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Abstract Wesuggest an algorithm computing, in some cases, an explicit generating set

for the Néron–Severi lattice of a Delsarte surface. In a few special cases, including those

of Fermat surfaces and cyclic Delsarte surfaces that were previously conjectured in the

literature, we show that certain “obvious” divisors do generate the lattice. The proof is

based on the computation of theAlexandermodule related to a certain abelian covering.

1. Introduction

Throughout the article, all algebraic varieties are over C.

1.1. Statement of the problem
A Delsarte surface is a surface ΦA ⊂ P3 given by a four-term equation of the

form (see [3], [8])

(1.1)

3∑
i=0

3∏
j=0

z
aij

j = 0.

The restrictions to the matrix A := [aij ] are listed in Section 2.2 as items (1)–(4).

We are interested in certain birational invariants of Delsarte surfaces. For this

reason, we silently replace ΦA with its resolution of singularities. The particular

choice of the resolution is not important; for example, one can take the minimal

one.

For an alternative description of Delsarte surfaces, introduce the multiplica-

tive abelian group G∼= Z3 with a distinguished generating set t0, t1, t2, t3 subject

to the only relation t0t1t2t3 = 1. Then, each epimorphism α : G � G to a finite

group G gives rise to a Delsarte surface Φ[α] (see Sections 2.2 and 2.2). By an

abuse of language, an epimorphism α as above is referred to as a finite quotient

of G.

DEFINITION 1.2

In the examples, we will consider the following four special classes of Delsarte

surfaces, corresponding to special finite quotients α : G � G:
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(1) Fermat surfaces Φ[m], where an integer m ∈N+ is regarded as the quo-

tient projection m : G � G/mG;

(2) unramified (at ∞) Delsarte surfaces Φ[α], that is, such that α(t0) = 1;

(3) cyclic Delsarte surfaces Φ[α], that is, such that G is a cyclic group;

(4) diagonal Delsarte surfaces Φ[m], where a vector m := (m1,m2,m3) ∈N3
+

is regarded as the quotient projection m : G � G/(tm1
1 = tm2

2 = tm3
3 = 1).

(To avoid the common confusion, we use N+ for the set of positive integers.) Note

that, in items (2) and (4), the definition depends on the order of the indices,

and we relate a surface Φ[α] to the corresponding class whenever it satisfies the

condition after a possible permutation of the indices (0,1,2,3).

By Poincaré duality, the Néron–Severi lattice NS(Φ[α]) can be regarded as a

subgroup of the homology group H2(Φ[α])/Tors. Our primary interest is the

extent to which NS(Φ[α]) is generated by the components of a certain “obvious”

divisor V [α]⊂Φ[α] (see Section 2.3). (In the case of Fermat surfaces, this divisor

V is essentially constituted by the lines contained in the surface.) To this end, we

consider the homomorphism ι∗ : H2(V [α])→NS(Φ[α]) induced by the inclusion

ι : V [α] ↪→Φ[α] and introduce the groups

(1.3) S[α] := Im ι∗, K[α] := Ker ι∗, T[α] := Tors
(
NS

(
Φ[α]

)
/S[α]

)
.

We compute the two latter groups, which are birational invariants of the surface.

The motivation for our interest is Shioda’s [8] algorithm computing the

Picard rank ρ(Φ[α]). In some cases (most notably, if |G| is prime to 6; cf. Corol-

lary 1.8 below), this computation implies that NS(Φ[α])⊗Q= S[α]⊗Q, that is,

NS(Φ[α]) is generated by the components of V [α] over Q. Hence, a natural ques-

tion is if this generation property still holds over the integers, that is, if T[α] = 0.

We answer this question in the affirmative for a few special classes of surfaces,

while showing that, in general, the answer is in the negative.

1.2. Principal results
We introduce the following subgroups of G:

• Gij is generated by ti and tj , i, j = 0,1,2,3;

• Gi is generated by titj and titk, i= 1,2,3 and {i, j, k}= {1,2,3};
• G= :=

∑
iGi is generated by t1t2, t1t3, and t2t3.

Given a finite quotient α : G � G, denote G∗ :=G/α(G∗) (for a subscript ∗ of the

form ij, i, or =), and let δ[α] := |G=| − 1 ∈ {0,1}. (In more symmetric terms, Gi

depends only on the partition {0, i}∪{j, k} of the index set, and G= is generated

by all products titj , i, j = 0,1,2,3; one has [G :G=] = 2.)

Recall that the length �(A) of a finitely generated abelian group A is the

minimal number of generators of A, and the exponent expA of a finite abelian

group A is the minimal positive integer m such that mA= 0. For a finite quo-

tient α : G � G, the exponent expG is the minimal positive integer m such that

mG⊂Kerα, and we can also define the height htα := expG/n, where n is the
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maximal integer such that Kerα ⊂ nG. Note that (expG)3/|G| is an integer

dividing (htα)2.

The principal results of the article (combined with those of [2]) are stated

below, with references to the proofs given in the statements.

THEOREM 1.4 (SEE [2] AND SECTION 3.1)

For any finite quotient α : G �G, one has

π1

(
Φ[α]

)
=H1

(
Φ[α]

)
=Kerα

/∏
(Gij ∩Kerα),

the product running over all pairs 0 ≤ i < j ≤ 3. This group is trivial for any

of the four special classes of Delsarte surfaces introduced in Definition 1.2. In

general, the group π1(Φ[α]) is cyclic and its order |π1(Φ[α])| divides htα.

THEOREM 1.5 (SEE SECTION 4.2)

For any finite quotient α : G �G, one has

rkK[α] =
∑

0≤i<j≤3

|Gij |+
∑

1≤i≤3

|Gi| − 3− δ[α].

Besides, one has �(T[α])≤ 6 + δ[α] and expT[α] divides (expG)3/|G|.

ADDENDUM 1.6 (SEE SECTION 4.4)

As a lattice, S[α] =H2(V [α])/ker, where ker is the kernel kerH2(V [α]) of the

intersection index form.

Note that Theorem 1.5 is merely an estimate on the size of the torsion T[α], most

interesting being the fact that the length of this group is universally bounded.

A better estimate is found in Lemma 4.8, and a precise, although not very effi-

cient, algorithm for computing this group is given by (3.8). A few examples,

showing the sharpness of most estimates, are considered in Section 6. It appears

that there should be better bounds taking into account the group π1(Φ[α]) (see

Remark 6.2).

Note also that the rank formula in Theorem 1.5 states, essentially, that the

rank rkK[α] is the “minimal possible.” More precisely, G acts on Φ[α] and V [α]

(see Section 2.2), and the space H2(Φ[α];C) splits into multi-eigenspaces, which

are all of dimension at most 1 (see [7], [8]). Comparing the dimensions (or using

the explicit description of the kernel; see Section 4.2), one can see that each

eigenspace present in H2(V [α];C) is mapped epimorphically onto the correspond-

ing eigenspace in H2(Φ[α];C).

THEOREM 1.7

One has T[α] = 0 in each of the following three cases:

(1) Fermat surfaces Φ[α], α=m ∈N+ (see [2] or Section 4.1);

(2) Delsarte surfaces unramified at ∞ (see [2]);

(3) cyclic Delsarte surfaces (see Section 5).

Besides, one has the following stronger bound:
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(4) if Φ[α] is diagonal, α = (m1,m2,m3) ∈ N3
+, then �(T[α]) ≤ δ[α]

and the order |T[α]| divides lcm1≤i<j≤3(gcd(mi,mj))/gcd(m1,m2,m3) (see

Section 4.3).

