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ring of F4/T
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Abstract We determine the T -equivariant integral cohomology of F4/T combinatori-

ally by the Goresky, Kottwitz, and MacPherson (GKM) theory, where T is a maximal

torus of the exceptional Lie group F4 and acts on F4/T by the left multiplication.

1. Introduction and statement of the result

Let G be a compact connected Lie group, and let T be its maximal torus. The

homogeneous space G/T is a flag variety and it plays an important role in topol-

ogy, algebraic geometry, representation theory, and combinatorics. In particular,

the T -equivariant integral cohomology ring H∗
T (G/T ) =H∗(ET ×T G/T ) is espe-

cially important, where T acts on G/T by the left multiplication.

Goresky, Kottwitz, and MacPherson [GKM] gave a powerful method to deter-

mine the equivariant cohomology with Q-coefficients of some good spaces. It is

called the GKM theory. Let us explain how the Goresky, Kottwitz, and MacPher-

son (GKM) theory works in our situation. Since the fixed point set (G/T )T is

identified with the Weyl group W (G), the inclusion i : (G/T )T →G/T induces

the map

i∗ : H∗
T (G/T )→H∗

T

(
(G/T )T

)
=

∏
W (G)

H∗(BT ) =Map
(
W (G),H∗(BT )

)
.

Upon tensoring with Q, i∗ is injective by the localization theorem (see

[H, Theorem (III.1)]). The GKM theory gives a way to describe the image

of this map i∗, which is restated by Guillemin and Zara [GZ] as follows. The

image of i∗ is completely determined by a graph with additional data obtained

from G. Precisely they defined the “cohomology” ring of the graph as a subring of

Map(W (G),H∗(BT )) and showed that it coincides with the image of i∗. This

graph is called a GKM graph. Harada, Henriques, and Holm [HHH] showed that,

with integer coefficients, i∗ is injective and its image coincides with the cohomol-

ogy of the GKM graph.

By concrete computations by the GKM theory, for a simple Lie group G

of classical types and of type G2, Fukukawa, Ishida, and Masuda [FIM] and
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Fukukawa [F] determined the cohomology ring of the GKM graph of G/T . Hence

they determined the equivariant integral cohomology ring H∗
T (G/T ) for a Lie

group G of types A, B, D, and G2. In this paper we determine the T -equivariant

integral cohomology ring of F4/T by the GKM theory.

For x = (x1, . . . , xn), let ei(x) denote the ith elementary symmetric poly-

nomial in x1, . . . , xn. Put xk = (xk
1 , . . . , x

k
n). For a linear transformation α of

Rx1 ⊕ · · · ⊕ Rxn, let αx = (αx1, . . . , αxn). Then ei(x
k) and ei(αx) denote the

ith elementary symmetric polynomial in xk
1 , . . . , x

k
n and αx1, . . . , αxn, respec-

tively. The following theorem is the main result of this paper. In this theo-

rem t = (t1, t2, t3, t4), τ = (τ1, τ2, τ3, τ4), and ρ is the linear transformation of

Rt1 ⊕ · · · ⊕Rt4 defined as (3.2).

THEOREM 1.1

Let T be a maximal torus of F4 which acts on F4/T by the left multiplication.

Then the T -equivariant integral cohomology ring of F4/T is given as

H∗
T (F4/T )∼= Z[ti, γ, τi, γi, ω | 1≤ i≤ 4]/(r′1,Ri, r2i, r12 | 1≤ i≤ 4),

where |ti|= |γ|= |τi|= 2, |γi|= 2i, |ω|= 8,

r′1 = e1(t)− 2γ, Ri = ei(τ)− ei(t)− 2γi (i= 1,2,3),

r12 = ω
(
ω− e4(ρt)

)(
ω+ e4(ρ

2t)
)
, R4 = e4(τ)− e4(t)− 2γ4 − ω,

r2 =
2∑

j=1

(−1)jγj
(
γ2−j + e2−j(t)

)
, r4 =

4∑
j=1

(−1)jγj
(
γ4−j + e4−j(t)

)
− ω,

r6 =
4∑

j=2

(−1)jγj
(
γ6−j + e6−j(t)

)
+ (γ2 + γ2)ω,

r8 = γ4
(
γ4 + e4(t)

)
+ ω2 +

(
γ4 − e4(ρt)

)
ω.

