H =25, is uniquely determined by these
two relations. Also, if s,t are two pairwise commuting transpositions with
preimages 11,75, ..., T, then

m+1

(TV, Ty, ..., Thn)? = (—1)("),
Let Q be a finite set, and let 7 = (A, As,..., A;,) be a partition of  into
pairwise disjoint nonempty subsets of 2, we denote its stabilizer by Y., Y is
also called the Young subgroup of m, that is,
Yr={g€Sq|A? = A, for all i}.
It is obvious that
Ye=Ya, xYa, x---xYy, <Sg,
where Y4, = {g € Sq | g fixes all points not in A;} and Y4, =S54,.
Furthermore, we define Y; =Yy, N Aq, where Aq is the alternating group
of 2 and we have
Yi=(Ya,Ya,, ... Y4 )=Yi xYi x---xYi <Aq.
Note 1. If 0: K — Aq be a surjective homomorphism, where K =

+
(25,,), then ker o = (—1) and for any subgroup X < A we have the preimage
X={reK|z° € X}.

We prove the following lemma.

LEMMA 1. Y: = le of/j{z o-- -oYA*m , is the central product off/j{l , }A’A*2, ey

Y/jm, where 17;‘ is the preimage of Y.* and Y;{ is the preimage of Y3 , i=
1,2,...,m, A;, Q and Y}, are defined above.

Proof. Let 0: K — Aq be a surjective homomorphism and let x € Y;,
then z% € Y, so 27 = y1y2---ym for y; € in. Choose x; € YA*i such that
xf =y;. Thus, (z1,22,...,2,) € K and

(1,22, am)” =a{2] 2], =y1y2 -+ Ym =27,
so 27 = (2172 T )7, it follows that [(z129---x,)2r~ 1] = 1. This implies
that (z122- )zt €kero = (—1), thus x122 -+ 2,, =2 or —z. It remains
to prove that [Y} , Y;{j} =1, for i #j.

Let g € Ya,, h € Ya,, then g =t#1t5---1 where ;’s are transpositions
in Ya, and h = sy82---8,, where s;’s are transpositions in Yy4,. If T;, S;
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are the corresponding preimages of t;,s; respectively, then [T;,5;] = —1 and
g=1T1Ts-- T, h = 5155+ S, are the preimages of g,h, respectively. So,
9.0 = g7 ()" = (I Ty - Tp) ™™ 5 = (1) (D Ty -+ Ty) "W To - Tjy =
(_1)mk as

T2 Sm = (—1)™T;.

So,

1 otherwise

and it follows that [YZ,Y;J] =1 for 7 # 7. This completes the proof of the
lemma. g

7

R -1, if A
[g,h] { , 1 g,hESQ\ Qs

NoTE 2. If Q is a set of size n, and m = (A, A4s,...,A,,) is a partition
of 2, then the preimage le of the Young subgroup Y, is isomorphic to:
(ii) Z, if n;=1,2.
(iil) Zs, if n; =3 or SL(2,3) if |A;| =4.
LEMMA 2. Let G be a finite group and U be a BG-injector of it.
(i) If Z< Z(G), then Z<U and U/Z is a BG-injector of G/Z.
(ii) If F*(G) = Op(G), for some prime p, then U is a Sylow p-subgroup of G.
(iii) If G is a central product of two subgroups G1,G2 of G, that is, G =
G1G3,[G1,G2] =1, then U = (UNG1)(UNG2) and UNG; is a BG-injec-
tor of G;, fori=1,2.

Proof. The proof is easy and is omitted. a

REMARK 1 ([6]). Let H be a finite group such that H = Z,,1.5y; the Wreath
product of the cyclic group Z,,p a prime, with Sy, then F*(H) = O,(H).