For Fermat surfaces, the primitivity statement was suggested in [7] and [1], and

it was verified numerically in [5] for all values of m prime to 6 in the range

5 ≤m ≤ 100. For cyclic Delsarte surfaces (Theorem 1.7(3)), the statement was

conjectured in [6], where it was verified for all cyclic quotients α : G � G with

|G| ≤ 50.

COROLLARY 1.8 (SEE SECTION 4.5)

Let α : G � G be a finite quotient with Φ[α] in one of the four special classes

introduced in Definition 1.2, and assume that |G| is prime to 6. Then the group

PicΦ[α] = NS(Φ[α]) is generated by the components of V [α]. In other words,

NS(Φ[α]) =H2(V [α])/ker as a lattice (see Addendum 1.6).

It is worth emphasizing that, since both the action of G (obvious) and the inter-

section matrix of V [α] (see, e.g., [5]) are known, Corollary 1.8 gives us a complete

description of the Néron–Severi group NS(Φ[α]), including the lattice structure

and the action of G ⊂ AutΦ[α]. In general, if NS(Φ[α]) ⊗ Q = S[α] ⊗ Q but

T[α] �= 0, then the lattice structure can be recovered using the algorithm out-

lined in Section 3.4.

1.3. Contents of the article
In Section 2, we introduce Delsarte surfaces Φ and the “obvious” divisors V ⊂
Φ and discuss their description in terms of ramified coverings of the plane. In

Section 3, most principal results of the article are reduced to the problem of

analyzing the integral torsion of a certain Alexander module (see (3.8) and (3.9)).

Most results are proved in Section 4; an exception is the case of cyclic Delsarte

surfaces, which is treated separately (and slightly differently) in Section 5. Finally,

in Section 6, we discuss a few numeric examples (obtained from experiments with

small random matrices), illustrating the sharpness of most bounds on the one

hand and the complexity of the general problem on the other.

2. Preliminaries

2.1. Conventions
The notation TorsA stands for the Z-torsion of an abelian group A. We emphasize

that Tors always refers to the integral torsion, even if A is a module over a larger

ring. This convention applies also to the rank rkA and length �(A): we regard A

as an abelian group. We abbreviate A/Tors :=A/TorsA.

We denote by ψm(t) the cyclotomic polynomial of order m, that is, the

irreducible (over Q) factor of tm − 1 that does not divide tn − 1 for 1≤ n <m.

We also make use of the polynomials ϕ̃m(t) := (tm − 1)/(t− 1), m ∈N+.
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Unless stated otherwise, all homology and cohomology groups have coeffi-

cients in Z. Since all spaces involved have homotopy type of CW -complexes,

the choice of a theory is not important; for example, one can use singular (co-)

homology.

Given a closed oriented 4-manifold X , we identify H2(X) =H2(X) by means

of Poincaré duality. In particular, if X is a smooth compact complex analytic

surface, we regard the Néron–Severi lattice NS(X) as a sublattice of H2(X)/Tors

(with the usual intersection index pairing), so that a divisor D ⊂X is represented

by its (topological) fundamental class [D] ∈H2(X)/Tors.

Consider a smooth compact analytic surface X and a divisor D ⊂X . In what

follows, we are only interested in the (reduced) irreducible components of D and

its support; hence, without loss of generality, we can assume D effective and

reduced, using the same notation for the support of D. Given X and a D ⊂X as

above, we denote by S〈D〉 ⊂ NS(X) the subgroup generated by the irreducible

components of D. In other words,

S〈D〉= Im
[
ι∗ : H2(D)→H2(X)/Tors

]
,

where ι : D ↪→X is the inclusion. We will also consider the groups

T〈D〉 := Tors
(
NS(X)/S〈D〉

)
, K〈D〉 := Ker

[
ι∗ : H2(D)→H2(X)/Tors

]
,

which are birational invariants of the pair (X,D). More precisely, if σ : X ′ →X

is a blowdown map and D′ := σ∗D, then σ∗ and σ∗ induce isomorphisms

(2.1) NS(X ′)/S〈D′〉=NS(X)/S〈D〉, T〈D′〉=T〈D〉, K〈D′〉=K〈D〉.

2.2. Delsarte surfaces (see [8])
Consider the surface ΦA given by (1.1), where the exponent matrix A := [aij ] is

assumed to satisfy the following conditions:

(1) each entry aij , 0≤ i, j ≤ 3, is a nonnegative integer;

(2) each column of A has at least one zero;

(3) (1,1,1,1)t is an eigenvector of A, that is,
∑3

j=0 aij = λ= const(i);

(4) A is nondegenerate, that is, detA �= 0.

Condition (2) asserts that the surface does not contain a coordinate plane, and

(3) makes (1.1) homogeneous, the degree being the eigenvalue λ.

Following [8], introduce the cofactor matrix A∗ := (detA)A−1, and let

d := gcd(a∗ij), m := |detA|/d, B = [bij ] :=mA−1 =±d−1A∗.

Denoting by Φ[m] the Fermat surface {zm0 + · · ·+ zm3 = 0}, we have maps

Φ[m]
πB−→ΦA

πA−→Φ := Φ[1]

given by

πB : (zi) �→
( 3∏
j=0

z
bij
j

)
, πA : (zi) �→

( 3∏
j=0

z
aij

j

)
.
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Both maps are ramified coverings; πA and πB ◦πA : (zi) �→ (zmi ) are ramified over

the union R := R0 + R1 + R2 + R3 ⊂ Φ of the traces of the coordinate planes,

Ri := Φ∩ {zi = 0}.
The fundamental group π1(Φ\R) is abelian, and by Poincaré–Lefschetz dual-

ity, there are canonical isomorphisms

π1(Φ \R) =H2(R)/H2(Φ) =G,

where G is the abelian group introduced in Section 1.1 and a generator ti ∈
G evaluates to the Kronecker symbol δij on the fundamental class [Rj ] (with

its canonical complex orientation). Thus, away from the ramification locus R,

the unramified topological covering πA is uniquely determined by a finite index

subgroup of G, namely, the image of π1(ΦA \π−1
A (R)), or, equivalently, by a finite

quotient α : G � G.

Due to condition (3) above, A and B can be regarded as endomorphisms of

G, inducing endomorphisms Am,Bm : G/mG→G/mG. Obviously, one has

mG⊂Kerα, Γ := Kerα/mG=KerBm = ImAm, ImBm =KerAm,

and ΦA is birationally isomorphic to Φ[m]/Γ, where a generator ti ∈G/mG acts

on Φ[m] by multiplying the ith coordinate by a fixed primitive mth root of unity.

Summarizing, we can disregard the original exponent matrix A and (1.1) and

adopt the following definition (cf. [6]).

DEFINITION 2.2

Given a finite quotient α : G � G, the Delsarte surface Φ[α] is defined as (any)

smooth analytic compactification of the (unramified) covering of the complement

Φ \R corresponding to α.

Since the invariants in which we are interested are of a birational nature (cf.

(2.1)), the particular choice of the compactification in Definition 2.2 is not impor-

tant. It is fairly obvious that any surface Φ[α] is a resolution of singularities of the

projective surface given by an appropriate equation (1.1); however, we do not use

this fact. For the covering Fermat surface Φ[m], we can merely take m= expG

or any multiple thereof, so that mG⊂Kerα.

