
The derivative and moment of the
generalized Riesz–Nágy–Takács function

In-Soo Baek

Abstract We give the characterization of the differentiability and nondifferentiability

points of a generalization of the Riesz–Nágy–Takács (RNT) singular function, namely,

the generalized RNT (GRNT) singular function. A particular characterization general-

izes recent multifractal andmetric-number-theoretical results associated with the RNT

singular function. Furthermore, we compute the moments of the GRNT singular func-

tion.

1. Introduction

Singular functions have been investigated by many authors (see [9], [13], [15],

[10]). Recently, the characterization of the differentiability and nondifferentiabil-

ity points of the Riesz–Nágy–Takács (RNT) singular function was studied (see

[15]), and their dimensions were computed (see [3]). Their characterization and

dimensions can be found if we use the distribution sets which give the informa-

tion of the cylindrical local dimension sets for a self-similar set [0,1] the attractor

of an iteration function system (IFS), which has two similarity transformations.

In this article, we consider the generalized Riesz–Nágy–Takács (GRNT) singular

function, which is a generalized form of the RNT singular function. The char-

acterization of the differentiability and nondifferentiability points of the GRNT

singular function and their dimensions also can be found if we use the param-

eter distribution sets (see [4], [5]) which give the information of the cylindrical

local dimension sets for a self-similar set [0,1] the attractor of an IFS which has

many similarity transformations. Furthermore, using the recurrence relation, we

compute the moments of the GRNT singular function.

2. Preliminaries

For the probability vectors (a1, . . . , aN ) ∈ (0,1)N and p = (p1, . . . , pN ) ∈ (0,1)N

where N ≥ 2 is a positive integer,

[0,1] =
N⋃

k=1

Sk

(
[0,1]

)
,
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where Sk(x) = akx+
∑k−1

i=1 ai, and γp is the unique probability measure on [0,1]

such that

γp =

N∑
i=1

piγp ◦ S−1
i .

We define

f(x) = γp
(
[0, x]

)
,

where γp is the self-similar measure on the self-similar set [0,1]. We call the

function f(x) the GRNT function.

In this paper, to avoid the degenerate case, we also assume that p= (p1, . . . ,

pN ) �= (a1, . . . , aN ) (which happens if and only if log pk

logak
is not the same for all

k = 1, . . . ,N ). Let N and R be the set of positive integers and the set of real

numbers, respectively. The attractor K in the 1-dimensional Euclidean space R
1

of the IFS (S1, . . . , SN ) of contractions where N ≥ 2 makes each point q ∈K have

an infinite sequence ω = (m1,m2, . . . ) ∈Σ= {1, . . . ,N}N where

{q}=
∞⋂

n=1

Kω|n

for Kω|n =Km1,...,mn = Sm1 ◦ · · · ◦Smn(K) (see [12]). In this case, we sometimes

write π(ω) for such q using the natural projection π : Σ→K and write cn(q) for

such Kω|n and call it a fundamental interval. We note that, in our case, K is the

unit interval [0,1], which is the self-similar set satisfying the open set condition.

We also note that the points in the unit interval which have two different

infinite sequences ω = (m1,m2, . . . ), ω
′ = (m′

1,m
′
2, . . . ) ∈ Σ = {1, . . . ,N}N satis-

fying π(ω) = π(ω′) are only countable. Except for such countable points, each

point in the unit interval has a unique infinite sequence ω = (m1,m2, . . . ) ∈Σ=

{1, . . . ,N}N. We recall A({xn(ω)}) (see [8], [4]) of the accumulation points in

the (N − 1)-simplex of probability vectors in R
N of the vector-valued sequence

{xn(ω)} =

{(u(n)
1 , . . . , u

(n)
N )} of the probability vectors, where u

(n)
k for 1 ≤ k ≤ N in the

probability vector (u
(n)
1 , . . . , u

(n)
N ) for each n ∈N is defined by

u
(n)
k =

|{1≤ l≤ n :ml = k}|
n

.

