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Abstract Let f ∈ S2κ−2(Γ0(M)) be aHecke eigenformwith κ≥ 2 even andM ≥ 1 and

odd and square-free. In this paper we survey the construction of the Saito–Kurokawa

lifting from the classical point of view. We also provide some arithmetic results on the

Fourier coefficients of Saito–Kurokawa liftings.We then calculate the norm of the Saito–

Kurokawa lift.

1. Introduction

It is well established that one can prove deep theorems in arithmetic by studying

liftings of automorphic forms from a reductive algebraic group to a larger reduc-

tive algebraic group. For instance, one can see Ribet’s [21] proof of the converse

of Herbrand’s theorem, Wiles’s [29] proof of the main conjecture of Iwasawa the-

ory for totally real fields, or Skinner–Urban’s [27] proof of the main conjecture

of Iwasawa theory for GL(2) for three prominent examples of this philosophy.

One such lifting that has figured prominently in several such results is the Saito–

Kurokawa lifting that lifts a form from GL(2) to GSp(4). One can see [1], [4],

[16], and [26] for examples of arithmetic applications of Saito–Kurokawa liftings.

It is these liftings that this paper focuses on.

The Saito–Kurokawa lifting in the full level case was established via a series

of papers culminating in the work of Zagier [30]. The lifting was established from

an automorphic point of view via the work of Piatetski and Shapiro [20] and

Schmidt [23], [24]. For the arithmetic applications referenced above, one needs

a classical construction of the Saito–Kurokawa lifting of square-free level. This

lifting was claimed in a series of papers (see [19], [17], [18]). Unfortunately, there

are many omitted proofs in these papers, and the generalized Maass lifting used

in these papers is known to be given incorrectly. It was not until recently that a

correct treatment of the generalized Maass lifting was given by Ibukiyama [11].

This allows one to give a correct classical construction of the Saito–Kurokawa

lifting of square-free level.

In this paper, after introducing some notation in Section 2, in Section 3

we survey the classical construction of a Saito–Kurokawa lift Ff ∈ Sκ(Γ
(2)
0 (M))

from f ∈ S2κ−2(Γ0(M)) for M square-free and κ≥ 2 even. In the same section

we also show that with a suitable choice of scalar one can fix a lifting Ff that has
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Fourier coefficients in the same ring as f ’s Fourier coefficients. This is essential

for arithmetic applications. In Section 4 we compute the norm of Ff . Such a

calculation originally appeared in [3], but this was based on the incorrect Maass

lifting mentioned above, so it is not correct. This norm is needed for the main

result of [1].

2. Definitions and notation

In this section we fix basic definitions and notations we will use throughout the

rest of the paper. Throughout this paper we let M ≥ 1 denote a square-free

integer, and let κ≥ 2 be an even integer.

Given a ring R, we let Matn(R) denote the set of n by n matrices with

entries in R. As usual we let GL(n,R)⊂Matn(R) denote the group of invertible

matrices, and let SL(n,R)⊂GL(n,R) denote the matrices with determinant 1.

We write 1n for the identity matrix in GLn(R) and 0n for the zero matrix in

Matn(R). Given A ∈ Matn(R), we denote the transpose of A by tA. Let J =

( 02 −12
12 02

). The symplectic group GSp(4,R) is defined by

GSp(4,R) =
{
g ∈GL(4,R) : tgJg = μ(g)J,μ(g) ∈GL(1,R)

}
.

We set Sp(4,R) = ker(μ). We let PGSp(4,R) denote the projective symplectic

group. Let Γ0(M)⊂ SL(2,Z) have its usual meaning, and set

Γ
(2)
0 (M) =

{(
A B

C D

)
∈ Sp(4,Z) :C ≡ 0 (mod M)

}
.

We write e(z) = e2πiz . We let hn = {Z =X+iY ∈Matn(C) :X,Y ∈Matn(R),

Y > 0}. We let Sκ(Γ0(M)) denote the cusp forms of weight κ and level Γ0(M).

Let f ∈ Sκ(Γ0(M)) be a normalized eigenform with Fourier expansion

f(z) =
∑
n≥1

af (n)e(nz).

Given a ring R, we write Sκ(Γ0(M);R) to denote the space of cusp forms that

have Fourier coefficients in R. We define the Peterson product on Sκ(Γ0(M)) by

setting

〈f1, f2〉=
1

[SL(2,Z) : Γ0(M)]

∫
Γ0(M)\h

f1(z)f2(z)y
κ−2 dxdy

for f1, f2 ∈ Sκ(Γ0(M)).

We denote the cuspidal automorphic representation associated to an eigen-

form f by πf = ⊗′πf,p. Recall that πf,∞ is the discrete series representation

with lowest weight vector of weight κ and for p � M the representation πf,p is

an unramified principal series representation. The local representations for p |M
are determined by the Atkin–Lehner eigenvalues of f . For p |M , recall that the

Atkin–Lehner operator at p is the matrix Wp = ( pa b
Mc pd ) with p2ad−Mbc= p. If

f ∈ Snew
κ (Γ0(M)), then we let εp ∈ {±1} denote the Atkin–Lehner eigenvalue of

f at p, that is, Wpf = εpf . If εp = −1, then πf,p = StGL(2), and if εp = 1, then
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πf,p = ξ StGL(2) where StGL(2) is the Steinberg representation and ξ is the unique

nontrivial unramified quadratic character of Q×
p .

We will also need L-functions attached to f and πf . For each prime p �M

there exists a character σp so that πf,p = π(σp, σ
−1
p ) (see [5, Section 4.5]). The

p-Satake parameter of f is given by α0(p;f) = σp(p). The L-function associated

to πf,p is

L(s,πf,p) =
(
1− α0(p;f)p

−s
)−1(

1− α0(p;f)
−1p−s

)−1
.

For p |M ,

L(s,πf,p) = (1 + εpp
−s− 1

2 )−1.

We set

L∞(s,πf,∞) = (2π)−(s+(κ−1)/2)Γ
(
s+ (κ− 1)/2

)
.

The L-function associated to πf is

L(s,πf ) =
∏
p

L(s,πf,p).