2.3. The divisor V [α]

Fix a finite quotient α : G � G, and let π : Φ[α]→Φ be the covering projection.

Consider the lines Li := Φ ∩ {z0 + zi = 0}, i= 1,2,3, let L := L1 +L2 +L3, and

define the divisors

R∗[α] := π∗R∗, L∗[α] := π∗L∗, V [α] :=R[α] +L[α]

on Φ[α]. (Here, the subscript ∗ is either empty or an appropriate index in the

range 0, . . . ,3.) To avoid excessive nested parentheses, we introduce the shortcuts

(cf. (1.3))

S[α] := S
〈
V [α]

〉
, K[α] :=K

〈
V [α]

〉
, T[α] :=T

〈
V [α]

〉
,
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and let Φ◦[α] := Φ[α] \V [α]. We recall that the pullback of each Li, i= 1,2,3, in

the covering Fermat surface Φ[m] splits into m2 obvious straight lines, namely,

L1(ζ, η) : (r : ωζr : s : ωηs),

L2(ζ, η) : (r : s : ωζr : ωηs),

L3(ζ, η) : (r : s : ωηs : ωζr),

(2.3)

where (ζ, η) is a pair of mth roots of unity (parameterizing the m2 lines within

each of the three families), ω := exp(πi/m) is an mth root of −1, and (r : s) is

a point in P1 (cf. [5]). Thus, the components of V [α] are the images of the 3m2

straight lines contained in the covering Fermat surface Φ[m], the components

of the ramification locus of the covering Φ[α]→ Φ, and the exceptional divisors

arising from the resolution of singularities.

3. The topology of a Delsarte surface

In this section, we discuss a few simple topological properties of the Delsarte

surface Φ[α] and divisor V [α] defined by a finite quotient α : G � G. In particular,

we reduce most statements to the study of certain modules A[α] or B[α].

3.1. The fundamental group: proof of Theorem 1.4
The expression for the group π1(Φ[α]) in terms of α is found in [2], and the

statement that π1(Φ[α]) = 0 for Fermat surfaces and unramified or diagonal Del-

sarte surfaces is immediate. We postpone the case of cyclic Delsarte surfaces until

Section 5.2, where the necessary framework is introduced.

In general, we can assume that the kernel Kerα is generated by three vectors

vi := tmi1
1 tmi2

2 tmi3
3 , i= 1,2,3, so that the matrix [mij ] is upper triangular,

[mij ] =

⎡
⎣
m11 m12 m13

0 m22 m23

0 0 m33

⎤
⎦ .

Then G23 ∩Kerα contains v3 and v2, and G13 ∩Kerα contains v3 and a product

of the form vr1v
s
2, r �= 0. Hence, π1(Φ[α]) is a cyclic group (generated by t1) of

order at most r. On the other hand, from the expression in the statement, it

is clear that π1(Φ[α]) is a subquotient of the group nG/mG of exponent htα,

where m := expG and n is as in the definition of htα (see Section 1.2). �

3.2. The reduction
Our proof of Theorems 1.5 and 1.7 is based on the following homological reduction

of the problem.

THEOREM 3.1

Let D be a divisor in a smooth compact analytic surface X, and let K(X,D) :=

Ker[κ∗ : H1(X \D)→H1(X)] be the kernel of the homomorphism κ∗ induced by
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the inclusion. Then there are canonical isomorphisms

TorsK(X,D) = Hom
(
T〈D〉,Q/Z

)
, K(X,D)/Tors = Hom

(
K〈D〉,Z

)
.

Proof

The inclusion homomorphism κ∗ : H1(X \D)→H1(X) is Poincaré dual to the

homomorphism β in the following exact sequence of pair (X,D):

−→H2(X)
ι∗−→H2(D)−→H3(X,D)

β−→H3(X)−→ .

Hence, K(X,D) = Coker ι∗, and both statements are immediate (cf. [2]), using

the definition of the Ext groups in terms of projective resolutions and the canon-

ical isomorphism Ext(A,Z) = Hom(A,Q/Z) for any finite abelian group A. �

3.3. The modules A[α] and B[α]

The groups H1(Φ
◦[α]) = H1(Φ[α] \ V [α]) for Delsarte surfaces were computed

in [2], using the covering Φ◦[α]→ Φ◦ and the presentation of the fundamental

group π1(Φ
◦) given by the Zariski–van Kampen theorem. Let

Λ := Z[G] = Z[t±1
1 , t±1

2 , t±1
3 ] = Z[t0, t1, t2, t3]/(t0t1t2t3 − 1)

be the ring of Laurent polynomials. The deck translation action of the covering

makes H1(Φ
◦[0]) a Λ-module, which is computed by the complex 0 → A[0] →

Λ→ 0 of Λ-modules defined as follows: A[0] is the Λ-module generated by six

elements ai, cj , i, j = 1,2,3, subject to the relations

(t2t3 − 1)c1 = (t1t3 − 1)c2 = (t1t2 − 1)c3 = 0,(3.2)

(t3 − 1)c1 + (t3 − 1)a2 − (t2 − 1)a3 = 0,(3.3)

(t3 − 1)c2 + (t3 − 1)a1 − (t1 − 1)a3 = 0,(3.4)

(t1 − 1)c3 + (t1 − 1)a2 − (t2 − 1)a1 = 0,(3.5)

and the boundary ∂ : A[0]→ Λ is

(3.6) ∂ai = (ti − 1), ∂cj = 0, i, j = 1,2,3.

Here, ci is the cycle represented by any lift of a meridian about the line Li ⊂Φ,

i = 1,2,3, whereas ai is merely a chain (not a cycle) projecting to a meridian

about the component Ri ⊂Φ of the ramification locus, i= 1,2,3.

Now, given an epimorphism α : G � G, let Λ[α] := Z[G], and consider the

induced ring homomorphism Λ � Λ[α]. It makes Λ[α] a Λ-module, so that we

can define A[α] := A[0]⊗Λ Λ[α]. In other words, A[α] is obtained from A[0] by

adding to (3.2)–(3.5) the defining relations of G in the basis {t1, t2, t3}. Then,
the computation in [2] can be summarized in the form of an exact sequence

(3.7) 0−→H1

(
Φ◦[α]

)
−→A[α]

∂−→Λ[α]−→ Z−→ 0.

Since the group ring Λ[α] is free, it follows that TorsH1(Φ
◦[α]) = TorsA[α].
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Consider the divisor D := V [α] ⊂X := Φ[α]. The inclusion homomorphism

κ∗ in Theorem 3.1 factors through the free abelian group

H1

(
Φ[α] \R[α]

)
= π1

(
Φ[α] \R[α]

)
=Kerα∼= Z3;

hence, TorsKerκ∗ =TorsH1(Φ
◦[α]). Since H1(Φ[α]) is finite (see Theorem 1.4),

we have rkKerκ∗ = rkH1(Φ
◦[α]); that is, for Delsarte surfaces, in both state-

ments in the conclusion of Theorem 3.1 the group K(X,D) = Kerκ∗ can be

replaced with H1(Φ
◦[α]). Furthermore, repeating the argument in [2] (or merely

patching the lines L[α], thus sending each generator ci to 0), one can easily

see that the homology H0 = Z and H1 = Kerα of the space Φ[α] \ R[α] are

computed by the complex 0→ A[α]/B[α]→ Λ[α]→ 0, where B[α]⊂ A[α] is the

Λ[α]-submodule generated by c1, c2, c3. In other words, the inclusion Φ◦[α] ↪→
Φ[α] \R[α] induces a map of (3.7) to the exact sequence

0−→Kerα−→A[α]/B[α]
∂−→ Λ[α]−→ Z−→ 0;

by the 5-lemma, this map is an epimorphism. Comparing the two sequences and

summarizing, we can restate Theorem 3.1 as

Hom
(
T[α],Q/Z

)
=TorsH1

(
Φ◦[α]

)
=TorsA[α] = TorsB[α],(3.8)

rkK[α] = rkA[α]− |G|+ 1= rkB[α] + 3.(3.9)

3.4. Generators of the torsion
An explicit generating set for the primitive hull S̃[α] := (S[α]⊗ Q) ∩ NS(Φ[α])

can be described in terms of the discriminant form. We outline this description,

in the hope that it may be useful in the future.