LEMMA 2.1

Let p= (p1, . . . , pN ) ∈ (0,1)N with
∑N

k=1 pk = 1, consider a self-similar measure

γp on K, and let r= (r1, . . . , rN ) ∈ [0,1]N with
∑N

k=1 rk = 1 and

g(r,p) =

∑N
k=1 rk log pk∑N
k=1 rk logak

.

Then we have the following.

(1) The set {r : g(r,p) = α} is a hyperplane of the (N −1)-simplex or empty.
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(2) There are distinct integers 1≤ i, j ≤N such that

αmin ≡ min
1≤k≤N

logpk
logak

=
log pi
logai

≤ g(r,p)≤ log pj
logaj

= max
1≤k≤N

log pk
logak

≡ αmax.

Proof

Part (1) follows from the fact that {r : g(r,p) = α} is the intersection of two

hyperplanes of RN . Part (2) follows from the fact that the two hyperplanes are

not parallel because of our assumption that (p1, . . . , pN ) �= (a1, . . . , aN ). �

REMARK 2.2

From now on, without specific mention, we fix distinct i, j respectively determin-

ing the parameter axes (see [4]) satisfying

log pi
logai

= min
1≤k≤N

logpk
logak

< max
1≤k≤N

log pk
logak

=
log pj
logaj

.

Furthermore, we define g(r,p) for r= (r1, . . . , rN ) ∈ [0,1]N and p= (p1, . . . , pN ) ∈
(0,1)N as in the above lemma.

DEFINITION 2.3

For y,z such that g(y,p) = g(z,p) where z = (z1, . . . , zN ) with zj = 1− zi and

zk = 0 if k �= i, j, we define the natural projection t(y) of y into the i-axis to be

zi (see [4]). We also define the parameter distribution sets (see [4]) with respect

to the parameter axes

F (t)≡
{
ω : min

y∈A({xn(ω)})
t(y) = t

}

and

F (t)≡
{
ω : max

y∈A({xn(ω)})
t(y) = t

}
.

We also write F (t)≡ F (t)∩ F (t) henceforth.

DEFINITION 2.4

Let t0 be the real number satisfying

t0 log pi + (1− t0) log pj
t0 logai + (1− t0) logaj

= g(r0,p)

for r0 = (a1, . . . , aN ) with
∑N

k=1 ak = 1. That is, t0 is the natural projection t(r0)

of r0 into the i-axis satisfying the above condition. Let t1 be the real number

satisfying

t1 log pi + (1− t1) log pj
t1 logai + (1− t1) logaj

= 1.

REMARK 2.5

We note that there is q satisfying β′(q) = −1, where
∑N

k=1 p
q
ka

β(q)
k = 1. Then
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r1 = (pq1a
β(q)
1 , . . . , pqNa

β(q)
N ) satisfies g(r1,p) = 1 (see [4, Example 2]). That is, t1

is the natural projection t(r1) of r1 into the i-axis satisfying the above condition.

We will use t0 and t1 as above henceforth in this article.

3. The differentiability points and the nondifferentiability points

Let ω ∈ Σ = {1, . . . ,N}N be given. Then A({xn(ω)}), which is a subset of the

(N − 1)-simplex, is determined. Then t(A({xn(ω)})) is a nonempty subinterval

of the unit interval since t is a continuous map and A({xn(ω)}) is a continuum

(see [4], [14]).

THEOREM 3.1

If (a1, . . . , aN ) �= (p1, . . . , pN ), then log pi

logai
< 1<

log pj

logaj
.

Proof

We note that log pi

logai
= min1≤k≤N

log pk

logak
≤ max1≤k≤N

log pk

logak
=

log pj

logaj
for some 1 ≤

i, j ≤N . If (a1, . . . , aN ) �= (p1, . . . , pN ), then there are ak �= pk for some 1≤ k ≤N ,

say, ak > pk. Since (a1, . . . , aN ) and (p1, . . . , pN ) are probability vectors, there

are also al < pl for some 1≤ l( �= k)≤N . Therefore, log pi

logai
≤ log pk

logak
< 1< log pl

logal
≤

log pj

logaj
. �

THEOREM 3.2

If pk �= ak for all k = 1, . . . ,N , then we have{
x ∈ (0,1] : 0< f ′(x)<∞

}
= φ.