The ordinary integral cohomology ring H∗(F4/T ) was determined by Toda and

Watanabe [TW]. We can obtain the integral cohomology ring of F4/T as a corol-

lary of Theorem 1.1 as follows. There is a fibration sequence

F4/T ET ×T F4/T
p

BT.

Since the projection p : ET ×T F4/T →BT restricts to p ◦ i : ET ×T (F4/T )
T →

BT , where i is the inclusion ET ×T (F4/T )
T → ET ×T F4/T , the induced

map (p ◦ i)∗ : H∗(BT ) → H∗(ET ×T (F4/T )
T ) = Map(W (F4),H

∗(BT )) sends

elements of H∗(BT ) to constant functions. In Theorem 1.1, t1, t2, t3, t4, and γ

correspond to constant functions (see Section 4). Since the cohomology of F4/T

and BT have vanishing odd parts, the Serre spectral sequence of the fibration p

collapses at the E2-term. Hence H∗(F4/T )∼=H∗
T (F4/T )/(t1, t2, t3, t4, γ).
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COROLLARY 1.1 ([TW, THEOREM A])

The integral cohomology ring of F4/T is given as

H∗(F4/T )∼= Z[τi, γ1, γ3, ω | 1≤ i≤ 4]/(r1, r2, r3, r4, r6, r8, r12),

where

r1 = 2γ1 − e1(τ), r2 = 2γ2
1 − e2(τ),

r3 = 2γ3 − e3(τ), r4 = e4(τ)− 2γ1e3(τ) + 2γ4
1 − 3ω,

r6 = −γ2
1e4(τ) + γ2

3 , r8 = 3e4(τ)γ
4
1 − γ8

1 + 3ω
(
ω+ e3(τ)γ1

)
,

r12 = ω3.

Corollary 1.1 will be proved in Section 8. Throughout this paper, all cohomology

groups and rings will be taken with integer coefficients.

2. GKM graph and its cohomology

Let G be a compact connected Lie group, and let T be its maximal torus. Special-

izing and abstracting the work of Goresky, Kottwitz, and MacPherson [GKM],

Guillemin and Zara [GZ] introduced a certain graph to each of whose edge an

element of H2(BT ) is given and showed that the T -equivariant cohomology of

G/T with complex coefficients is recovered from this graph. Let us introduce this

special graph. Recall that there is a natural identification

Hom(T,S1)∼=H2(BT ),

where the left-hand side is the set of weights of G. Let W (G) and Φ(G) denote the

Weyl group and the root system of G, respectively. Since every root is a weight, we

regard Φ(G)⊂H2(BT ). There is a canonical action of the Weyl group W (G) on

Hom(T,S1) and it restricts to Φ(G). We denote this action as wα for w ∈W (G)

and α ∈H2(BT ). Recall that, to each α ∈ Φ(G), one can assign a reflection σα

which is an element of the Weyl group W (G).

DEFINITION 2.1

The GKM graph of G/T is the Cayley graph of W (G) with respect to a generat-

ing set {σα ∈W (G) | α ∈ Φ(G)} which is equipped with the cohomology classes

±wα ∈H2(BT ) to the edge ww′ satisfying w′ = wσα. We call ±wα the label of

the edge ww′.

The ambiguity of the sign of the label ±wα occurs from the equation w′α =

wσαα=−wα. Let us introduce the cohomology of the GKM graph. Consider a

function f :W (G)→H∗(BT ) between sets. We say that f satisfies the GKM

condition or f is a GKM function if, for any w ∈W (G) and α ∈Φ(G),

f(w)− f(wσα) ∈ (wα)⊂H∗(BT ),

where (x1, . . . , xn) means the ideal generated by x1, . . . , xn. It is easy to see that

all GKM functions form a subring of
∏

W (G)H
∗(BT ), where we identify the set
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of all functions W (G)→H∗(BT ) with
∏

W (G)H
∗(BT ). Since the GKM graph of

G/T has W (G) as its vertex set, a GKM function assigns an element of H∗(BT )

to each vertex of the GKM graph.

DEFINITION 2.2

Let G be the GKM graph of G/T . The cohomology ring H∗(G) is defined as the

subring of
∏

W (G)H
∗(BT ) consisting of all GKM functions.

Guillemin and Zara [GZ, Theorem 1.7.3] restated an important theorem of the

GKM theory as

H∗
T (G/T ;C)∼=H∗(G)⊗C.