The lattice S[α] has a vector of positive square (e.g., the hyperplane section

class); hence, the Hodge index theorem implies that S[α] is nondegenerate and

its dual group S∗ can be identified with a subgroup of S[α]⊗Q:

S∗ := Hom
(
S[α],Z

)
=
{
x ∈ S[α]⊗Q

∣∣ x · y ∈ Z for all y ∈ S[α]
}
.

This identification gives rise to an inclusion S[α] ⊂ S∗ and to the discriminant

group discrS[α] := S∗/S[α] (see [4]). The latter is a finite abelian group equipped

with a nondegenerate symmetric Q/Z-valued bilinear form, namely, the descent

of the Q-valued extension of the intersection index form from S[α] to S∗. Since

S̃[α] is also an integral lattice, there are natural inclusions

S[α]⊂ S̃[α]⊂ S̃∗ := Hom
(
S̃[α],Z

)
⊂ S∗;

hence, the extension S̃[α] ⊃ S[α] is uniquely determined by either of the sub-

groups

K := S̃[α]/S[α]⊂K⊥ := S̃∗/S[α]⊂ discrS[α].

Indeed, the subgroups K⊂K⊥ are the orthogonal complements of each other (in

particular, K is isotropic), and

S̃[α] =
{
x ∈ S[α]⊗Q

∣∣ x mod S[α] ∈K
}
.

For further details concerning discriminant forms and lattice extensions, see [4].
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Consider the Λ[α]-module B̃[α] generated by c1, c2, c3 subject to relations

(3.2). The geometric description found in [2] establishes a canonical, up to the

coordinate action of G, homomorphism B̃[α]→H2(V [α]) of Λ[α]-modules, which

restricts to an isomorphism B̃[α] =H2(L′[α]), where L′[α] is the proper transform

of L in Φ[α]. If α=m ∈ N+, then the reference point in Φ[m] can be chosen so

that (see (2.3) for the notation)

(3.10) c1 �→
[
L1(1, ω

−2)
]∗
, c2 �→

[
L2(1, ω

−2)
]∗
, c3 �→

[
L3(1,1)

]∗
.

In general, we use, in addition, the natural identifications B̃[α] = B̃[m]⊗Λ Λ[α]

and H2(L′[α]) =H2(L[m])⊗Λ Λ[α].

Consider the modules

K′ := Ker
[
B̃[α]→B[α]

]
⊂K :=Ker

[
B̃[α]→B[α]/Tors

]
.

It is immediate from the construction (with (3.8) taken into account) that the

group K/K′ is canonically isomorphic to S∗/S̃∗. The homomorphism K →
discrS[α] is easily computed using (3.10) and the intersection matrix of the

components of V [α] (see, e.g., [5]), and the subgroup K⊥ ⊂ discrS[α] defining

the extension S̃[α]⊃ S[α] as described above is found as the image of K′.

4. Proof of Theorem 1.5

Throughout this section, we consider a finite quotient α : G � G and fix the

notation m := expG.

4.1. Alternative proof of Theorem 1.7(1)
This proof repeats almost literally the one found in [2], except that we analyze

the module B[α] instead of A[α]. This analysis (slightly more thorough than in

[2]) is used in the sequel.

Assume that α=m : G � G=G/mG, and consider the filtration

0 = B0 ⊂B1 ⊂B2 ⊂B3 ⊂B4 := B[α],

where

• B3 is generated by c′1 := (t3 − 1)c1, c
′
2 := (t3 − 1)c2, c

′
3 := (t1 − 1)c3,

• B2 is generated by c′′1 := (t1 − 1)c′1, c
′′
2 := (t2 − 1)c′2, c

′′
3 := (t3 − 1)c′3, and

• B1 is generated by the element u := (t2 − t−1
3 )c′′2 .

It is immediate that (see (3.2))

(4.1) Z[G23]c1 ⊕Z[G13]c2 ⊕Z[G12]c3 =B4/B3.

The other relations do not affect this quotient. Furthermore, as obviously

ϕ̃m(t3)c
′
1 = ϕ̃m(t3)c

′
2 = ϕ̃m(t1)c

′
3 = 0, we have an epimorphism

(4.2)
(
Z[G01]/ϕ̃m

)
c′1 ⊕

(
Z[G02]/ϕ̃m

)
c′2 ⊕

(
Z[G03]/ϕ̃m

)
c′3 −� B3/B2.

In B2, we have a relation

c′′1 = c′′2 + c′′3 ;
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it is the linear combination (t1−1)(3.3)−(t2−1)(3.4)−(t3−1)(3.5). Multiplying

this by (t2 − t−1
3 ) and using (3.2), we have

u := (t2 − t−1
3 )c′′2 =−(t2 − t−1

3 )c′′3 .

Hence, using (3.2) again, we obtain epimorphisms
(
Z[G3]/ϕ̃m

)
c′′2 ⊕

(
Z[G2]/ϕ̃m

)
c′′3 −� B2/B1,(4.3)

(
Z[G1]/ϕ̃m

)
u−� B1 (for m odd).(4.4)

If m= 2k is even, then arguing as in [2] we can refine (4.4) to

(4.5)
(
Z[G1]/ϕ̃k(t

2)
)
u−� B1 (for m= 2k even),

where t := t0 = t1 = t−1
2 = t−1

3 . Indeed, since t2u = t3u = t−1
1 u, by induction for

r ∈ Z we have

tr2c
′′
2 = tr1c

′′
2 + t1−r

2 ϕ̃r(t
2
2)u.

Summing up and using the fact that ϕ̃m(t1)c
′′
2 = ϕ̃m(t2)c

′′
2 = 0 and the identity

tm−2
m−1∑
r=0

t1−rϕ̃r(t
2) = tϕ̃k−1(t

2)ϕ̃m(t) + ϕ̃k(t
2), m= 2k,

which is easily established by multiplying both sides by t2 − 1, we immediately

conclude that ϕ̃k(t
2
2)u= 0.

Since α =m ∈ N+, we have isomorphisms Gij
∼= Gi

∼= Z/m, and hence, all

rings Z[G∗]/ϕ̃m in (4.3) and (4.4) are free abelian groups of rank m−1. If m= 2k

is even, then the ring Z[G1]/ϕ̃k(t
2) in (4.5) is a free abelian group of rank m− 2.

Thus, summing up, we have �(B[α])≤ 9m− 6− δ[α]. On the other hand, due to

(3.9) and [7], rkB[α] = 9m− 6− δ[α]. Hence, TorsB[α] = 0.