REMARK 2. If Q is a finite set, we denote by Sq, Aq the corresponding
symmetric and alternating group of Q. For a partition ¥ = (A1, As,..., An)
of 2 into pairwise disjoint nonempty subsets of €2,

Ye={geSq|A=A,,1<i<m}
denotes the Young subgroup of Q. It is obvious that

YEZYAI XYA2 Xoeee XYAm SSQ,
where Y4, = {g € Sa | g fixes all points not in A;} and Y4, = S4,. We de-
fine Y3 N Ag and Yy = (Y3, Yi,....Y; )=Y] xYi x--xY; <Aq.
Consider an element g € Sq of prime order p # 2. Let A = {a € Qla? # a},
I'={aead=a}. SoX=(AT) is a partition of Q. If |A| = pk, then g is
a product of k pairwise commuting p-cycles t1,t2,...,t; and t; € Y4 corre-

sponding to the orbits of g in A. Since Cg,(g) permutes these t;’s, and in
particular normalizes V = (t1,ta,...,tg) = Zpk.
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We infer that V C O,(Cs,(g)), and Cs,(9) <Y, =Y4 x I, hence:

Csq(9) =Cy,(g) x Yr.
As Cy,(g) = Z,1 Sk, by Remark 1, it follows that

F*(Cy.(9)) = 0p(Cy.(9))
and
C(V) =V x YF.

LEMMA 3. Let U be a BG-injector in Aq and let g € Z(U) with o(g) =
p#2, p prime, where o(g) denotes the order of g. Then

U:(Uﬂny(g)) X (UﬂYfk)

Proof. Since g € Z(U), U <Cay(9) <Csq(9) =Cy,(g) x Yr <Yy x Yp. If
V' is as defined above, it follows that

Ve OP(CSQ (g)) = OP(CAQ (g)) = F*(CAQ (g)>7
as p is odd.
As U is a BG-injector of Ca,(g), this implies that V' C O,(Cy,(9)) C U,
but U is nilpotent, so
U=0,(U) x Op(U).
Also, V CO,(U) and O, (U) CC(O,(U)), thus
Op (U) € Cag (V).
So,
Op(U)<Cs, (V) =V x Yr.
As U <Ag and V < Ag (p+#2), we obtain
Op/(U):Op/(U)ﬂAQ < (V xYr)NAqg=V x (YFﬂAQ):VX Yfk
Thus, O, <Y{¥ as p||V| and, therefore,
U=0p(U) x Oy (U) <Cy,(g) x YT,
this implies that U < Cy;(g) x Yi¥ <Y x Y[, as p# 2. Hence, by Lemma 2
we have
U=(UnNCy:(9) x (UNYF)=(UNY;) x (UNYY). O

LEMMA 4. Let Q be a finite set and let U be a BG-injector of Aq, then
there exists a partition ¥ = (A1, Az, ..., Ap) of Q such that U <Y} x Y} X
XY andU=(UNY] ) x--x(UNY} ). Also, fori=1,2,...,m, there
exists a prime p; such that (UNY}) is a Sylow p;-subgroup of Y3, .

Proof. We consider two cases:

Cask 1. U is a 2-group. Let X be the partition consisting of €2 alone, that
is, 2=(2). So, Y& =Aq and U=UNY5. As U is a BG-injector of Agq, it is
maximal nilpotent, and thus U is a Sylow 2-subgroup of Agq.
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CaAsE 2. U is not a 2-group, so there exists a prime p # 2 such that p | |U|.

As U is nilpotent, it follows that there exists z € Z(U),0(z) =p. Let A1 be
the set of nonfixed points of Z = Z(U) and I" be the set of fixed points of Z.
By Lemma 3, we get

U< CAQ(Z) :CY,Zl (Z) X YF* SY:I X Yf\k
Also, by Lemma 3, we obtain
U:UﬂCyzl(z) x (UNYR)=(UNYy)x (UNYY),

Un Cy;{l (2) is a BG-injector of Y} , and U N Y[ is a BG-injector of Y. As
UNnCyy, (z) is a BG-injector of Cy;, (z) and 1"*(6’3/;1 (2)) = O,,(C’y;1 (2)), we
get that U N Cyy, (2) is a Sylow p-subgroup of Y; = A, and UNYY is a
BG-injector of Y = Ar. Repeating the argument for U N Yr and Y = Ar,
the claim follows. 0