Proof

We note that

0≤ lim
n→∞

γp(cn(x))

|cn(x)|
= f ′(x)≤∞,

where γp is a self-similar probability measure on [0,1] if f ′(x) ∈ [0,∞] exists.

Since

{
x ∈ (0,1] : 0< f ′(x)<∞

}
⊂

{
x ∈ (0,1] : 0< lim

n→∞

γp(cn(x))

|cn(x)|
<∞

}
,

we only need to show that
{
x ∈ (0,1] : 0< lim

n→∞

γp(cn(x))

|cn(x)|
<∞

}
= φ.

Noting that 0<mink ak ≤ |cn+1(x)|
|cn(x)| ≤ 1, we see that if there is an x ∈ (0,1] such

that 0< limn→∞
γp(cn(x))
|cn(x)| = l <∞, then

lim
n→∞

∣∣∣∣γp(cn+1(x))

γp(cn(x))
− l|cn+1(x)|

l|cn(x)|

∣∣∣∣ = 0.
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However, ∣∣∣∣γp(cn+1(x))

γp(cn(x))
− l|cn+1(x)|

l|cn(x)|

∣∣∣∣ = |pk − ak| �= 0,

since pk �= ak for all k = 1, . . . ,N . �

PROPOSITION 3.1 ([4])

For t ∈ [0,1] satisfying
t log pi+(1−t) logpj

t logai+(1−t) logaj
= α, we have the following. For

E
(p)

α =
{
x ∈ [0,1] : limsup

n→∞

logγp(cn(x))

log |cn(x)|
= α

}
,

E(p)
α =

{
x ∈ [0,1] : lim inf

n→∞
logγp(cn(x))

log |cn(x)|
= α

}
,

(1)

E
(p)

α = π
(
F (t)

)
,

(2)

E(p)
α = π

(
F (t)

)
.

Proof

It follows from [4, Theorems 3.4, 3.5] with s= 1. �

REMARK 3.2

From now on, we only consider x= π(ω), which is not an endpoint of the funda-

mental interval for simplicity. We also note that the endpoints of the fundamental

intervals are countable.

THEOREM 3.3

We have the following.

(1) If t(A({xn(ω)}))⊂ [0, t1), then f ′(x) = 0 when f ′(x) exists for x= π(ω).

(2) If t(A({xn(ω)})) ⊂ (t1,1], then f ′(x) = ∞ when f ′(x) exists for x =

π(ω).

(3) If t1 ∈ [t(A({xn(ω)}))]o, then f ′(x) does not exist for x= π(ω).

Proof

For (1), if t(A({xn(ω)}))⊂ [0, t1), then

lim inf
n→∞

logγp(cn(x))

log |cn(x)|
> 1

for x = π(ω), where ω ∈
⋃

0≤t<t1
F (t) from Proposition 3.1(2). Therefore, for

some ε > 0, lim infn→∞
logγp(cn(x))
log |cn(x)| ≥ 1 + ε, which gives

0≤ limsup
n→∞

γp(cn(x))

|cn(x)|
≤ limsup

n→∞

∣∣cn(x)∣∣ε = 0.
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Using Proposition 3.1(1) instead of Proposition 3.1(2), we have (2) from argu-

ments similar to those given above.

For (3), if t1 ∈ [t(A({xn(ω)}))]o, then

lim inf
n→∞

logγp(cn(x))

log |cn(x)|
< 1< limsup

n→∞

logγp(cn(x))

log |cn(x)|
for x= π(ω), where

ω ∈
[ ⋃
t1<t≤1

F (t)
]
∩

[ ⋃
0≤t<t1

F (t)
]

from Propositions 3.1(1) and 3.1(2). This gives

0 = lim inf
n→∞

γp(cn(x))

|cn(x)|
< limsup

n→∞

γp(cn(x))

|cn(x)|
=∞

from arguments similar to those given above. �

THEOREM 3.4

We have the following.

(1) If f ′(x) = 0 for x= π(ω), then t(A({xn(ω)}))⊂ [0, t1].

(2) If f ′(x) =∞ for x= π(ω), then t(A({xn(ω)}))⊂ [t1,1].