COROLLARY 4.6 (OF THE PROOF)

The Λ[m]-module B[m] can be defined by relations (3.2) and c′′1 = c′′2 + c′′3 , where

the c′′i ’s are the elements introduced in Section 4.1. Furthermore, all epimor-

phisms in (4.1)–(4.5) are isomorphisms.

REMARK 4.7

Corollary 4.6 does not extend to other finite quotients (cf. Section 6.4).

4.2. Proof of Theorem 1.5
In view of (3.9), the rank rkK[α] can be computed as dimC(B[α]⊗C) + 3. The

group algebra C[G/mG] is semisimple, and we have (see Section 4.1)

B[m]⊗C=B1 ⊗C⊕ (B2/B1)⊗C⊕ (B3/B2)⊗C⊕ (B4/B3)⊗C.

The rank formula in the theorem is obtained by tensoring this expression by C[G]

and using isomorphisms (4.1)–(4.5).
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Let (i, j, k) be a permutation of (1,2,3), and introduce the following param-

eters measuring the “inhomogeneity” of Kerα:

• mi is the order of the image α(ti) in G;

• ni is the order of the image of ti (or t0) in G/α(t0ti) =G/α(tjtk);

• njk is the order of the image of tj (or tk) in G/α(t0ti) =G/α(tjtk);

• n̄i := ni/|Gjk|= njk/|G0i|;
• pi := gcd(ni, njk) and p̄i := pi/|Gl|, i= 2,3, i+ l= 5;

• q̄ := gcd(p2, p3)/|G1|.

It is not difficult to see that all n̄i, p̄i, and q̄ are integers. If δ[α] = 1, then also

introduce

• s̄ := s/|G1|, where s := gcd(s2, s3) and si := lcm(ni,mi), i= 2,3.

Note that s̄ is an integer and q̄ | s̄. If δ[α] = 0, then we merely let s̄ := 1.

LEMMA 4.8

There is a filtration 0 = T0 ⊂ T1 ⊂ T2 ⊂ T3 := TorsB[α] such that the quotient

groups Ti/Ti−1, i= 1,2,3, are subquotients of

(Z/q̄)⊕ (Z/s̄), (Z/p̄2)⊕ (Z/p̄3), (Z/n̄1)⊕ (Z/n̄2)⊕ (Z/n̄3),

respectively. In particular, �(TorsB[α])≤ 6 + δ[α].

Proof

Over Λ[m], the tensor product does not need to be exact, but we still have

an epimorphism B[m]⊗Λ[m] Λ[α] � B[α], which induces an epimorphism of the

torsion groups (as the ranks of the two modules, regarded as abelian groups, are

equal). Using the same filtration as in Section 4.1, we obtain epimorphisms (4.1)–

(4.5), which also induce epimorphisms of the torsion subgroups. Then, define the

member Ti ⊂TorsB[α] of the filtration as the image of Bi, i= 0,1,2,3.

The group rings Z[G∗] in (4.1) are torsion-free; hence, indeed, T3 =TorsB[α].

Let (i, j, k) be a permutation of (1,2,3). In (4.2), each generator c′i is annihilated

by ϕ̃njk
(tj), and we can refine the corresponding summand to (Z[G0i]/ϕ̃njk

)c′i.

Let ri := |G0i| be the order of the cyclic group G0i. Then ϕ̃njk
= n̄iϕ̃ri in Z[G0i],

and Z[G0i]/ϕ̃ri is a free abelian group of rank ri− 1. Hence, Tors(Z[G0i]/ϕ̃njk
)c′i

is a cyclic group Z/n̄i; more precisely,

ord
(
(trik − 1)ci

)
in B[α]/B2 divides n̄i, where ri := |G0i|.

Tensoring this element by C, one can see that it does have finite order in B[α]/B2

but, in general, not in B[α].

A similar argument applies to (4.3) and (4.4). In (4.3), the summand gener-

ated by c′′i is refined to (Z[Gl]/ϕ̃pi)c
′′
i , l := 5− i, the torsion of which is Z/p̄i:

ord
(
(ti − 1)(trll − 1)ci

)
in B[α]/B1 divides p̄i, i= 2,3, where rl := |Gl|.
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In (4.4), the module refines to (Z[G1]/ϕ̃q)u, and we have

ord
(
(t2 − t1)(t

r
2 − 1)(t3 − 1)c2

)
in B[α] divides q̄, where r := |G1|.

If δ[α] = 1 (equivalently, if both m = 2k and |G1| = 2l are even), then we

use (4.5) instead of (4.4). In addition to ϕ̃q(t)u= 0, we also have ϕ̃s/2(t
2)u= 0

(cf. the end of Section 4.1). Since ϕ̃s/2(t
2) = s̄ϕ̃l(t

2) and ϕ̃q(t) = q̄(t+1)ϕ̃l(t
2) in

Z[G1], we obtain an extra torsion term:

ord
(
(t2 − t1)ϕ̃r(−t2)(t3 − 1)c2

)
in B[α] divides s̄, where r := |G1|.

Comparing the ranks, we conclude that the elements indicated above exhaust all

torsion that may be present in B[α]. �

REMARK 4.9

Note that Lemma 4.8 is merely an estimate on the size of T[α]. In particular, its

conclusion depends on the order of the indices, and one may get a better estimate

by permuting the indices (0,1,2,3) (cf. Remark 6.1 and Section 6.4).

Denote by σ : Φ′[m]→Φ[m] the Fermat surface Φ[m] blown up so that the pro-

jection π : Φ′[m]→Φ[α] is regular, and let V ′[m] := σ∗V [m].

LEMMA 4.10

The maps

NS
(
Φ[α]

) π∗
−→NS

(
Φ′[m]

) π∗−→NS
(
Φ[α]

)

respect the subgroups S[α]⊂NS(Φ[α]) and S〈V ′[m]〉 ⊂NS(Φ′[m]). The composite

map π∗ ◦ π∗ : NS(Φ[α])→NS(Φ[α]) is the multiplication by d :=m3/|G|.

Proof

The first statement is immediate from the definition of the divisors involved:

set-theoretically, one has V [α] = π(V ′[m]) and V ′[m] = π−1(V [α]). The second

statement is well known: since π is a generically finite-to-one map of degree d, the

assertion is geometrically obvious for the class of an irreducible curve C ⊂ Φ[α]

not contained in the ramification locus; then, it remains to observe that NS(Φ[α])

is generated by such classes (e.g., very ample divisors). �

By Lemma 4.10, we have induced maps

NS
(
Φ[α]

)
/S[α]

π∗
−→NS

(
Φ′[m]

)
/S

〈
V ′[m]

〉 π∗−→NS
(
Φ[α]

)
/S[α]

whose composition π∗ ◦ π∗ is the multiplication by d. Since the group in the

middle is torsion-free (see Theorem 1.7(1) and (2.1)), the group T[α] ⊂ Kerπ∗

is annihilated by d. Together with the estimate on �(T[α]) given by Lemma 4.8,

this completes the proof of Theorem 1.5. �
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4.3. Proof of Theorem 1.7(4)
The statement follows from Lemma 4.8, as one obviously has n̄i = p̄i = q̄ = 1,

i= 1,2,3, and

s̄= lcm1≤i<j≤3

(
gcd(mi,mj)

)
/gcd(m1,m2,m3).

In fact, using Corollary 4.6, one can easily show that Tors(B[m]⊗Λ Λ[α]) = Z/s̄.