The functional equation for L(s,πf ) is given by

L(s,πf ) = ε(s,πf )L(1− s,πf ),

where ε(s,πf ) =
∏

p εp(s,πf,p) and

εp(s,πf,p) =

⎧⎪⎪⎨
⎪⎪⎩
(−1)κ/2 if p=∞,

−p
1
2−s if εp =−1, p <∞,

p
1
2−s if εp = 1, p <∞.

In particular, the sign of the functional equation is given by ε(12 , πf ) ∈ {±1}. The
classical L-function of f is given by

L(s, f) =
∏
p<∞

L
(
s+

1

2
− κ/2, πf,p

)
.

Let Sκ(Γ
(2)
0 (M)) denote the space of Siegel modular forms of weight κ and

level Γ
(2)
0 (M). A form F ∈ Sκ(Γ

(2)
0 (M)) has a Fourier expansion

F (z) =
∑
T∈Λ2

aF (T )e
(
Tr(Tz)

)
,

where Λ2 is the set of 2 by 2 half-integral positive definite symmetric matrices.

As above, for a ring R we write Sκ(Γ
(2)
0 (N);R) to denote the forms with Fourier

coefficients in R.

Given g ∈ Sp+4 (Q), we write T (g) to denote

Γ
(2)
0 (M)gΓ

(2)
0 (M).

We define the usual action of T (g) on Siegel modular forms by setting

T (g)F =
∑
i

F |κgi,
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where Γ
(2)
0 (M)gΓ

(2)
0 (M) =

∐
i Γ

(2)
0 (M)gi and F ∈Mκ(Γ

(2)
0 (M)). Let p be prime,

and define

TS(p) = T
(
diag(12, p12)

)
.

In the case where p |M we write US(p) for TS(p). Set

T ′
S(p) = pT

(
diag(1, p, p2, p)

)
+ p(1 + p+ p2)T

(
diag(p, p, p, p)

)
.

Let F ∈ Sκ(Γ
(2)
0 (M)) be an eigenform. Then F generates a space of cuspi-

dal automorphic forms on GSp4(A) invariant under right translation. In general

this space may not be irreducible but does decompose into a finite number of

irreducible, cuspidal, automorphic representations. Let πF be one of these irre-

ducible pieces. The representation πF can be decomposed into local components

ΠF =
⊗

ΠF,p with ΠF,p a representation of PGSp(4,Qp). We refer the reader to

[2, Section 3] for the details concerning the construction of cuspidal automorphic

representations associated to Siegel cusp forms. For all but finitely many places p

the representation ΠF,p will be an Iwahori spherical representation Π(σ,χ1, χ2),

which is isomorphic to the Langlands quotient of an induced representation of

the form χ1 × χ2 � σ with χi and σ unramified characters of Q×
p . One can see

[2] and [22] for the definitions and details. For such p the p-Satake parameters

are defined by b0 = σ(p) and bi = χi(p) for i= 1,2. We define

L(s,ΠF,p, spin) =
(
(1− b0p

−s)(1− b0b1p
−s)(1− b0b2p

−s)(1− b0b1b2p
−s)
)−1

for ΠF,p = Π(σ,χ1, χ2). We leave the local L-functions for p = ∞ and p | M
undefined, as defining these would take us too far afield. On can see [24] for the

definitions. Set

L(s,ΠF , spin) =
∏
p

L(s,ΠF,p, spin).

The classical spinor L-function is given by

L(s,F, spin) =
∏
p<∞

L(s− κ+ 3/2,ΠF,p, spin).

Given an Euler product L(s) =
∏

pLp(s), we write LM (s) =
∏

p�M Lp(s).

3. Classical construction

In this section we gather known results and give a classical construction of the

Saito–Kurokawa lifting from S2κ−2(Γ0(M)) to Sκ(Γ
(2)
0 (M)) for κ ≥ 2 an even

integer and M ≥ 1 an odd square-free integer. The existence of a Saito–Kurokawa

lifting is known from a representation theory point of view via [24]. In particular,

[24, Theorem 5.2] gives that this lift is unique up to a constant multiple. Using the

classical construction given in this section we fix the scalar so that the resulting

Saito–Kurokawa lift is more useful for arithmetic applications (see, e.g., [1], [16]).

In particular, given a newform f ∈ Snew
2κ−2(Γ0(M)), if we let O be a ring containing

the Hecke eigenvalues of f , then we can show that the Saito–Kurokawa lift of f

can be normalized so that it has Fourier coefficients lying in O as well.
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The classical lifting is constructed via a composition of liftings, the first from

integral to half-integral weight, then from half-integral weight to Jacobi forms,

and finally from Jacobi forms to Siegel modular forms. We begin by recalling

results on the lifting from integral to half-integral weight forms.

Let S+
κ− 1

2

(Γ0(4M)) denote Kohnen’s +-space, that is, the cusp forms of

weight κ − 1
2 and level Γ0(4M) whose nth Fourier coefficients at infinity van-

ish for (−1)κ−1n ≡ 2,3 (mod 4). For a prime p � M we define the p2th Hecke

operator acting on S+
κ− 1

2

(Γ0(4M)) by

TH(p)
∑
n≥1

(−1)κ−1n≡0,1(4)

c(n)qn

=
∑
n≥1

(−1)κ−1n≡0,1(4)

(
c(p2n) +

( (−1)κ−1n

p

)
pκ−2c(n) + p2κ−3c(n/p2)

)
qn.

We follow the literature and denote this by TH(p) instead of TH(p2) since the

pth Hecke operator on half-integral weight modular forms vanishes. For p |M we

set

UH(p)
∑
n≥1

(−1)κ−1n≡0,1(4)

c(n)qn =
∑
n≥1

(−1)κ−1n≡0,1(4)

c(p2n)qn.

The inner product on S+
κ− 1

2

(Γ0(4M)) is given by

〈g1, g2〉=
1

[Γ0(4) : Γ0(4M)]

∫
Γ0(4M)\h1

g1(z)g2(z)y
κ−5/2 dxdy

for z = x+ iy.

One has a Hecke-equivariant isomorphism between Snew
2κ−2(Γ0(M)) and

S+,new

κ− 1
2

(Γ0(4M)) (see [12, Section 5, Theorem 2]) where S+,new

κ− 1
2

(Γ0(4M)) denotes

the subspace of newforms as defined in [12, Section 5].