Harada, Henriques, and Holm refined this result to the integral cohomology. More

precisely, we have the following.

THEOREM 2.1 ([HHH, THEOREM 3.1 AND LEMMA 5.2])

Suppose the Lie group G is simple, and let G be the GKM graph of G/T . If G is

not of type C, then there is an isomorphism

H∗
T (G/T )∼=H∗(G).

3. The GKM graph of F4/T

In this section we describe and analyze the GKM graph of F4/T . First of all

let us choose a maximal torus of F4. Let T 4 be the standard maximal torus of

SO(9), and let t1, t2, t3, t4 ∈H2(BT 4) be the canonical basis. For the universal

covering μ : Spin(9) → SO(9) let T = μ−1(T 4). Then T is a maximal torus of

Spin(9). Since Spin(9) is a Lie subgroup of F4 (see [A, Chapters 8, 9, and 14]), T

is also a maximal torus of F4. We fix a maximal torus of F4 to T . Let ti denote

μ∗(ti) ∈H2(BT ). By definition we have that

H∗(BT ) = Z[t1, t2, t3, t4, γ]/
(
2γ − e1(t)

)
.

To describe the Weyl group W (F4) we start with the root system of F4. The
root system Φ(F4) is given as

Φ(F4) =
{
±(ti + tj),±(ti − tj),±tk,

1

2
(±t1 ± t2 ± t3 ± t4)

∣∣∣ 1≤ i < j ≤ 4,1≤ k ≤ 4
}
.

The roots ±(ti + tj) and ±(ti − tj) are called long roots, and ±tk and 1
2 (±t1 ±

t2 ± t3 ± t4) are called short roots. Put

α1 = t2 − t3, α2 = t3 − t4,

α3 = t4, α4 =
1

2
(t1 − t2 − t3 − t4).

Then the Dynkin diagram of F4 is as follows:

α1 α2 α3 α4
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Then W (F4) is generated by the reflections σαi for i= 1,2,3,4. Since Spin(8) is

a Lie subgroup of F4, the root system of Spin(8) is contained in Φ(F4), which is

given as

Φ
(
Spin(8)

)
=
{
±(ti + tj),±(ti − tj)

∣∣ 1≤ i < j ≤ 4
}
.

It consists of all the long roots of the root system Φ(F4). Then the Weyl group

W (Spin(8)) is generated by the reflections associated with the long roots, and

W (Spin(8)) is a subgroup of W (F4).

Put W =W (Spin(8)). The vertex set W (F4) of the GKM graph of F4/T is

decomposed into six cosets by the next theorem.

THEOREM 3.1 ([A, THEOREM 14.2])

The Weyl group W of Spin(8) is a normal subgroup of W (F4) and there is an

isomorphism W (F4)/W ∼= S3, where Sn is the symmetric group on n-letters.

Moreover, W (F4)/W permutes the three root pairs

(3.1) ±1

2
(t1 + t2 + t3 − t4), ±1

2
(t1 + t2 + t3 + t4), ±t4.

Let us describe the representatives of W (F4)/W . First we define an element ρ of

W (F4) as

(3.2) ρ= σα3σα2σα1σα0σα3σα2σα1σα3σα2σα4 ,

where α0 denotes the root t1 − t2 of Spin(8). By a straightforward calculation,

we have that

ρti =

{
−γ + ti, i= 1,2,3,

γ − t4, i= 4,
(3.3)

ρ2ti =

{
−γ + t4 + ti, i= 1,2,3,

−γ, i= 4,

and

ρ3 = id.

By the above equations the root system Φ(F4) can be rewritten as

Φ(F4) =
{
±(ti + tj),±(ti − tj),±ρεtk

∣∣ 1≤ i < j ≤ 4,1≤ k ≤ 4,0≤ ε≤ 2
}
.

Note that ρ permutes the three root pairs (3.1) cyclically and that κ= σt4 inter-

changes ±1
2 (t1 + t2 + t3 − t4) = ±ρt4 and ±1

2 (t1 + t2 + t3 + t4) = ±ρ2t4. Hence

W (F4)/W ∼=S3 is generated by ρ and κ. Since the equation

(3.4) κρ= ρ2κ

holds, we have a coset decomposition

W (F4) =
∐

ε=0,1,2

δ=0,1

ρεκδW.
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We will describe the GKM graph F4 of F4/T . There are 24 (= #Φ(F4)/2)

edges out of each vertex of F4. Half of these edges correspond to the long roots

±(ti ± tj) and the other half correspond to the short roots ±ρεti.