Furthermore, numeric examples suggest that B[m]⊗ΛΛ[α] = B[α] in the diagonal

case (see Section 6.3). However, we do not know a proof of the latter statement.

4.4. Proof of Addendum 1.6
Obviously, K[α] ⊂ kerH2(V [α]). On the other hand, the image S[α] is a non-

degenerate lattice (see the beginning of Section 3.4); hence, we also have the

opposite inclusion K[α]⊃ kerH2(V [α]).

4.5. Proof of Corollary 1.8
According to [7], for any integer m ∈ N+ prime to 6, one has NS(Φ[m])⊗Q =

S[m] ⊗ Q. Then, by Lemma 4.10, a similar identity NS(Φ[α]) ⊗ Q = S[α] ⊗ Q

holds for any finite quotient α : G � G with |G| prime to 6. It remains to observe

that, for each surface Φ[α] as in the statement,

• π1(Φ[α]) = 0 (see Theorem 1.4); hence, PicΦ[α] = NS(Φ[α]), and

• T[α] = 0 (see Theorem 1.7).

(If α is diagonal (cf. Theorem 1.7(4)), then the assumption that |G| is prime to

6 implies also that δ[α] = 0.) The last statement follows from Addendum 1.6.

5. Cyclic Delsarte surfaces

Throughout this section, we fix an epimorphism α : G � G and assume that G

is a finite cyclic group, |G|=m.

5.1. The setup
Fix a generator t of G, and let α(ti) = tmi , i= 0,1,2,3. Strictly speaking, m0,m1,

m2,m3 are elements of Z/m, but it is more convenient to regard them as non-

negative integers. Then m0 +m1 +m2 +m3 = 0 mod m and

(5.1) gcd(m,m1,m2,m3) = 1.

For i �= j, let mij := gcd(m,mi+mj). We have mij =mkl whenever (i, j, k, l) is a

permutation of (0,1,2,3), that is, there are three essentially distinct parameters

mij .

It is easy to see that δ[α] = 1 if and only if m = 0 mod 2 and m1m2m3 =

1 mod 2. In view of (5.1),

(5.2) gcd(m12,m13,m23) = 2δ[α].

The following statement is an immediate consequence of (5.1) and (5.2).
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LEMMA 5.3

For a divisor d |m, d > 2, the following two conditions:

(1) d |mi and d |mj for some 0≤ i < j ≤ 3, or

(2) d |mij and d |mik for some permutation (i, j, k) of (1,2,3),

are mutually exclusive. Furthermore, d may satisfy either (1) for at most one

pair i < j or (2) for at most one value of i ∈ {1,2,3}.

5.2. Proof of Theorem 1.4 for cyclic Delsarte surfaces
Due to the general expression for π1(Φ[α]) given by Theorem 1.4, it suffices to

show that, in the ring Z/m, each solution to the equation r1m1+r2m2+r3m3 = 0

decomposes into a sum of solutions with at least one unknown ri = 0. Since

Z/m =
⊕

q Z/q, the summation running over all maximal prime powers q | m,

we can assume that m itself is a prime power. Then, due to (5.1), at least one

coefficient mi is prime to m. If, for example, gcd(m,m1) = 1, that is, m1 is

invertible in Z/m, then we obtain an equivalent equation r1 = −r2n2 − r3n3,

where ni :=mim
−1
1 , i= 1,2, for which the decomposition statement is obvious.

5.3. Invariant factors
In the rest of this section, we prove Theorem 1.7(3) by analyzing the structure

of the module A[α] (see Remark 6.3 for an explanation). Introduce the notation

σ := tm − 1, σi := tmi − 1, σij := tmij − 1, i, j = 0,1,2,3, i �= j.

Recall that, for p, q ∈ Z, one has gcd(tp − 1, tq − 1) = tgcd(p,q) − 1. Hence, the

polynomials introduced are subject to the following divisibility relations:

σij | σ for all i �= j (by the definition of mij),

gcd(σ,σ1, σ2, σ3) = o := t− 1 (see (5.1)),

gcd(σi, σj , σik) = gcd(σi, σij , σik) = o for {i, j, k}= {1,2,3},

gcd(σ12, σ13, σ23) = ρo, ρ := (t+ 1)δ[α] (see (5.2)).

(5.4)

(The third relation follows from the similar relations for the exponentsm∗, which,

in turn, are consequences of (5.1).) The gcd-type relations in (5.4) hold in the

following strong ideal sense: each relation gcd(β1, β2, . . .) = β means that the

ideal Rβ1 + Rβ2 + · · · in the polynomial ring R := Z[t±1] equals Rβ. In other

words, β divides each βi in R and β = γ1β1 + γ2β2 + · · · for some polynomials

γi ∈R. Hence, we have the same relations in kR := Z[t±1]⊗ k= k[t±1], where k

is a field of any characteristic.

We regard A[α] as an R-module. It is generated by a1, a2, a3, c1, c2, c3, and

the defining relations are (3.3)–(3.5) with ti = tmi , i= 1,2,3, and

σa1 = σa2 = σa3 = σ23c1 = σ13c2 = σ12c3 = 0.

(The first three relations make A[α] a Z[G]-module, and the last three are (3.2)

combined with σci = 0, i= 1,2,3.) The relations in A[α] are represented by the

matrix
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(5.5) M :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 σ3 −σ2 σ3 0 0

σ3 0 −σ1 0 σ3 0

−σ2 σ1 0 0 0 σ1

σ 0 0 0 0 0

0 σ 0 0 0 0

0 0 σ 0 0 0

0 0 0 σ23 0 0

0 0 0 0 σ13 0

0 0 0 0 0 σ12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Given a field k, the reduction A[α]⊗ k is a finitely generated module over

the principal ideal domain kR; hence, it decomposes into a direct sum of cyclic

modules,

A[α]⊗ k∼= kR/f1 ⊕ · · · ⊕ kR/f6,

where f1, . . . , f6 are the invariant factors of M ⊗k, that is, the diagonal elements

of the Smith normal form of the matrix. Recall that f1 | f2 | f3 | f4 | f5 | f6 are

elements of kR that can be found as fr = (gcdSr)/(gcdSr−1), r = 1, . . . ,6, where

Sr is the set of all (r× r)-minors of M ⊗ k.

All nontrivial minors of M are products of polynomials of the form (ts − 1).

Computing all (r × r)-minors, r = 1, . . . ,6, we obtain six lengthy sequences Sr.

Since we are interested in the greatest common divisors only, we use (5.4) (in the

ideal sense as explained above) and simplify these sequences as described below.

Whenever a sequence S contains a subsequence of the form

• βσ, βσ1, βσ2, βσ3, or

• βσi, βσj , βσik for some {i, j, k}= {1,2,3}, or
• βσi, βσij , βσik for some {i, j, k}= {1,2,3},

where β is a common factor, one can append to S the product βo. After all

such additions have been made, one can shorten S by removing all nontriv-

ial multiples of any element β′ ∈ S. We repeat these two steps until S stabi-

lizes and then apply a similar procedure, replacing each subsequence βσ12, βσ13,

βσ23 with the product βρo. Denoting by S′
r the result of the simplification, we

have

S′
1 = {o}, S′

2 = {o2}, S′
3 = {o3}, S′

4 = {ρo4},

S′
5 = {σρo4, σ12σ13σ23o

2, σ2σ3σ12σ23o,σ1σ3σ12σ13o,σ1σ3σ13σ23o}.
(5.6)

Another observation is the fact that S6 is a subset of {σβ | β ∈ S5}; hence, one has
σ(gcdS5) | gcdS6. On the other hand, A[α] is a Z[G]-module and all its invariant

factors are divisors of σ. Taking into account (5.6), we easily obtain all invariant

factors (in any characteristic) except f5:

(5.7) f1 = f2 = f3 = o, f4 = ρo, f6 = σ.
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5.4. The factor f5: the case k=Q

Let σ̄∗ := σ∗/o, and cancel the common factor o5, converting S′
5 to the union

S′′
5 := {σ̄ρ} ∪ {σ̄12σ̄13σ̄23, σ̄2σ̄3σ̄12σ̄23, σ̄1σ̄3σ̄12σ̄13, σ̄1σ̄3σ̄13σ̄23}.