For arithmetic applications such as those given in [1] it is important to keep

track of the Fourier coefficients of the Saito–Kurokawa lift of f . Let D < 0 be

a fundamental discriminant, and let θκ,D : S2κ−2(Γ0(M)) → S+
κ− 1

2

(Γ0(4M)) be

Shintani’s lifting (see [25]). Let O be a ring so that an embedding of O into C

exists. We choose such an embedding and identify O with its image in C. Let

f ∈ S2κ−2(Γ0(M)) be a normalized Hecke eigenform, and assume that O contains

the Fourier coefficients of f . The Shintani lifting of f is determined up to a scalar

multiple. Stevens [28] constructs a cohomological version of the Shintani lifting as

a step in producing a Λ-adic Shintani lifting. This cohomological Shintani lifting

allows one to deduce the following result.
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THEOREM 3.1 ([28, PROPOSITION 2.3.1])

Let f ∈ S2κ−2(Γ0(M)) be a Hecke eigenform. Let D < 0 be a fundamental dis-

criminant. If the Fourier coefficients of f are in O, then there exists a Shintani

lifting θalgκ,D(f) with Fourier coefficients in O.

This gives what we need for the first part of the construction. We now consider the

lifting from half-integral weight forms to Jacobi forms. Let Γ0(M)J = Γ0(M)�

Z2, that is, the set of pairs (γ,X) with γ ∈ Γ0(M) and X ∈ Z2 with the group law

given by (γ1,X1)(γ2,X2) = (γ1γ2,X1γ2+X2). We denote the space of Jacobi cusp

forms of weight κ, index 1, and level Γ0(M)J by Jc
κ,1(Γ0(M)J ). Given a positive

integer m, define

ΔM,0(m) =

{(
a b

Mc d

)
: a, b, c, d ∈ Z, ad− bcM =m,gcd(a,M) = 1

}
.

We make use of the Hecke operators on Jc
κ,1(Γ0(M)J ) defined by

TJ(p)φ= pκ−4
∑
γ

∑
(λ,μ)∈F2

p

φ|κ,1(γ/p)|1(λ,μ),

where γ runs over{(
1 b

0 p2

)
: b= 0, . . . , p2 − 1

}
∪
{(

p b

0 p

)
: b= 0, . . . , p− 1

}
∪
{(

p2 0

0 1

)}
.

In the case where p | M , we define UJ(p) as we defined TJ(p) with the only

difference being that here we only take γ running over{(
1 b

0 p2

)
: b= 0, . . . , p2 − 1

}
.

The inner product on Jc
κ,1(Γ0(M)J ) is defined by

〈φ1, φ2〉 =
1

[SL2(Z) : Γ0(M)]

×
∫
Γ0(M)J\h1×C

φ1(τ, z)φ2(τ, z)v
κ−3e−4πy2/v dxdy dudv

for τ = u+ iv and z = x+ iy.

We recall the isomorphism between Jc
κ,1(Γ0(M)J ) and S+

κ− 1
2

(Γ0(4M)) for M

an odd integer.

Let g ∈ S+
κ− 1

2

(Γ0(4M)). Define gj(τ) by

gj(τ) =
∑
n>0

n≡j (mod 4)

ag(n)e(nτ/4)

for j = 0,1 where the ag(n)’s are the Fourier coefficients of g. It is clear that

g(τ) = g0(4τ) + g1(4τ). Define

ϑj(τ, z) =
∑
n∈Z

e
(2n− j2

4
τ + (2n− j)z

)
.
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Define a map J by

J (g)(τ, z) = g0(τ)ϑ0(τ, z) + g1(τ)ϑ1(τ, z)

for g ∈ S+
κ− 1

2

(Γ0(4M)). The following theorem provides the necessary connection

between half-integral weight forms and Jacobi forms. Note that the compatibility

with Hecke operators follows immediately from the definitions and the map given.

THEOREM 3.2 ([15, COROLLARY 3])

The map J gives a Hecke-equivariant isomorphism between S+
κ− 1

2

(Γ0(4M)) and

Jc
κ,1(Γ0(M)J ). Moreover, if g ∈ S+

κ− 1
2

(Γ0(4M)) has Fourier coefficients in O,

then so does J .

Finally, we recall the Maass lifting from the Jacobi forms to Siegel forms. Let

Vm : Jc
κ,t

(
Γ0(M)J

)
→ Jc

κ,mt

(
Γ0(M)J

)
be the index-shifting operator defined by

(Vmφ)(τ, z) =mκ−1
∑

g∈Γ0(M)\ΔM,0(m)

(φ|κ,tg)(τ, z).

If the Fourier expansion of φ ∈ Jc
κ,1(Γ0(M)J ) is given by

φ(τ, z) =
∑

D<0,r∈Z
D≡r2 (mod 4)

c(D,r)e
(r2 −D

4
τ + rz

)
,

then

(Vmφ)(τ, z) =
∑

D<0,r∈Z
D≡r2 (mod 4m)

( ∑
d|gcd(r,m)
gcd(d,M)=1

D≡r2 (mod 4md)

dκ−1c
(D
d2

,
r

d

))
e
(r2 −D

4m
τ + rz

)
.

Define a function on h2 by

(VMφ)(Z) =

∞∑
m=1

(Vmφ)(τ, z)e(mτ ′),

where Z = ( τ z
z τ ′ ). One has the following result of Ibukiyama.

THEOREM 3.3 ([11, THEOREMS 3.2, 4.1])

The map VM is an injective linear map from Jc
κ,1(Γ0(M)J ) to Sκ(Γ

(2)
0 (M)).

Moreover, one has for p �M ,

TS(p)(VMφ) = VM

(
TJ(p)φ+ (pκ−1 + pκ−2)φ

)
,

T
′

S(p)(VMφ) = VM

(
(pκ−2 + pκ−1)TJ (p)φ+ (2p2κ−3 + p2κ−4)φ

)
.

If p �M , then

US(p)(VMφ) = VM

(
UJ(p)φ

)
,
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where TJ(p) and UJ(p) are as defined above and the Siegel Hecke operators TS(p)

and US(p) were defined in the previous section.