(3) If 0< f ′(x)<∞ for x= π(ω), then t(A({xn(ω)})) = {t1}.

Proof

For (1), assume that t(A({xn(ω)})) �⊂ [0, t1]. Noting that t(A({xn(ω)})) is

connected, we have t(A({xn(ω)})) ⊂ (t1,1] or t1 ∈ [t(A({xn(ω)}))]o or

t(A({xn(ω)})) = [t1, t2] where t1 < t2 ≤ 1. If t(A({xn(ω)})) ⊂ (t1,1] or t1 ∈
[t(A({xn(ω)}))]o, from Theorems 3.3(2) and 3.3(3), we have f ′(x) =∞ for x=

π(ω) or f ′(x) does not exist for x= π(ω). For t(A({xn(ω)})) = [t1, t2], we have

limsupn→∞
γp(cn(x))
|cn(x)| = ∞ from the fact that lim infn→∞

logγp(cn(x))
log |cn(x)| < 1. Simi-

larly, (2) follows.

For (3), assume that t(A({xn(ω)})) �= {t1}. Then lim infn→∞
logγp(cn(x))
log |cn(x)| < 1

or limsupn→∞
logγp(cn(x))
log |cn(x)| > 1. This gives

limsup
n→∞

γp(cn(x))

|cn(x)|
=∞

or

lim inf
n→∞

γp(cn(x))

|cn(x)|
= 0. �

From now on, M denotes the nondifferentiability points, D0 denotes the null-

differentiability points, D∞ denotes the ∞-differentiability points, and D denotes

the set {x ∈ [0,1] : 0< f ′(x)<∞}.
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COROLLARY 3.3

We have

π
([ ⋃

t1<t≤1

F (t)
]
∩

[ ⋃
0≤t<t1

F (t)
])

⊂M,

⋃
0≤t<t1

π
(
F (t)

)
⊂D0 ∪M,

⋃
t1<t≤1

π
(
F (t)

)
⊂D∞ ∪M ;

furthermore,

D0 ⊂
⋃

0≤t≤t1

π
(
F (t)

)
,

D∞ ⊂
⋃

t1≤t≤1

π
(
F (t)

)
,

and

D ⊂ π
(
F (t1)

)
.

Proof

It follows from Theorems 3.3 and 3.4. �

From now on, dim(E) denotes the Hausdorff dimension of E and Dim(E) denotes

the packing dimension of E [12]. We note that dim(E)≤ Dim(E) for every set

E [12].

COROLLARY 3.4

The GRNT function f which is not the identity function is a singular function,

and 0< t0 < t1 < 1 for t0, t1 in Definition 2.4.

Proof

The GRNT function f is an increasing function, so its derivative is zero or finite

almost everywhere (see [16]). We note that D ⊂ π(F (t1)) from Corollary 3.3 and

dim(D) ≤ dim(π(F (t1))) = g(r1,r1) (see the proofs of [4, Theorems 4.2, 4.3]).

Further, αq + β(q) = g(r1,r1) < g(r0,r0) = 1 where α = 1 and β′(q) = −1 from

[12, (11.37)]. Hence, the GRNT function has null derivative almost everywhere.

Since β is strictly convex (see [12]) where
∑N

k=1 p
q
ka

β(q)
k = 1,

t0 logpi + (1− t0) log pj
t0 logai + (1− t0) logaj

= g(r0,p) =−β′(0)<
log pj
logaj

=− lim
q→−∞

β′(q).

This gives t0 > 0.

We note that t0 �= t1 from Gibbs’s inequality since (p1, . . . , pN ) �= (a1, . . . , aN ).

Assuming t1 = 1, we have log pi

logai
= 1, which is a contradiction by Theorem 3.1.