Over Q, the irreducible factors of σ are distinct cyclotomic polynomials ψd, d |m,

and a factor ψd, d > 2 may appear in gcdS′′
5 at most once. Since ψd | σ̄12σ̄13σ̄23,

one has d |mij for some 1≤ i < j ≤ 3. It remains to consider the three possibilities

case by case and analyze the remaining three elements of S′′
5 . Using the relations

between m∗ (mainly, the fact that gcd(mi,mij) = gcd(m,mi,mj)), we arrive at

the following restrictions to d:

(1) d |mi and d |mj for some 1≤ i < j ≤ 3, or

(2) d |mij and d |mik for some permutation (i, j, k) of (1,2,3), or

(3) d |mi and d |mjk for some permutation (i, j, k) of (1,2,3).

The substitution mjk �→ mi0 = −mjk mod m converts (3) to (1) with (i, j) =

(i,0). Hence, gcdS′
5 = f5ρo

4 with

(5.8) f5 =
∏

ψd(t),

where the product runs over all divisors d |m satisfying conditions (1) or (2) in

Lemma 5.3. (In the special case d= 2 and δ[α] = 1, the greatest common divisor

contains two copies of (t+ 1); one of them is ρ, and the other is counted in the

product (5.8) for f5. An extra factor o= ψ1(t) is also counted in the product.)

REMARK 5.9

According to (5.7) and (5.8), rkA[α] = m + 4 + δ[α] +
∑

d φ(d), where φ(d) =

degψd is Euler’s totient function and the summation runs over all divisors d |m
satisfying conditions (1) or (2) in Lemma 5.3. Since n =

∑
d|n φ(d) for n ∈ N+,

this expression translates to rkA[α] = m − 4 − δ[α] +
∑

i<j dij +
∑

i di (using

Lemma 5.3 again), where

• dij := gcd(m,mi,mj) = |Gij | for 0≤ i < j ≤ 3, and

• di := gcd(mij ,mik) = |Gi| for i= 1,2,3 and {i, j, k}= {1,2,3}.

This agrees with (3.9) and Theorem 1.5.

5.5. The factor f5: the case k= Fp

Fix a prime p > 0, and compute f5 over Fp. This time, the cyclotomic polynomials

ψd may be reducible. However, for any pair n,d ∈N+ with gcd(d, p) = 1, one still

has ψd | (tn − 1) if d | n and gcd(ψd, t
n − 1) = 1 otherwise. Thus, if p is prime

to m (and hence σm is square-free), then the computation runs exactly as in

Section 5.4 and we arrive at (5.8).

In general, let m∗ =m′
∗q∗, where q∗ is a power of p and m′

∗ is prime to p.

Then, σ∗ = (σ′
∗)

q∗ , where σ′
∗ := tm

′
∗ − 1 is square-free. To reduce the number of

cases and simplify the argument, note that the isomorphism class of the mod-

ule A[α]⊗ Fp and, hence, its invariant factors depend on m and the unordered

quadruple (m0,m1,m2,m3) only. Thus, permuting the indices, we can add to S′
5
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all products of the form σiσjσijσiko, where (i, j, k) runs over all three-element

arrangements of {0,1,2,3}. Denote this new set by S′′
5 .

Let d′ |m′, d′ > 2. Arguing as in Section 5.4, we conclude that ψd′ divides

gcdS′
5 if and only if

(1) d′ |m′
i and d′ |m′

j for some 0≤ i < j ≤ 3, or

(2) d′ |m′
ij and d′ |m′

ik for some permutation (i, j, k) of (1,2,3).

As in Lemma 5.3, the two conditions are mutually exclusive and d′ may satisfy

either (1) for exactly one pair i < j or (2) for exactly one value of i.

In case (1), assume that (i, j) = (1,2) and q1 =min(q1, q2). Then d′ divides

m′
1,m

′
2,m

′
12, andm′

03, and d′ does not divide any other ofm′
k orm′

kl. Considering

the element σ1σ3σ13σ01o ∈ S′′
5 , we see that the multiplicity of ψd′ in gcdS′

5 is

at most (and hence equal to) q′ := min(q, q1), that is, the one given by (5.8)

reduced modulo p. Indeed, for ψd′ , the product in (5.8) should be restricted to

the divisors of m of the form d= d′pr . By the assumption q′ =min(q, q1, q2), we

have 1≤ pr ≤ q′. Since

ψd′pr = (ψd′)p
r−pr−1

for r ≥ 1,

the exponents sum up to q′.

In case (2), assume that (i, j, k) = (1,2,3) and q12 ≤ q13. Then d′ divides m′
12,

m′
13, m

′
03, and m′

02, and d′ does not divide any other of m′
l or m

′
ln. Considering

the element σ1σ2σ12σ01o ∈ S′′
5 , as in the previous case we conclude that the

multiplicity of ψd′ in gcdS′
5 is at most (and hence equal to) q12, that is, the one

given by (5.8).

If d′ = 1, then the multiplicity of ψ1 = o (in addition to the five copies present

in each term automatically) is counted by a similar argument, using the fact that

d = p itself satisfies at most one of the two conditions in Lemma 5.3 and with

at most one parameter set. The extra multiplicity is min(q, qi, qj) in case (1) or

min(qij , qik) in case (2), that is, again the one given by (5.8) (where the product

is to be restricted to the divisors d |m that are powers of p). In the special case

p= 2 |m, assuming that δ[α] = 0, the divisor d= 2 is also covered by Lemma 5.3

and the previous argument applies.

As in Section 5.4, the case where δ[α] = 1 and either d′ = 2 or p = 2 needs

special attention, taking into account the common divisor 2 of all the mij ’s.

For example, let p = 2, and compute the multiplicity of ρ = o in gcdS′
5. Since

δ[α] = 1, all the mi’s are odd, that is, qi = 1 for i= 0,1,2,3 (see the beginning

of Section 5.1). By (5.2), we can assume that 2 = q12 ≤ q13 ≤ q23 ≤ q. Then it

is immediate that the maximal power of o dividing gcdS′
5 = gcdS′′

5 is oq13+5:

this maximum is attained at the term σ1σ2σ12σ13o. Disregarding o5 = ρo4, we

conclude that the multiplicity of o in the invariant factor f5 ∈ F2R is q13. On

the other hand, it is easily seen that q13 is the maximal power of 2 satisfying

conditions (1) or (2) in Lemma 5.3; hence, oq13 = tq13 −1 is precisely the maximal

power of o dividing (5.8) mod 2. Further details are left to the reader.