An immediate consequence of the calculation of the Fourier coefficients of VM

carried out in [11] is the following corollary.

COROLLARY 3.4

Let φ ∈ Jc
κ,1(Γ0(M)J ,O) for some ring O. Then VMφ ∈ Sκ(Γ

(2)
0 (M),O).

The following theorem gives the existence of a Saito–Kurokawa lifting by com-

bining the result on the Shintani lifting with Theorems 3.2 and 3.3.

THEOREM 3.5

Let κ ≥ 2 be an even integer, and let M ≥ 1 be an odd square-free integer. Let

f ∈ S2κ−2(Γ0(M)) be a normalized Hecke eigenform. Then there exists a nonzero

cuspidal Siegel eigenform Ff ∈ Sκ(Γ
(2)
0 (M)) satisfying

LM (s,Ff , spin) = ζM (s− κ+ 1)ζM (s− κ+ 2)LM (s, f).

Moreover, if O is a ring that can be embedded into C and f has Fourier coef-

ficients in O, then the lift Ff can be normalized to have Fourier coefficients in

O. If O is a discrete valuation ring (DVR), then Ff can be normalized to have

Fourier coefficients in O with at least one Fourier coefficient in O×.

Proof

The only thing that remains to prove is that if O is a DVR, then we can nor-

malize Ff so that it has Fourier coefficients in O with at least one in O×. The

point is that the Shintani lifting is determined only up to a scalar multiple. By

choosing the Shintani lifting θalgκ,D(f) to have Fourier coefficients in O, it certainly

follows that Ff has Fourier coefficients in O from the above construction. Now

suppose that m=minT∈Λ2 val�(aF (T )) where � is a uniformizer of O. Thus, if

we normalize the Shintani lifting by �−m, the resulting Ff will still have Fourier

coefficients in O but will have at least one coefficient in O×. �

4. Norm of Ff

We now calculate the norm of Ff in terms of the norm of f . This forms a key

step in the main result of [1], but is also of independent interest. We do this by

relating the norm of the image of each lift to the norm of the form being lifted

for each of the three lifts composed to give the Saito–Kurokawa lift. Again, we

fix κ≥ 2 to be an even integer and M ≥ 1 to be odd and square-free.

Let f ∈ Snew
2κ−2(Γ0(M)) be a newform. For each prime � |M , recall that W�

is the Atkin–Lehner involution on Snew
2κ−2(Γ0(M)). Define ε� ∈ {±1} by

f |W� = ε�f.

The following theorem relates the norm of f to that of θalgκ,D(f).
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THEOREM 4.1 ([13, COROLLARY 1])

Let f ∈ Snew
2κ−2(Γ0(M)) be a newform, and let D < 0 be a fundamental discrimi-

nant. Suppose that (D� ) = ε� for all primes � |M . Then

(1)
|aθalg

κ,D(f)(|D|)|2

〈θalgκ,D(f), θalgκ,D(f)〉
= 2ν(M) (κ− 2)!

πκ−1
|D|κ−3/2L(κ− 1, f,χD)

〈f, f〉 ,

where χD = (D· ) and ν(M) is the number of prime divisors of M .

One should note that if there is a prime � |M so that (D� ) �= ε�, then one has

aθalg
κ,D(f)(|D|) = 0.

Now let g ∈ S+
κ− 1

2

(Γ0(4M)), and let J (g) be the associated form in

Jc
κ,1(Γ0(M)J ). Let g(z) =

∑∞
n=1 ag(n)e(nz) be the Fourier expansion of g. Con-

sider the summation
∑∞

n=1 ag(n)
2/(ns+κ−3/2). Applying the Rankin–Selberg

method to this summation we have for sufficiently large s,

Γ(s+ κ− 3/2)

(4π)s+κ− 1
2

∞∑
n=1

ag(n)
2

ns+κ−3/2
=

∫
h1/Γ∞

∣∣g(z)∣∣2ys+κ−5/2 dxdy

=

∫
h1/Γ0(4M)

yκ−
1
2

∣∣g(z)∣∣2E4M
s (z)

dxdy

y2
,

where E4M
s (z) =

∑
γ∈Γ∞\Γ0(4M)(Im(γz))s and Γ∞ is the stabilizer of ∞. In other

words,

(2)

∞∑
n=1

ag(n)
2

ns+κ−3/2
=

(4π)s+κ− 1
2

Γ(s+ κ− 3/2)

∫
Γ0(4M)\h1

E4M
s (z)g(z)g(z)yκ−

1
2
dxdy

y2
.

Taking residues at s= 1 we obtain that

res
s=1

( ∞∑
n=1

ag(n)
2

ns+κ−3/2

)
=

(4π)1+κ− 1
2 [SL2(Z) : Γ0(4M)]

Γ(κ− 1
2 )

〈g, g〉res
s=1

E4M
s (z)

=
3 · 2κ−1(4π)κ−

1
2

π3/2(2κ− 3)!!
〈g, g〉,

where

n!! =

{
n(n− 2) · · ·5 · 3 · 1 for n > 0 and odd,

n(n− 2) · · ·6 · 4 · 2 for n > 0 and even,

and we have used that

res
s=1

E4M
s (z) =

1

[SL2(Z) : Γ0(4M)]
res
s=1

Es(z)

=
1

[SL2(Z) : Γ0(4M)]

( 3
π

)
,

where Es(z) =E1
s (z) and one can see [9] for the calculation of the residue of the

Eisenstein series.
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Solving the above residue calculation for 〈g, g〉 we obtain that

(3) 〈g, g〉= (2κ− 3)!!

3 · 23κ−2πκ−2
res
s=1

( ∞∑
n=1

ag(n)
2

ns+κ−3/2

)
.

Recall the two half-integral weight modular forms g0 and g1 defined in Sec-

tion 3. Applying the same process to g0 and g1 we obtain that

〈gj , gj〉=
(2κ− 3)!!

3 · 23κ−2πκ−2
· 22κ−1 res

s=1

(∑
n≡j

ag(n)
2

ns+κ−3/2

)
.

Thus

(4) 〈g0, g0〉+ 〈g1, g1〉= 22κ−1〈g, g〉.