The subgraph induced by W is the GKM graph G of Spin(8)/T and it is well

understood from [FIM]. Let ρεκδG be the GKM subgraph induced by ρεκδW

for ε = 0,1,2 and δ = 0,1. For any ε and δ, the induced subgraph ρεκδG is

isomorphic to G as graphs. Indeed, if an edge ww′ in G satisfies w′ = wσα for a

root α of Spin(8), then ρεκδw and ρεκδw′ satisfy ρεκδw′ = ρεκδwσα, and vice

versa. Moreover, labels of edges of ρεκδG are also determined by G as follows.

When an edge ww′ has a root ±β as its label, the label of the edge connecting

ρεκδw and ρεκδw′ is ±ρεκδβ. We remark that if an edge ww′ in ρεκδG satisfies

w′ =wσα, then α is one of the long roots.

From the above argument, it is sufficient to consider the edges connecting

two of the ρεκδG’s, which correspond to the short roots. Easy calculations show

that

σt4 = κ, σρt4 = ρ2κ, σρ2t4 = ρκ.

Then the GKM graph F4 has an induced subgraph below, where e denotes the

unit element of W (F4) and an element of W (F4) in each circle denotes a vertex

of F4. The labels are calculated later.

(3.5)

e

ρκ

ρ2

κ

ρ

ρ2κ

σt4

σρt4σρ2t4

σρt4

σρ2t4

σt4

σρt4

σt4

σρ2t4

We will calculate the reflection σα for a short root α to describe F4. For exam-

ple let us consider the short root ρt1 and the reflection σρt1 . By (3.3) we have

that ρt1 =
1
2 (t1 − t2 − t3 − t4) = σt2σt3(ρt4). Then σρt1 = σt2σt3σρt4σt3σt2 and

σt2σt3 ∈W . Since W is a normal subgroup of W (F4), we have that W · ρ2κW =

ρ2κW in W (F4)/W . Hence σρt1 is also contained in ρ2κW . For any i, it is shown

similarly that

σρti ∈ ρ2κW, σρ2ti ∈ ρκW,
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and obviously we have that

σti ∈ κW.

Hence, for any 0 ≤ ε, ε′ ≤ 2 and δ = 0,1, it is independent from the choice of i

and w ∈ ρε
′
κδW which coset contains wσρεti .

Let us calculate the label of the edge connecting the vertices κ and ρ in the

GKM subgraph (3.5), which corresponds to a short root ρt4. The label of the

edge turns out to be ±κ(ρt4). It follows from (3.4) that

±κ(ρt4) =±ρ2κt4 =±ρ2t4.

One can make similar calculations of the labels of other edges in the GKM sub-

graph (3.5). For any w ∈W , w fixes three sets of short roots {±ti}4i=1, {±ρti}4i=1,

and {±ρ2ti}4i=1 since w permutes ti’s and changes the signs of an even number

of ti’s. Hence the label ±ρεκδw(α) is calculated similarly for any short root α.

We can now describe a schematic diagram of F4 as below.

(3.6)

G

ρκG

ρ2G

κG

ρG

ρ2κG

(ti, σtj )

(ρti, σtj )(ρ2ti, σtj )

(ρti, σρtj )

(ρ2ti, σρtj )

(ti, σρtj )(ti, σρ2tj )

(ρti, σρ2tj )

(ρ2ti, σρ2tj )

The meaning of this diagram is given as follows. For example, G and ρG are not

adjacent in this diagram. It means that, for any vertices w ∈W and w′ ∈ ρW ,

they are not adjacent. On the other hand, ρG and ρκG are adjacent in this

diagram, and a pair (ρti, σtj ) is assigned to the edge. The first entry ρti is a root

and the second entry σtj is a reflection. If two vertices w ∈ ρW and w′ ∈ ρκW

are adjacent in F4, then they satisfy w′ =wσtj for some j, and the edge ww′ is

labeled by ρti for some i. The label ±ρti is equal to ±wtj . Especially each vertex

of ρG is connected to four vertices of ρκG by the edges corresponding to the short

roots tj (1≤ j ≤ 4), and vice versa. The labels of these edges are ±ρti (1≤ i≤ 4).