THEOREM 1. Let K be a group isomorphic to 2Aq, where § is a finite
set of size n. If B is a B-injector of K, then there exists a partition ™ =

(A1, As,..., Ap) of Q such that:
(i) For each i, BN }A’L is a B-injector of le
(ii) Let Z=Z(K) and B; = BOYL, then B; 2 Z x O,,(B;), for some prime
pi # 2.
(iii) do(244,) = 2p;"/Pi and for any odd prime p,pl™i/PL < p;ni/Pi,
(iv) There is at most one i with p; =5 and the union of the A;’s with p; =3
has size at most 6, and there are no i,j such that p; =3 and p; = 5.

Proof. (i) As B/Z is a B-injector of K/Z = Aq), there exists by Lemma 4,
a partition m = (Ay, A, ..., Ay,) of Q such that

Vi=Yi x-xYji .
Let B/Z=U, then U <Y and U= (UNY} )x---x (UNY} ). Thus,
BS?;:)A’LOYA*QmquZM,
the central product of Yj{i, by Lemma 1. Hence,
B=(BNYj;)x--x(BNYj )

and BN YA*Z is a B-injector of BN YA"Z
(i) As Z<BNYj =B; and B;/Z=UNY},, then for any prime p; # 2,
we have B; =[] Op(B;) and Z < O4(B;). So,

p-prime

Bi/Z=04(B:)/Z x [ [ Op(B:).
PF#2
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As B;/Z=UnN Y7, is a Sylow p;-subgroup of Y by Lemma 4, it follows that
Bi =7 x Op,(B;) and UNYj; =0, (B;), which is a Sylow p;-subgroup of
Yji = Aa, = Ay, where [A;|=n;.
(iif)
dy(244,) = dy(Y},) = do(Bi) = d2(Z)d2(0,,(B;))
= 2d2,p(AAi) = 2pim/p_

Also, if p is a prime # 2, we have da ,(24,,) = 2d2 ,(A,), because 24,, and A4,
have isomorphic Sylow p-subgroups. As ds ,(24,) < d2(24,,), we get
2l /P) = 2y, (A,) = dop(24,,) < da(24,,,) = 277

or plmi/rl < pi /P for all odd primes.
(iv) Let I C{1,2,...,n}, so that p; is an odd prime for all € I. Then for
A= Ui€ 1 Aj, it follows that the central product

[1vi <vi.

BNY;=IL(Bn Y;{) and (BNY}) is a B-injector in Y 224 4.
Consider the following cases.

CAsg 1. Assume that there are disjoint A;, A; such that p; =p; =5. So,
|A;| =|A;|=5. Set A=A; UA;. It follows that

BNY;=(BNY;)(BNY})
is a B-injector in Y;{ of order 2-5%: this is a contradiction, as d2(2410) >
do(2Ag) > 25.

CASE 2. Let J be the set of numbers j such that p; =3 and let A=
Ujes Aj, then (B ﬂf/j) is a B-injector of f/j{ and it is of the form Z x P for
some Sylow 3-subgroup P of YA* Hence, if |A| = 3k, then

do(244) =do(Y) =2 3.
So, d22(2A4) S 2-3%. By Corollary 3, we have 3k <8 or 3k = 15, but
dy(2A15) 2 2 L2QAe) . 2a@Au) GaBh) > 9. 61 5. 8. Hence, 64-24 <
d2(2A15) = da(Y) =2 3% is a contradiction.

CASE 3. Assume that there exist ¢,j such that p; =5 and p; =3, then
|A;] =5 and |A;] =3 or 6. Set A= A; U A;, it follows that (B NY}) is
a B-injector of Y; 2224y, and hence |A;| =3, thus |A| = 8 and dy(24g) =
dy(Y;)=2-3-5=30, a contradiction, as 64 < dg 2(24g) < da(24s).