Summarizing, we conclude that, for any prime p, the invariant factor f5 of

the FpR-module A[α]⊗ Fp is merely the (modp)-reduction of (5.8).
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5.6. End of the proof of Theorem 1.7(3)
For each field k=Q or Fp,

dim(A[α]⊗ k) = deg f1,k + · · ·+deg f6,k,

where fr,k ∈ kR, r = 1, . . . ,6, are the invariant factors of A[α]⊗ k. According to

Sections 5.3–5.5, each fr,k is the reduction to k of the monic polynomial fr ∈ Z[t]

given by (5.7) or (5.8). Hence, dim(A[α]⊗ k) does not depend on k.

6. Examples

In conclusion, we mention a few numeric examples showing the sharpness of

most estimates stated in Section 1.2. Most examples result from experiments

with random matrices, and it appears that the presence of a nontrivial torsion in

B[α] is quite common. The input for the computation is a (3×3)-matrixM whose

rows are the coordinates (in the basis t1, t2, t3 ∈ G) of three vectors generating

Kerα. Usually, this matrix is in the form diag(m1,m2,m3)M
′, where diag is a

diagonal matrix and M ′ is unimodular: in the experiments, the diagonal part

was fixed while M ′ was chosen randomly.

To shorten the display, we represent the isomorphism class of the finite group

T[α] by the vector T = [ai] of its invariant factors, so that T[α] =
⊕

iZ/ai.

6.1. Torsion groups of maximal length
For the finite quotients αi defined by the matrices Mi := DM ′

i , where D :=

diag(1,8,8), one has

M ′
1 =

⎡
⎣
4 7 1

1 0 0

0 1 0

⎤
⎦ : π1

(
Φ[α1]

)
= Z/2, T = [2,2,2,2,2,2,4],

M ′
2 =

⎡
⎣
0 3 1

1 0 0

0 1 0

⎤
⎦ : π1

(
Φ[α2]

)
= 0, T = [2,2,2,4].

If D = diag(1,8,16), then

M ′
3 =

⎡
⎣
4 1 −1

1 1 0

1 0 0

⎤
⎦ : π1

(
Φ[α3]

)
= Z/2, T = [2,2,2,4,4,4,4],

M ′
4 =

⎡
⎣
6 1 2

1 0 1

0 0 1

⎤
⎦ : π1

(
Φ[α4]

)
= Z/4, T = [2,4,4,4,4,8],

M ′
5 =

⎡
⎣
1 0 3

0 1 1

0 0 1

⎤
⎦ : π1

(
Φ[α5]

)
= 0, T = [4,4,4,4].
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If D = diag(1,9,9) (and hence δ[α] = 0), then

M ′
6 =

⎡
⎣
−3 1 2

1 0 0

0 0 1

⎤
⎦ : π1

(
Φ[α6]

)
= Z/3, T = [3,3,3,3,3,9],

M ′
7 =

⎡
⎣
−1 1 1

0 1 1

0 0 1

⎤
⎦ : π1

(
Φ[α7]

)
= 0, T = [3,3,9].

Finally, for D = diag(2,9,9) one has

M ′
8 =

⎡
⎣
−4 2 1

−3 1 0

1 0 1

⎤
⎦ : π1

(
Φ[α8]

)
= Z/3, T = [3,3,3,3,3,3,9],

M ′
9 =

⎡
⎣
3 2 0

1 1 0

3 0 −1

⎤
⎦ : π1

(
Φ[α9]

)
= 0, T = [3,3,3,9].

REMARK 6.1

In most examples considered in this section, the estimate given by Lemma 4.8

does depend on the order of the indices (cf. Remark 4.9); often, even the best

bound is larger than the actual size |T[α]|. In many cases, the epimorphism

B[m]⊗Λ Λ[α] �B[α] is not an isomorphism (cf. Remark 4.7). Note also that, for

the finite quotient α4, one has (cf. Lemma 4.8)

T2/T0
∼= T3/T2

∼= Z/4⊕Z/4⊕Z/4,

whereas expT[α4] = 8.

6.2. The case of |G| prime to 6

In this case, one always has δ[α] = 0. Let αi be defined by a matrix Mi :=DM ′
i .

If D = diag(1,5,25), then one has

M ′
1 =

⎡
⎣
2 −1 6

1 0 1

0 0 1

⎤
⎦ : π1

(
Φ[α1]

)
= Z/5, T = [5,5,5,5,5,5],

M ′
2 =

⎡
⎣
2 0 −1

4 1 −1

1 0 0

⎤
⎦ : π1

(
Φ[α2]

)
= 0, T = [5,5,5].

If D = diag(1,7,7), then

M ′
3 =

⎡
⎣
1 2 5

0 0 1

1 1 0

⎤
⎦ : π1

(
Φ[α3]

)
= Z/7, T = [7,7,7,7,7,7],

M ′
4 =

⎡
⎣
1 0 2

1 0 1

3 1 0

⎤
⎦ : π1

(
Φ[α4]

)
= 0, T = [7,7,7].
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REMARK 6.2

The examples in Sections 6.1 and 6.2 suggest that, under the additional assump-

tion that π1(Φ[α]) = 0, we have a better bound �(T[α])≤ 3+δ[α]. It also appears

that expT[α] divides htα. We do not know a proof of these facts.

6.3. Diagonal Delsarte surfaces
We tested the diagonal finite quotients

α= (2,4,4), (2,6,6), (2,8,8), (4,6,12).

In all cases, the obvious epimorphism B[m]⊗Λ Λ[α] � B[α] is an isomorphism,

that is, the torsion TorsB[α] is the maximal allowed by Theorem 1.7(4) (see

Section 4.3).

6.4. Cyclic Delsarte surfaces
The last example illustrates Remarks 4.7 and 4.9, showing that, in general, one

may need to deal with the whole module A[α] when computing the torsion. Let

α : G �G be the finite quotient defined by the matrix

M :=

⎡
⎣
1 1 0

3 0 3

0 0 4

⎤
⎦ .

It is immediate that m= 12 and G∼= Z/m is a cyclic group; hence, TorsB[α] = 0

(see (3.8) and Theorem 1.7(3)).

Let B′[α] := B[m]⊗Λ Λ[α]; by Corollary 4.6, this Λ[α]-module is defined by

(3.2) and relation c′′1 = c′′2 + c′′3 . Consider the filtrations Bi ⊂B[α] and B′
i ⊂B′[α],

i= 0, . . . ,4, defined as in Section 4.1. Then, a straightforward computation shows

that Tors(B3/B2) = Z/4 ⊕ Z/2, whereas Tors(B′
3/B

′
2) = Z/4 ⊕ Z/4 ⊕ Z/2 (as

predicted by Lemma 4.8); hence, B[α] �=B′[α] (cf. Remark 4.7).

Furthermore, p̄2 = p̄3 = 2 and q̄ = s̄= 1, and in agreement with Lemma 4.8,

we have TorsB2 = TorsB′
2 = Z/2 ⊕ Z/2. However, permuting the indices to

(0,2,1,3) (cf. Remark 4.9), we obtain a better bound: this time p̄2 = p̄3 = q̄ =

s̄= 1 and, hence, TorsB2 =TorsB′
2 = 0.

REMARK 6.3

This example also explains why, in the proof of Theorem 1.7(3) in Section 5, we

had to consider the matrix (5.5) with rather long sequences of minors instead of

a much simpler matrix given by Corollary 4.6: the latter would not work, as the

corresponding module may have torsion.
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