The ρti’s appear as the labels of the edges out of each vertex of ρG. The situation
is the same for any two connected subgraphs in the schematic diagram (3.6).



710 Takashi Sato

4. Proof of the main theorem

There is a fibration sequence

(4.1) F4/T ET ×T F4/T BT.

The cohomology rings of F4/T and BT are free as Z-modules and have vanishing

odd parts. As shown in Section 3, H∗(BT ) has five generators t1, t2, t3, t4, and γ

of degree 2 with one relation of degree 2. According to [TW], H∗(F4/T ) has τ1,

τ2, τ3, τ4, and γ1 of degree 2, γ3 of degree 6, and ω of degree 8 as its generators,

and H∗(F4/T ) has seven relations of degrees 2, 4, 6, 8, 12, 16, and 24. We can

expect that H∗
T (F4/T ) has corresponding generators and relations. It is easy to

see that the Poincaré series of F4/T and BT are

(1 + x8 + x16)

4∏
i=1

1− x4i

1− x2
and

1

(1− x2)4
,

respectively. Hence we obtain the following proposition by the Serre spectral

sequence for (4.1).

PROPOSITION 4.1

We have that H∗
T (F4/T ) is free as a Z-module and its Poincaré series is

P
(
H∗(ET ×T F4/T ), x

)
=

1

(1− x2)4
(1 + x8 + x16)

4∏
i=1

1− x4i

1− x2
.

By the Serre spectral sequence for the fibration sequence (4.1), we see that gen-

erators of H∗
T (F4/T ) come from the cohomology of F4/T or BT . Let us define

the corresponding GKM functions ti, γ, τi, γ1, and γ3 ∈Map(W (F4),H
∗(BT ))

for 1 ≤ i ≤ 4, and let us define GKM functions γ2 and γ4 to state our results

more simply. For any w ∈W (F4),

ti(w) = ti (i= 1, . . . ,4),

γ(w) = γ,

τi(w) = w(ti) (i= 1, . . . ,4),

γj =
1

2

(
ej(τ)− ej(t)

)
(j = 1,2,3),

and

γ4(w) =

⎧⎪⎪⎨
⎪⎪⎩
0, w ∈W 
 ρ2κW,

e4(ρ
2t), w ∈ ρ2W 
 ρκW,

−e4(t), w ∈ ρW 
 κW.
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Table 1. The value of 1
2 (ej(ρ

εt)− ej(t)).

j = 1 j = 2 j = 3

ε= 1 −γ − t4 −γ2 + t24 t4γ(γ − t4)− t4(t1t2 + t2t3 + t3t1)

ε= 2 −2γ + t4 (−2γ + t4)t4 γ3 − t4γ
2 − γ(t1t2 + t2t3 + t3t1)

Moreover, we define ω = e4(τ)− e4(t)− 2γ4. Then

(4.2) ω(w) =

⎧⎪⎪⎨
⎪⎪⎩
0, w ∈W 
 κW,

−e4(ρ
2t), w ∈ ρW 
 ρκW,

e4(ρt), w ∈ ρ2W 
 ρ2κW.

Since the ti’s and γ are constant functions, they are GKM functions.

A straightforward calculation shows that the following relation holds:

(4.3) e4(t) + e4(ρt) + e4(ρ
2t) = 0.

By the schematic diagram (3.6) of F4, one can see that γ4 is a GKM function

since e4(ρ
εt) is the product of all ρεt1, ρ

εt2, ρ
εt3, and ρεt4 for ε = 0,1,2. The

following calculation shows that the τi’s satisfy the GKM condition. For any edge

ww′ which satisfies w′ =wσα, we have that

τi(w)− τi(w
′) = w(ti)−w′(ti)

= w
(
ti −

(
ti − 2

(ti, α)

(α,α)
α
))

= 2
(ti, α)

(α,α)
wα.

Since GKM functions form a ring, for j = 1,2,3, we see that the γj ’s are func-

tions from W (F4) to H∗(BT ) ⊗ Z[ 12 ] which satisfy the GKM condition with

Z[ 12 ]-coefficients; that is, f(w)−f(w′) ∈ (wα)⊂H∗(BT )⊗Z[ 12 ] if w
′ =wσα. The

following calculations show that the γj ’s are actually H∗(BT )-valued functions.