If |A;| =6, then |A| =11 and dy(2411) = do(Y}) =2-5-3% =90, a contra-
diction, as dy(24;11) > 2 22248) g, ,(245) > 2. 6. 6 > 90, O
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LEMMA 5. Let Q be a finite set of size n, and let P be a transitive p-subgroup
of Sq of class <2. Then there exist integers a > 0,b> 0 such that n = p®+®
and |P| < patbtab,

Proof. As P is transitive on 2, Z = Z(P) acts semiregularly on 2 that
Zo =1 Va €, because let z € Z,,, so z € Z(P), it follows that P leaves
invariant the set of fixed points of Z, so fix(z) =2, and thus z =1. As class
P <2, it follows that P’ < Z(P), and hence

(Py) <(PNoa<Zy=1.

So, P, is Abelian, and M = (Z, P,) = Z x P, is an Abelian normal subgroup
of P,as PP<Z<M and ZNZy=Z,=1. Set |P/M|=P* and |Z| = p®,
then there exist ty,ta,...,t, € P such that P/M = (Mtq, Mts, ..., Mt,). Next,
consider the map o: P, — (P')® defined by o(z) = ([z,t1],..., [z, ts]). As
class(P) < 2, it follows that o is a homomorphism. This can be seen as follows.
In groups of class, at most two, we have the following relation:

ey, t] =y~ [, tly" = o, ]y~ "y’
as [x,t] € P' C Z(P). So, [zy,t] = [z,][y,t], where y' =t~ 1yt and kero =1,
because let x € kero, it follows that [x,t;]=1,i=1,...,q, thus t1,...,t, are
in Cp(z). Furthermore, x € P, C M =2 x P, and M C Cy(x), as M is
Abelian. Thus, (M,t1,...,t,) CCp(x). As P/M = (Mts,...,Mt,), it follows
that P = (M,t1,...,t,) C Cp(x), thus x € Z(P) N P, = (Z(P))a = 1. Hence,
r=1. So, ¢ is injective. Therefore, |P,| < |P'|* < |Z(P)|* = p*® and n =
[P: P,|=[P: M|[M: P,] as P, <M < P, it follows that
a|M| a|Z||PO/|7 ab: a+b

[P: P=p"—==p
“ | Pa | Pa

and |P| = n|P,| < np® = p*+t*+® This completes the proof. O

COROLLARY 1. Let  be a finite set of size n and let P be a transitive
p-subgroup of Q of class <2, if p# 2, then |P)| < p/Pl where equality holds
if and only if forn=p orn=9 and p=3.

Proof. Since p # 2, by Lemma 4, there exist two integers a > 0, b > 0 such
that n = p®tt, |P| < p@tbtab  As p +£2 it follows that petb+aeb < pn/P if and
only if a + b+ ab < n/p=p***~1 where equality occurs if and only if n =p
orn=9 and p=3. O

LEMMA 6. Let Q2 be a finite set of size n and let P be a transitive p-subgroup
of Q of class <2, then
() If p#2,dap(Sn) = dap(Ay) = pln/7).
(i) If p=2, d22(Sn) = e84 where

. 1, n=0,1 (mod 4),
"2, n=2,3 (mod 4).
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and ZfTL > 1, d?,Q(An) = %dZ,Z(Sn) = %5n8[n/41-

Proof. S, contains subgroups of order pl"/?! for any prime p. These groups
are generated by [n/p] cycles with disjoint support and p™*/?! < d2 p(Sy). This
can be explained as follows. Let n=mp+r, 0<r <p, m=[n/p], and let
m=(A1,As,...,Ap, A) be a partition of Q where |A;|=p,i=1,2,...,m, and
|A|=r. Let t; = (a1az2---ap) be a p-cyclein A;,i=1,2,...,m. It follows that
(t1,t2,...,tm) is an elementary Abelian group of order pl"/Pl and of class at
most two. Also, S,, contains 2-subgroups of order &,8!"/4 < d2,2(Sy). This
can be explained as follows.

Let m = (A41,4,..., A, A) be a partition of Q where |4;] =4, i=1,
2,...,mand [A|=r. Let n=4m+r, 0 <r < 4. It follows that

H=Y7 XYy, x - xYs xY. <85,

where Y4, =S, and YV, =2 Z, .