Therefore, t1 < 1.
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Assume that t1 < t0. Noting that Γ⊂ F (t0), where π(Γ) is the set of the nor-

mal points (see [8], [7], [11], [14]), that is, Γ = {ω :A({xn(ω)}) = {(a1, . . . , aN )}},
we have (D0 ∪D)∩π(F (t0)) = φ since D0 ∪D ⊂

⋃
0≤t≤t1

π(F (t)) from Corollary

3.3. Then a contradiction arises from the fact that D0∪D is of full Lebesgue mea-

sure and π(Γ) is also of full Lebesgue measure. This and t0 �= t1 give t0 < t1. �

THEOREM 3.5

For the vector r1 in Remark 2.5, we have

0< g(r1,r1)≤ dim(M)≤Dim(M) = 1.

Furthermore,

dim(D∞)≤Dim(D∞)≤ g(r1,r1)< 1.

Proof

We note that 0< t0 < t1 < 1. We also note that

g(r,r) =

∑N
k=1 rk log rk∑N
k=1 rk logak

> 0

if rk > 0 for all k = 1, . . . ,N with
∑N

k=1 rk = 1. This gives g(r1,r1)> 0. Moreover,

g(r1,r1) < 1 from the proof of Corollary 3.4. Noting that π(F (0) ∩ F (1)) ⊂M

from Corollary 3.3 and{
ω :A

({
xn(ω)

})
=C

}
⊂ F (0)∩ F (1),

where C is the (N −1)-simplex, we have Dim(M) = 1 from [8, Theorem 2]. Then

g(r1,r1)≤ dim(M)

follows from π([
⋃

t1<t≤1F (t)]∩ [
⋃

0≤t<t1
F (t)])⊂M and

sup
t1<t2≤1,0≤t3<t1

dim
(
π
(
F (t2)∩ F (t3)

))
= g(r1,r1),

which follows from arguments similar to those of the proofs of [4, Theorems 4.2

and 4.3].

From [5, Corollary 3.5(1)], we see that

Dim
( ⋃
t1≤t≤1

π
(
F (t)

))
= g

(
r(t1),r(t1)

)
= g(r1,r1).

Then Dim(D∞)≤ g(r1,r1) follows from D∞ ⊂
⋃

t1≤t≤1 π(F (t)) by Corollary 3.3.

�

CONJECTURE 3.5

For the vector r1 in Remark 2.5, we positively conjecture

0< dim(D∞) = Dim(D∞) = g(r1,r1)< 1

for the integer N ≥ 3 as we have the same result (see [6]) for N = 2.
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4. Moments of the GRNT function

We have the recurrence relation of the GRNT function by using the arguments

of [1] and [2].

THEOREM 4.1

The GRNT function f satisfies the N − 1 equations

f
( l−1∑
k=1

ak + alx
)
=

l−1∑
k=1

pk + plf(x),

where l= 1, . . . ,N .

Proof

It follows from the definition of the GRNT function f . �

COROLLARY 4.2

For the continuous function G and the GRNT function f , we have

∫ ∑k
j=1 aj

∑k−1
j=1 aj

G(x)df(x) = pk

∫ 1

0

G
(k−1∑
j=1

aj + akx
)
df(x),

where k = 1, . . . ,N .

Proof

It follows from Theorem 4.1. �

COROLLARY 4.3

For the nth moment cn =
∫ 1

0
xn df(x), we have

cn =

∑N
k=2 pk(

∑n−1
j=0

(
n
j

)
(
∑k−1

i=1 ai)
n−jajkcj)

1− p1an1 −
∑N

k=1 pka
n
k

,

where n= 0,1, . . . .

Proof

It follows from Theorem 4.1. See also [1]. �

COROLLARY 4.4

For the fundamental interval of the form [γ, γ + ak1
1 · · ·akN

N ], we have

∫ γ+a
k1
1 ···akN

N

γ

xi df(x) = pk1
1 · · ·pkN

N

i∑
j=0

(
i

j

)
[ak1

1 · · ·akN

N ]jγi−jcj .
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Proof

It follows from the formula∫ γ+δ

γ

G(x)df(x) = p(δ)

∫ 1

0

G(γ + δx)df(x)

with G(x) = xi and the fundamental interval of the form [γ, γ + δ] with p(δ) =

f(γ + δ)− f(γ). �
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Math. Anal. Appl. 348 (2008), 165–168. MR 2449335.

DOI 10.1016/j.jmaa.2008.07.014.
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