We need a slight generalization of [8, Theorem 5.3]. In [8], the formula given only

deals with the case M = 1. However, the proof carries through verbatim to the

general case.

THEOREM 4.2 ([8, THEOREM 5.3])

For J (g) and gj as defined above, one has that

(5)
〈
J (g),J (g)

〉
=

1

2[SL2(Z) : Γ0(M)]

∫
Γ0(M)\h1

1∑
j=0

gj(z)gj(z)v
κ−3/2 dudv

v2
.

Combining (4) and (5) we obtain the following result.

LEMMA 4.3

For J (g) and g defined as above,

(6)
〈
J (g),J (g)

〉
=

22κ−2

[Γ0(M) : Γ0(4M)]
〈g, g〉.

In light of Theorem 4.1 and Proposition 4.3, it only remains to calculate the ratio

of 〈φ,φ〉 and 〈VMφ,VMφ〉 for φ ∈ Jc
κ,1(Γ0(M)J ). We follow the arguments used

in [14] where this ratio is computed when M = 1. One should note that this inner

product was originally given in [3]. However, that result cited a theorem in [6,

Theorem 4.2] which in turn was based on the incorrect definition of the VM map

used in [19]. Thus, we give the computation here using the corrected definition

given in [11]. The argument given in [3, Section 4] is correct up until the point

the result of [6] is invoked; however, we include the complete argument here to

have it given in one place.

Let F,G ∈ Sκ(Γ
(2)
0 (M)) be eigenforms with Fourier–Jacobi expansions given

by

F (Z) =
∑
N≥1

φN (τ, z)e(Nτ ′)
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and

G(Z) =
∑
N≥1

ψN (τ, z)e(Nτ ′).

Define a Dirichlet series attached to F and G by

DF,G(s) = ζM (2s− 2κ+ 4)
∑
N≥1

〈φN , ψN 〉N−s,

and set

(7) D∗
F,G(s) = (2π)−2sΓ(s)Γ(s− κ+ 2)DF,G(s).

It is shown in [10] that D∗
F,G(s) has meromorphic continuation to C, is entire

if 〈F,G〉= 0, and otherwise has a simple pole at s= κ. The first step in calculating

the ratio of inner products we desire is calculating the residue of DF,G at s= κ.

We do this by writing DF,G as the Petersson product of F (Z) ¯G(Z)|Y |κ against

a certain nonholomorphic Klingen Eisenstein series Es,M (Z). Define a Klingen

Eisenstein series

Es,M (Z) =
∑

γ∈C2,1(M)\Γ(2)
0 (M)

(det(ImγZ)

Im(γZ)1

)s
,

where (γZ)1 denotes the upper left entry of γZ and

C2,1(M) =

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝

a 0 b μ

λ′ 1 μ′ κ

c 0 d −λ

0 0 0 1

⎞
⎟⎟⎠ ∈ Γ

(2)
0 (M)

⎫⎪⎪⎬
⎪⎪⎭ , (λ′, μ′) = (λ,μ)

(
a b

c d

)
.

Set

(8) E∗
s,M (Z) = π−sΓ(s)ζ(2s)

∏
p|M

(1− p−2s)Es,M (Z).

One has that E∗
s,M (Z) has mermomorphic continuation to C with possible simple

poles at s= 0,2 (see [10]). It is known that ress=2E
∗
s,1(Z) = 1 (see [14]). Note that

this is independent of Z, so ress=2E
∗
s,1(NZ) = 1 for all positive integers N . Then

(8) gives that ress=2Es,1(Z) = 90/π2. As above, this residue is independent of Z,

so ress=2Es,1(NZ) = 90/π2 for all positive integers N . The following formula is

given in [10]:

Es,1(MZ) =
1

Ms

∑
d|M

d2s
∏
p|d

(1− p−2s)Es,d(Z).

This formula allows one to calculate the residue of Es,M (Z) inductively in terms

of Es,d(Z) for d |M . In fact, for M = pm1
1 · · ·pmn

n ,

(9) res
s=2

Es,M (Z) =
(90
π2

)
h(p1, . . . , pn)

n∏
i=1

( 1

p2mi−2
i (p4i − 1)

)
,
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where h is a polynomial with coefficients in Z uniquely determined by M . For

example, if M = pn for a prime p, then

h(p) = p2 − 1,

and if M = p1 · · ·pn is a product of distinct primes, then

h(p1, . . . , pn) =

n∏
i=1

(p2i − 1).

We will be mainly interested in the case in which M = p1 · · ·pn is odd and square-

free. Appealing to (8) we obtain that

(10) res
s=2

E∗
s,M (Z) =

n∏
i=1

(1− p−4
i

p2i + 1

)
.

We now turn our attention back to calculating the residue of DF,G(s) at

s= κ. We make use of the following equation (see [10]):

π−κ+2
[
Sp4(Z) : Γ

(2)
0 (M)

]
〈FE∗

s−κ+2,M ,G〉=MsD∗
F,G(s).

Taking the residue of this equation at s= κ and solving for res
s=κ

D∗
F,G(s) we obtain

that

res
s=κ

D∗
F,G(s) =

π2−κ[Sp4(Z) : Γ
(2)
0 (M)]

Mκ
res
s=2

E∗
s,M (Z)〈F,G〉

=
π2−κ[Sp4(Z) : Γ

(2)
0 (M)]

Mκ

∏
p|M

(1− p−4
i

p2i + 1

)
〈F,G〉

=
π2−κ[Sp4(Z) : Γ

(2)
0 (M)]

MκζM (4)

∏
p|M

( 1

p2i + 1

)
〈F,G〉.

On the other hand, taking the residue at s= κ of (7) gives

res
s=κ

D∗
F,G(s) = (2π)−2κ(κ− 1)! res

s=κ
DF,G(s).

Combining these two results and solving for res
s=κ

DF,G(s) we obtain

(11) res
s=κ

DF,G(s) =
22κπκ+2[Sp4(Z) : Γ

(2)
0 (M)]

MκζM (4)(κ− 1)!
∏

p|M (p2i + 1)
〈F,G〉.

Following [14], our next step is to calculate the adjoint of the operator Vm.

We will need the following lemma.