Hence, H = S;* x S, contains Dg' x Z., of class <2. It remains to show
that for p # 3, these groups are exactly all possible p-subgroups of class <2 and
order dy ,(Sy). Let P € azp(S,). Assume that P has orbits Ay, As,..., A,
it follows that

PSYEZYAI Xoven XYAm,
where Yy, are the Young subgroups corresponding to the partition ¥ = (Aj,
Ay Ap).
Furthermore, by Lemma 2, we have that
PZ(PﬂYAl) X e X (PﬂYAm)

and PNYy, €ag,(Ya,). As A; is an orbit of P, PN Yy, is a transitive
subgroup of Y4, = .54, of class <2.
Now we consider two cases.
CASE 1. p=2. Let |4;| = ny, if p#2, it follows that
pli/Pl = pni/P < dy (Sa,) =|PNYa,
By Corollary 1, |[PNYa,| < p™/P. Therefore,
PP =dyp(Sa,) =|PNYa,
Also, by Corollary 1, it follows that n; =p or n; =9 and p=3. If p # 3, then

all orbits of P have lengths 1 or p. Thus, P is conjugate to the subgroup
constructed above, and hence dz ,(Sy,) =p[/Pl. As p+2, it follows that

d2,P(Sn) = d2»p(An)~

CASE 2. p=2. Let P €as2(Sy,) and let P<Y5 =Yy, x--- XYy, where
Ya,, i=1,2,...,m, be the Young subgroups corresponding to the partition
Y=(A41,42,..., Ap).

As above P=(PNYy,)x---x(PNYy, ) where PNYy4, €az2(Ys,) and
PNYy, is a transitive subgroup of Y4,. By Lemma 6, |A;| = 1 or 2 and 8"/4 <
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da(Sa,) = |PNYa,| < 8%/ This implies that |[P N Yy, | = 8%/ and this
occurs if and only if n; = 4. Hence again, P is a group conjugate to the group
constructed above. As P & A, this implies that d22(4,) = %dg’g(Sn). O
LEMMA 7.
() If p is a prime at least 7, then p* < 3WPF/3 for all k> 1.
(i) 5% < 30K/3 for k> 2.
Proof. Easy. O

REMARK 3. By Theorem 1 and Lemma 7, we have 3[%/3] < p?i/pi and
5[ /5] < p?i/pi which implies that p; = 3 or 5 and if p; =5, then |A;| =n; = 5.
We need some information about dg2(24,,). This is a bit more complicated,
as we cannot use our information about A, directly, because if X < 2A4,,,
Z < X, then X/Z < A,, and class(X/Z) < class(X), but if Y < A,, and it is a
2-group of class <2, then Y might have class equal to 3.

First, we know that in S,,n=4m+7r,0<r <4,Dg* <S,, and in 24,,,n=
8m +r,0 <r <7, we have the central product

Xi0Xg0---0X,,0Y <24,
where X; 2 2Ag and Y = 2A,.. In each X;, we take a 2-group P; of class <2
and in Y a 2-group Q of class <2, with Z < P;, Z < @, then it follows that
<P17"'7PmaQ>:Plo"'opmoQ
has class <2 and |Pyo---0 Py oQ|=2|P/Z||Py/Z|- - |Pn/Z||Q/Z].

REMARK 4. Let 7= (Ai,...,Ay,) is a partition of Q and Yy =Y} x--- x
Y} . Assume that in each Y} , a nilpotent subgroup X of class <2 such that
its preimage X; has also class < 2, then the group <X'1, .. ,Xm> is a central
product of the X;’s of class <2 and of order

2|X1/Z||X2/Z| T |Xm/Z| =2/ X1 [|Xz| -+ [ Xm].

To get an estimation for da 2(24,,), we prove the following lemma.