Let us extend ρ to an automorphism of H∗(BT ) naturally. For w ∈W 
 κW =

W (Spin(9)) and ε= 0,1,2,

γj(ρ
εw) =

1

2

(
ej(τ)− ej(t)

)
(ρεw)

=
1

2

(
ρεej

(
w(t)

)
− ej(t)

)
= ρε

(1
2

(
ej
(
w(t)

)
− ej(t)

))
+

1

2

(
ej(ρ

εt)− ej(t)
)
.

Since w only permutes the ti’s and changes their signs, it is obvious that
1
2 (ej(w(t))− ej(t)) ∈H∗(BT ). Then ρε( 12 (ej(w(t))− ej(t))) ∈H∗(BT ). On the

other hand, one can see that 1
2 (ej(ρ

εt)− ej(t)) ∈H∗(BT ) for ε = 0,1,2 as fol-

lows. When ε= 0, 1
2 (ej(ρ

εt)− ej(t)) = 0 and it is contained in H∗(BT ). When

ε= 1,2, Table 1 shows the value of 1
2 (ej(ρ

εt)− ej(t)) for j = 1,2,3. Then γj is

an H∗(BT )-valued function and then a GKM function.

The following lemma will be proved in Section 5.
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LEMMA 4.1 (SEE [FIM, LEMMA 5.4])

Let F4 be the GKM graph of F4/T . Then H∗(F4) is generated by the GKM

functions ti, γ, τi, γi, ω (i= 1,2,3,4) as a ring.

By the fibration sequence (4.1), we can expect that some relations hold in H∗(F4)

which come from the relations of H∗(BT ) and H∗(F4/T ). Proposition 4.2 claims

that the corresponding relations hold in H∗(F4).

PROPOSITION 4.2

The following relations hold in H∗(F4)⊂Map(W (F4),H
∗(BT )):

r′1 = e1(t)− 2γ = 0,(4.4)

R1 = e1(τ)− e1(t)− 2γ1 = 0,(4.5)

R2 = e2(τ)− e2(t)− 2γ2 = 0,(4.6)

R3 = e3(τ)− e3(t)− 2γ3 = 0,(4.7)

R4 = e4(τ)− e4(t)− 2γ4 − ω = 0,(4.8)

r2 =

2∑
j=1

(−1)jγj
(
γ2−j + e2−j(t)

)
= 0,(4.9)

r4 =

4∑
j=1

(−1)jγj
(
γ4−j + e4−j(t)

)
− ω = 0,(4.10)

r6 =

4∑
j=2

(−1)jγj
(
γ6−j + e6−j(t)

)
+ (γ2 + γ2)ω = 0,(4.11)

r8 = γ4
(
γ4 + e4(t)

)
+ ω2 +

(
γ4 − e4(ρt)

)
ω = 0,(4.12)

r12 = ω
(
ω− e4(ρt)

)(
ω+ e4(ρ

2t)
)
= 0.(4.13)

Proposition 4.2 is proved in Section 6. The following lemma is proved in Section 7.

LEMMA 4.2

We have that Z[ti, γ, τi, γi, ω | 1 ≤ i ≤ 4]/(r′1,Ri, r2i, r12 | 1 ≤ i ≤ 4) is free as a

Z-module, and its Poincaré series coincides with that of H∗
T (F4/T ).

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1

Let I denote the ideal (r′1,Ri, r2i, r12 | 1≤ i≤ 4) in the polynomial ring Z[ti, γ, τi,

γi, ω | 1≤ i≤ 4]. We have a surjective ring homomorphism

Z[ti, γ, τi, γi, ω | 1≤ i≤ 4]→H∗(F4)

by Lemma 4.1, and it factors through Z[ti, γ, τi, γi, ω | 1≤ i≤ 4]/I →H∗(F4) by

Proposition 4.2. It follows from Proposition 4.1 and Lemma 4.2 that H∗(F4) and
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Z[ti, γ, τi, γi, ω | 1≤ i≤ 4]/I are free as Z-modules. Moreover, Lemma 4.2 claims

that Z[ti, γ, τi, γi, ω | 1≤ i≤ 4]/I and H∗(F4) have the same rank in each degree.