LEMMA 4.4

Let Δ∗
M,0(m)⊂ΔM,0(m) be the matrices

(
a b

Mc d

)
with gcd(a, b, c, d) = 1. The map

ϕM : Γ0(M,m)\Γ0(M)→ Γ0(M)\Δ∗
M,0(m),(

a b

Mc d

)
→
(
1 0

0 m

)(
a b

Mc d

)
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gives a bijection where

Γ0(M,m) =

{(
a mb

Mc d

)
∈ Γ0(M)

}
.

Proof

The proof amounts to showing that the cardinality of Γ0(M,m)\Γ0(M) is the

same as the cardinality of Γ0(M)\Δ∗
M,0(m) and then showing that the map ϕM

is injective by using the explicit coset representatives given for Γ0(M,m)\Γ0(M).

Write M =
∏r

i=1 p
ei and m =

∏r
i=1 p

fi where the ei’s and fi’s are nonnegative

integers. One has that

#
(
Γ0(M)\ΔM,0(m)

)
=

r∏
i=1

#
(
Γ0(M)\ΔM,0(p

fi
i )
)

and so

#
(
Γ0(M)\Δ∗

M,0(m)
)
=

r∏
i=1

#
(
Γ0(M)\Δ∗

M,0(p
fi
i )
)
.

Thus, we only need to calculate

#
(
Γ0(M)\Δ∗

M,0(p
f )
)

for a prime p. This breaks into two cases depending upon whether p divides M

or not. The main input is the fact that

Γ0(M)\ΔM,0(m) =

{(
a b

0 d

)
: ad=m,gcd(a,M) = 1,0≤ b≤ d− 1

}
.

Using this, one sees that if p |M , then

Γ0(M)\Δ∗
M,0(p

f ) =

{
1 b

0 pf
: 0≤ b < pf

}
,

and so there are pf elements. If p �M , then one shows by induction on f and

counting as above that

#
(
Γ0(M)\Δ∗

M,0(p
f )
)
= pf + pf−1.

Recall that the map

λT : SL2(Z)→ SL2(Z/TZ)

is surjective with kernel Γ(T ). From this, one sees that there is a bijection between

Γ0(M,m)\Γ0(M) and λT (Γ0(M,m))\λT (Γ0(M)) where T = lcm(M,m). More-

over, one has that

SL2(Z/TZ)∼=
∏
pf‖T

SL2(Z/p
fZ).

Thus, one only needs to work with prime powers to compute the cosets. Write

M = pe and m= pf for nonnegative integers e, f . We break into cases for this:
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(1) Suppose that e = 0. In this case λT (Γ0(M,m))\λT (Γ0(M)) =

λT (Γ
0(m))\λT (SL2(Z)). In this case the coset representatives are given by

(
1 b
0 1

)
for 0≤ b < pf and

(
1 1

(1+b)p−1 (1+b)p

)
for 0≤ b < pf−1 (see [7, Section 3.7]).

(2) Suppose that e is positive. In this case the representatives are given by

{
(
1 b
0 1

)
: 0≤ b < pf}.

Thus, the cardinalities match up and the map ϕM is clearly injective. �

PROPOSITION 4.5

Let V ∗
m : Jc

κ,m(Γ0(M)J )→ Jc
κ,1(Γ0(M)J ) be the adjoint of Vm with respect to the

Petersson inner product. Let ψ ∈ Jc
κ,m(Γ0(M)J) with

ψ(τ, z) =
∑

D<0,r∈Z
D≡r2(4m)

c(D,r)e
(r2 −D

4m
τ + rz

)
.

The action of V ∗
m on Fourier coefficients is given by

V ∗
mψ(τ, z) =

∑
D<0,r∈Z
D≡r2(4)

( ∑
d|m

gcd(d,M)=1

dκ−2
∑

s∈S(r,d,D)

c
(m2

d2
D,

m

d
s
))

· e
(r2 −D

4
τ + rz

)
,

where S(r, d,D) = {s (mod 2d) : s≡ r (mod 2), s2 ≡D (mod 4d)}.

Proof

The proof here is analogous to the one given in [14] for the level 1 case. We

include a proof for M ≥ 1 and square-free here with more details for the reader’s

convenience. Let φ ∈ Jc
κ,1(Γ0(M)J ). Given a ∈ C, write φa(τ, z) for the function

φ(τ, az). For m′ |m, we write m/m′ =� to denote that m/m′ is a perfect square.

One has immediately from the definition and the lemma above that

Vmφ =mκ/2−1
∑

g∈Γ0(M)\ΔM,0(m)

φ√
m|κ,m

( g√
m

)

=mκ/2−1
∑
m′|m

m/m′=�

∑
g∈Γ0(M)\Δ∗

M,0(m)

φ√
m|κ,m

( g√
m′

)

=mκ/2−1
∑
m′|m

m/m′=�

∑
g∈Γ0(M,m)\Γ0(M)

φ√
m|κ,m

(
1√
m′ 0

0
√
m′

)
g.

Note that φ√
m|κ,m

( 1√
m′ 0

0
√
m′

)
∈ Jc

κ,m(Γ0(M,m)J).
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Given φ ∈ Jc
κ,1(Γ0(M)J ) and ψ ∈ Jc

κ,m(Γ0(M)J ),

〈Vmφ,ψ〉 =mκ/2−1
∑
m′|m

m/m′=�

∑
g∈Γ0(M,m)\Γ0(M)

〈
φ√

m|κ,m

(
1√
m′ 0

0
√
m′

)
g,ψ

〉

=mκ/2−1
∑
m′|m

m/m′=�

[
Γ0(M) : Γ0(M,m)

]〈
φ√

m|κ,m

(
1√
m′ 0

0
√
m′

)
, ψ

〉
,

where we have used 〈φ | γ,ψ〉 = 〈φ,ψ | γ−1〉 and ψ|κ,mg = ψ as ψ has level

Γ0(M)J . Note that ψ 1√
m
|κ,1
(√m′ 0

0 1√
m′

)
∈ Jc

κ,1(Γ0(M,m)J). Moreover,〈
φ√

m|κ,m

(
1√
m′ 0

0
√
m′

)
, ψ

〉

=

〈
φ,ψ 1√

m
|κ,1

(√
m′ 0

0 1√
m′

)〉
.