LEMMA 8. d272 (QAS) =26,

Proof. As dg2(Ag) = %dQ)Q(Sg) = %82 = 2% (use Lemma 6), it follows that

da2(24s) < 2d3 2(As) = 2.
Furthermore,
d22(24,) <2da2(A,),
because, if P <2A,, a 2-group of class <2 with Z < P, then we have class
(P/Z) <2, and this implies that |P/Z| < ds2(A,,), and hence

@ <dg2(An). 0
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LEMMA 9. Let H =22 be the extra special group of Ags = GL(4,2), then
the preimage H of H has class at most 2.
Proof. Let

Hy = and Hy=

* X X =

* O O

1 1

0 1 0 1
0 0 1 |
It is clear that H = Hy Hy where Hy = Hy & Z5° and H = Z».

Also, [Hy,Hs) = Hy N Hy=Z(H) % Zy, where

All nonidentity elements of H; U Hy are transfection, and in particular are
conjugate elements in Hy U Hy \ {1}. From this, it follows that the preimages
ﬁl, Hy are elementary Abelian. This can be proved as follows.

Let =,y € H1\Z(K), K = 2Ag, such that z,y ¢ Z(k), then we have

1Z(K) ~yZ(K)~ayZ(K),

H10H2=<

— o O

1
0 1
0 0 1

and hence
2=y = (vy)? =2 € Z(K).

So,

1

z = zyzy = cyiy tay = zy’a¥ = xzaY.

This implies = zx~! and 2¥ = z2. As |H;| =8, there exists a,b,c € Hy,
where a,b,c,ab,ac,bc ¢ Z(K). So,
2= (abc)? = 2b%be = 23 (be)? = 21 = 1.
Hence, o(z) =1 or 2, s0 z=1 and a2 = b2 = ¢ =1 = [a,b]. Therefore, H,, H,
are elementary Abelian groups. So,
H=HHy Hy <H H = (H H)
= (Hl)l[ﬁhﬁﬂ(ﬁz)/ = [ﬁhﬁﬂ CH,NH,.

As Hy, Hy are elementary Abelian, it follows that Hy N Hy C Z(H). Hence,
H' C Z(H) and class H < 2. O

THEOREM 2. If 2 is a set of size n, and m = (A1, As, ..., Ay) is a partition
of Q with |A;| =n;, then

(dpp(244,) d22(2A44,)  d22(244,)

dy2(240) > 2
22(240) 2 2 2 2
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Proof. Consider the Young subgroup Y =Y} x---x Y} . The preimage
Yi=Y; oY o-0Y; |
is the central product of YX =2A4,4,,i=1,2,...,m. By Lemma 8 and Re-

mark 4, we have in each ?Xw there exists a 2-group of class <2 and of order

d22(2A4,). These groups generate a subgroup of 24q of class at most 2 and

d 2A d 2A 24
of order 2 - 2*2(2 A1) 2,2(2 A2) . d2‘2(2 Am) 0

COROLLARY 2. Let n=8.k+r,0<r <8, then

dy(24,)>2- (32)’“%.

COROLLARY 3. If n>8,n#15, then
ds2(245) 2 2.d2 3(24,).

Proof. Use the inequality

de,Q(QAT)
2
if n=8k+7,0<r <8, and Table 1. O

d22(24n) 22+ (32)

COROLLARY 4. Let 8|9, then
dy2(240) >2-32M/8,

Proof. As 8| |Q], there exists a partition = = (Ay, Ag,..., A) of Q such
that |4;| = 8. By Theorem 2, it follows that

(2(Vi)  dea(Vi,) >2

do2(2A48) > 2 -(32)™
2,2( 8) = 2 ) ( )
as do2(Y},) = d2,2(24s) > 64. O
TABLE 1.
d2,2(2An)
1
1
2
2

8 24,2 SL(2,3)
8 2452 SL(2,5)
8 245 = SL(2,9)
8 244 and 2A; have isomorphic Sylow 2-groups

O UA W RO
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COROLLARY 5. If X € a2(24q), then Z = Z(2Aq) C X, and any orbit of

X/Z in Q has length <8, or |Q] <7; also if A is an orbit of length 8, then
Cx(A) S CLQQ(?{;\A).
Proof. Let A be an orbit of X/Z of length > 8, and let ' =Q\ A.
The partition ™= (A,F) implies QdQ,Q(YZ)dZQ (YF) S d2,2 (ZAQ) = |X‘ SO7
Cx(A) = {x € X,z fixes all points in A <Y} and it is of class < 2}.