Observe that we can write〈
φ√

m|κ,m

(
1√
m′ 0

0
√
m′

)
, ψ

〉

=

〈
φ,ψ 1√

m
|κ,1

(√
m′ 0

0 1√
m′

)〉

=
1

m′2[Γ0(M) : Γ0(M,m′)]

×
∑

X∈(Z/m′Z)2

∑
g∈Γ0(M,m′)\Γ0(M)

〈
φ,ψ 1√

m
|κ,1

(√
m′ 0

0 1√
m′

)
gX

〉
.

Thus, by essentially reversing the above argument we obtain that

〈Vmφ,ψ〉=
〈
φ,mκ/2−3

∑
X∈(Z/mZ)2

∑
g∈Γ0(M,m)\Γ0(M)

ψ 1√
m
|κ,1
( gX√

m

)〉
.

One then checks that in fact

mκ/2−3
∑

X∈(Z/mZ)2

∑
g∈Γ0(M)\Δ∗

M,0(m)

ψ 1√
m
|κ,1
( gX√

m

)
∈ Jc

κ,1

(
Γ0(M)J

)
,

and so we obtain the formula for V ∗
m : Jc

κ,m(Γ0(M)J )→ Jc
κ,1(Γ0(M)J ).

Thus, it just remains to compute the Fourier expansion of V ∗
mψ. Let ψ ∈

Jc
κ,m(Γ0(M)J ) with Fourier expansion given by

ψ(τ, z) =
∑

D<0,r∈Z
D≡r2(4)

c(D,r)e
(r2 −D

4m
τ + rz

)
.
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We use the same representatives for Γ0(M)\ΔM,0(m) as above. Thus,

V ∗
mψ(τ, z) =mκ/2−3

∑
λ,μ(m)

∑
ad=m

gcd(a,M)=1
b(d)

(√m

d

)κ

· e(λ2τ + 2λz)ψ
(aτ + b

d
,
z + λτ + μ

d

)
=mκ−3

∑
λ,μ(m)

∑
ad=m

gcd(a,M)=1
b(d)

d−κ

×
∑

D<0,r∈Z
D≡r2(4m)

c(D,r)e
((r2 −D

4m

a

d
+

λr

d
+ λ2

)
τ
)

· e
(( r

d
+ 2λ

)
z +

r2 −D

4m

b

d
+

rμ

d

)
.

Note that

∑
μ(m)
b(d)

e
(r2 −D

4m

b

d
+

rμ

d

)
=

{
md if d | r and d | (r2 −D)/(4m),

0 otherwise.

Setting r1 = dr and D1 = d2D, we obtain that

V ∗
mψ(τ, z) =mκ−2

∑
λ(m)

∑
d|m

gcd(m
d ,M)=1

d1−κ
∑

D1<0,r1∈Z
D1≡r21(4m/d)

c(d2D1, dr1)

· e
( (r1 + 2λ)2 −D1

4
τ + (r1 + 2λ)z

)
.

Letting r2 = r1 + 2λ, we have that

V ∗
mψ(τ, z) =mκ−2

∑
λ(m)

∑
d|m

gcd(m
d ,M)=1

d1−κ
∑

D1<0,r2∈Z
D1≡(r2−2λ)2(4m/d)

c
(
d2D1, d(r2 − 2λ)

)

· e
(r22 −D1

4
τ + r2z

)
.

We can write

λ≡ s+
m

d
s′ (mod m),

where s runs over Z/(m/d)Z and s′ runs over Z/dZ. We immediately obtain

d(r2 − 2λ)≡ d(r2 − 2s) (mod 2m), D1 ≡ (r2 − 2s)2 (mod 4m/d).

We now use the fact that the coefficients c(D,r) depend only on the pair (D,r)

with r (mod 2m) and D ≡ r2 (mod 4m) to write
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V ∗
mψ(τ, z) =mκ−2

∑
d|m

gcd(m
d ,M)=1

d2−κ
∑

s(m/d)

∑
D1<0,r1∈Z

D1≡(r2−2s)2(4m/d)

c
(
d2D1, d(r2 − 2s)

)

· e
(r22 −D1

4
τ + r2z

)
.

Finally, we change variables and replace D1 by D, d by m/d, and r2 − 2s by s

to obtain that

V ∗
mψ(τ, z) =

∑
D<0,r∈Z
D≡r2(4)

( ∑
d|m

gcd(d,M)=1

dκ−2
∑

s∈S(r,d,D)

c
(m2

d2
D,

m

d
s
))

· e
(r2 −D

4
τ + rz

)
,

where S(r, d,D) = {s (mod 2d) : s≡ r (mod 2), s2 ≡D (mod 4d)}. �

PROPOSITION 4.6

The map V ∗
mVm : Jc

κ,1(Γ0(M)J )→ Jc
κ,1(Γ0(M)J ) is given by

V ∗
mVm =

∑
d|m

gcd(d,M)=1

ς(d)dκ−2TJ

(m
d

)
,

where TJ (n) is the nth Hecke operator on Jc
κ,1(Γ0(M)J ) (we write UJ(p) for

TJ (p) if p |M) and

ς(d) = d
∏
p|d

(
1 +

1

p

)
.

Proof

The proof of this proposition follows along the same lines as the proof of the anal-

ogous result in the M = 1 case given in [14]. Note that it is enough to check this

fact on Fourier coefficients indexed by fundamental discriminants, as is pointed

out in [14]. We show this for a representative case that is not too computationally

cumbersome, but leave the proof of the general case to the reader.

Let φ ∈ Jc
κ,1(Γ0(M)J ), and put ψ = Vmφ, ϕ= V ∗

mψ. Write cφ for the Fourier

coefficients of φ, write cψ for the Fourier coefficients of ψ, and write cϕ for the

Fourier coefficients of ϕ.

We begin by recalling the definition of the action of TJ (p) and UJ(p) on the

Fourier coefficients indexed by fundamental discriminants. Let φ ∈ Jc
κ,1(Γ0(M)J )

with

φ(τ, z) =
∑

D<0,r∈Z
D≡r2(4)

cφ(D,r)e
(r2 −D

4
τ + rz

)
.