So, [Cx (A)| < dao(Yi), also X/Cx (A) is a transitive subgroup of S4 of class
<2. Furthermore,

2d2,2(YA*) da (YY)

2 2
This implies that | X/Cx (A)| > 32/41/8. By Lemma 5, there exist integers a, b
such that |A| =29%% and |X/Ca(A)| < 20Fb+ab So,
9a+b+ab > ‘X/CX(A)l > 32\14\/8’

then it follows that a + b+ ab > 5|A|/8 = 5.297°=3. Hence, |A| =8. We also

see that in all estimations equality must hold. Thus, Cx(4) € azz(Yg, 4). O

<X = |X/Cx (A)] - 10x (2)| < |X/Cx (A)] - dz2 (V7).

COROLLARY 6. If |Q| is even, then

2. 32[n/8], if | =0,2 mod 8,

doo(2Aq) =
22(240) {2-4.32[32/81, if |9 = 4,6 mod 8.

COROLLARY 7. Let |2 =n. The B-injectors in 2Aq are as follows:

e n=0,1,4 mod 8, the B-injectors are Sylow 2-subgroups.

e n=3,7 mod 8, the B-injectors correspond to the partition m = (A,T),
|A| =3. So, the B-injectors are Zs x Ty, where Ty is a Sylow 2-subgroup
in Y

e n=0,2 mod 8, the B-injectors correspond to the partition m = (A,T),
|A|=6. So, the B-injectors are Zs x Zs x Ty, where Ty is a Sylow 2-
subgroup in Yli"

e n=>5 mod 8, the B-injectors correspond to the partition m = (A,T), |A| =5.
Hence, the B-injectors are Zs x Ty, where Ty is a Sylow 2-subgroup in ffr*

THEOREM 3. B-injectors in 3Ag are the Sylow 3-subgroups.

Proof. As 3-subgroups of 3A4¢ have order 33, and hence have class < 2. It
suffices to show that there are no nilpotent subgroups of class at most 2 and
of order > 27. So, let X be a nilpotent subgroup of 34¢. If 5| |X], it follows
that X < C(z) for some element z of order 5. As elements of order 5 in Ag
are self centralizing, it follows that | X| <3-5=15. If 2| |X|, then X < C(z)
for some involution z € 3Ag. As centralizers of involutions in Ag have order
8, it follows that | X| < 3-8 =24 < 27. So, the claim follows. O
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THEOREM 4. B-injectors in 3A7 are the groups of order 36, and are the
preimages in 3A; of subgroups Z3 x Z3 of Young subgroups Ay x Az < A,

Proof. As elements of order 5 or 7 are self-centralizing in Az, it follows that
nilpotent subgroups of 347 which are divisible by 5 or 7 can have orders at
most 15 or 21, respectively. As Sylow 3-subgroups of 3A7 have order 27 < 36,
then any nilpotent subgroup of 3A4; of class < 2 and order > 36 must be
contained in a centralizer of an involution. As centralizers of involutions in
A7 have order 24 and are not nilpotent, the claim follows. O

THEOREM 5. B-injectors in 6Ag are the groups Z.T5, where Z is the center
and T3 is a Sylow 3-subgroup of order 54.

Proof. As element of order 5 in Ag are self-centralizing, it follows that
nilpotent subgroups in 6A4g, whose order is divisible by 5 can have at most
order 30 < 54. As centralizers of involutions in Ag have order 8. It follows
that nilpotent subgroups of whose Sylow 2-subgroups are not contained in
the center of 64 can have order at most 48 < 54. So, the claim follows.

O

THEOREM 6. B-injectors in 6A7 are groups of order 72 corresponding to
subgroups Z3 x Zz in Young subgroups Ay x Az < A7.

Proof. Similar as above. 0
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