Then

cUJ (p)φ(D,r) = cφ(p
2D,pr)
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and

cTJ (p)φ(D,r) = cφ(p
2D,pr) + χD(p)pκ−2cφ(D,r),

where χD is the quadratic character associated to the fundamental discrimi-

nant D.

Consider the case where m= pq with p |M , q �M . In this case∑
d|m

gcd(d,M)=1

ς(d)dκ−2TJ

(m
d

)
= TJ(m) + qκ−2(q+ 1)UJ(p)

= TJ(q)UJ (p) + qκ−2(q+ 1)UJ(p).

We have that the (D,r)th Fourier coefficient of (TJ(m) + qκ−2(q + 1)UJ(p))φ is

given by

cφ(m
2D,mr) + qκ−2

(
1 + q+ χD(q)

)
cφ(p

2D,pr).

We now calculate the (D,r)th Fourier coefficient of ϕ. Observe that

cψ(D,r) = cφ(D,r) + qκ−1cφ

(D
q2

,
r

q

)
.

Using the above formula for V ∗
m on the Fourier coefficients we obtain that

cϕ(D,r) =
∑
d|m

gcd(d,M)=1

dκ−2
∑

s∈S(r,d,D)

cψ

(m2

d2
D,

m

d
s
)

=
∑

s∈S(r,1,D)

cψ(m
2D,ms) + qκ−2

∑
s∈S(r,q,D)

cψ(p
2D,ps).

Observe that ∑
s∈S(r,1,D)

cψ(m
2D,ms) = cψ(m

2D,mr)

= cφ(m
2D,mr) + qκ−1cφ(p

2D,pr).

For the second summation we have that∑
s∈S(r,q,D)

cψ(p
2D,ps) =

∑
s∈S(r,q,D)

(
cφ(p

2D,ps) + qκ−1cφ

(p2D
q2

,
ps

q

))

=
∑

s∈S(r,q,D)

cφ(p
2D,ps),

where we used that cφ(x, y) = 0 unless x and y are both integers, and for p2D/q2

to be an integer we must have q2 |D, which cannot happen because D is assumed

to be a fundamental discriminant so it cannot be divisible by the square of a

prime. Hence ∑
s∈S(r,q,D)

cφ(p
2D,ps) = cφ(p

2D,pr)
∑

s∈S(r,q,D)

1

=
(
1 + χD(q)

)
cφ(p

2D,pr)
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as the sum is counting whether D is a square modulo q or not. Thus, combining

these, we obtain that

cϕ(D,r) = cφ(m
2D,mr) + qκ−2

(
1 + q+ χD(q)

)
cφ(p

2D,pr),

which is exactly what we were trying to prove. �

Let F = VMφ for φ ∈ Jc
κ,1(Γ0(M)J ). Then

DF,F (s) = ζM (2s− 2κ+ 4)
∑
m≥1

〈Vmφ,Vmφ〉m−s.

Using the previous proposition we calculate

〈Vmφ,Vmφ〉 = 〈V ∗
mVmφ,φ〉

=
〈 ∑

d|m
gcd(d,M)=1

ς(d)dκ−2TJ

(m
d

)
φ,φ
〉

=
∑
d|m

gcd(d,M)=1

ς(d)dκ−2λf

(m
d

)
〈φ,φ〉,

where we recall that TJ(n)φ= λf (n)φ. Thus,

DF,F (s) = ζM (2s− 2κ+ 4)〈φ,φ〉
∑
m≥1

( ∑
d|m

gcd(d,M)=1

ς(d)dκ−2λf

(m
d

))
m−s.

If we set

A(s) =
∑
d≥1

gcd(d,M)=1

a(d)d−s,

B(s) =
∑
t≥1

b(t)t−s,

and

C(s) =
∑
m≥1

( ∑
dt=m

gcd(d,M)=1

a(d)b(t)
)
m−s,

then

C(s) =A(s)B(s).

We can apply this with a(d) = ς(d)dκ−2 and b(t) = λf (t) to obtain that

DF,F (s) = ζM (2s− 2κ+ 4)〈φ,φ〉
( ∑

d≥1
gcd(d,M)=1

ς(d)d−s+κ−2
)(∑

t≥1

λf (t)t
−s
)

= ζM (2s− 2κ+ 4)〈φ,φ〉L(s, f)
( ∑

d≥1
gcd(d,M)=1

ς(d)d−s+κ−2
)
.
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One can check immediately by expanding the right-hand side that∑
d≥1

gcd(d,M)=1

ς(d)d−s =
ζM (s− 1)ζM (s)

ζM (2s)
.

Thus,

DF,F (s) = ζM (s− κ+ 1)ζM (s− κ+ 2)〈φ,φ〉L(s, f).

In particular, taking the residue of each side at s= κ we obtain that

res
s=κ

DF,F (s) = res
s=1

ζM (s)ζM (2)〈φ,φ〉L(κ, f)

=
π2

6

(∏
p|M

(1− p−1)2(1 + p−1)
)
〈φ,φ〉L(κ, f).

We now combine this with (1), (6), and (11) to obtain the following corollary.

COROLLARY 4.7

Let κ ≥ 2 be an even integer, let M be an odd square-free integer, and let f ∈
Snew
2κ−2(Γ0(M)) be a newform. Let Ff ∈ Sκ(Γ

(2)
0 (M)) be the Saito–Kurokawa lift

of f . Then we have that

〈Ff , Ff 〉=Aκ,M

|aθalg
κ,D(f)(|D|)|2

|D|κ−3/2

L(κ, f)

πL(κ− 1, f,χD)
〈f, f〉,

where

Aκ,M =
MκζM (4)ζM (1)2(κ− 1)(

∏
p|M (1 + p2)(1 + p−1))

2ν(M)+3[Γ0(M) : Γ0(4M)][Sp4(Z) : Γ
(2)
0 (M)]

.

One should note that one can give a similar expression for general odd M that

depends upon the function h(p1, . . . , pn) which shows up in the calculation of the

residue of the Eisenstein series Es,M (Z) above. As we will only be interested in

the case of M odd and square-free, we restrict our attention to this case.
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