Therefore the ring homomorphism Z[ti, γ, τi, γi, ω | 1 ≤ i ≤ 4]/I →H∗(F4) is an

isomorphism and Theorem 1.1 is proved by Theorem 2.1. �

5. Proof of Lemma 4.1

First we introduce some notation for the proof of Lemma 4.1. For a positive

integer n, let [n] and ±[n] be {i ∈ Z | 1≤ i≤ n} and {±i ∈ Z | 1≤ i≤ n}, respec-
tively. For 1≤ n≤ 4, let In denote an ordered n-tuple (i1, . . . , in) of elements of

[4] which does not include the same entries, and let I ′n denote an ordered n-tuple

(i′1, . . . , i
′
n) of elements of ±[4] such that |i′k| �= |i′l| for k �= l. We often regard In,

I ′n as the n-subsets of [4] by the following maps:

(i1, . . . , in) �→ {i1, . . . , in}, (i′1, . . . , i
′
n) �→

{
|i′1|, . . . , |i′n|

}
.

Let ti′ = sgn(i′)t|i′|. For ε= 0,1,2, we define a subset ρεW In
I′
n
of W (F4) as

ρεW In
I′
n
=
{
w ∈W (F4)

∣∣w ∈ ρεW
(
Spin(9)

)
,w(tik) = ρεti′k (1≤ k ≤ n)

}
.

We define I0 and I ′0 to be the empty set. Note that ρεW
In−1

I′
n−1

includes ρεW In
I′
n
and

decomposes as follows:

(5.1) ρεW
In−1

I′
n−1

=
∐

in∈[4]\In−1

ρεW
(In−1,in)
(I′

n−1,i
′
n)



∐

in∈[4]\In−1

ρεW
(In−1,in)
(I′

n−1,−i′n)
.

For a set S = {j1, . . . , jk} of natural numbers with j1 < · · ·< jk, let xS denote

a sequence (xj1 , . . . , xjk) for x= t, ρt, ρ2t, τ . For n≥ 0, j ≤ 4, and ε= 0,1,2, let

γ
(ε)
j

In
I′
n
be a function from ρεW In

I′
n
to Z[ 12 ][t1, t2, t3, t4] defined as

γ
(ε)
j

In
I′
n
=

1

2

(
ej(τ[4]\In)− ej(ρ

εt[4]\I′
n
)
)
,

where In and I ′n on the right-hand side are regarded as subsets of [4]. When

n= 0 we abbreviate γ
(ε)
j

∅
∅ by γ

(ε)
j . If j ≤ 0 or j > 4−n, then we define γ

(ε)
j

In
I′
n
= 0.

We define a function f (ε)In−1

i′n
which is useful in the proof of Lemma 4.1 as

f (ε)In−1

i′n
=

1

2

∏
k∈[4]\In−1

(τk − ρεti′n).

This function is H∗(BT )-valued on ρεW
In−1

I′
n−1

, since for any w ∈ ρεW
In−1

I′
n−1

there

exists k ∈ [4] \ In−1 such that w ∈ ρεW
(In−1,k)
(I′

n−1,i
′
n)


 ρεW
(In−1,k)
(I′

n−1,−i′n)
by the decompo-

sition (5.1), and then w(tk)− ρεti′n is equal to 0 or −2ρεti′n . Especially we have

that

f (ε)In−1

i′n
(w)

(5.2)

=

⎧⎨
⎩
0, w ∈

∐
k∈[4]\In−1

ρεW
(In−1,k)
(I′

n−1,i
′
n)
,

−ρεti′n
∏

k∈[4]\I′
n
(ρεtk − ρεti′n), w ∈

∐
k∈[4]\In−1

ρεW
(In−1,k)
(I′

n−1,−i′n)
.
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Let R denote the subring of H∗(F4) generated by the ti’s, γ, τi’s, and γi’s

(1≤ i≤ 4). The following proposition claims that this function f (ε)In−1

i′n
can be

replaced partly by an element of R.

PROPOSITION 5.1

For 1≤ n≤ 4, there is a polynomial in γ1, γ2, γ3, γ4 over H∗(BT ) which coin-

cides with the function f (ε)In−1

i′n
on ρεW

In−1

I′
n−1

.

Proposition 5.1 is a consequence of Lemmas 5.1 and 5.2 below.

LEMMA 5.1

For 1≤ n≤ 4, there is a polynomial in the γ
(ε)
j

In−1

I′
n−1

’s (1≤ j ≤ 4− (n− 1)) over

H∗(BT ) which coincides with f (ε)In−1

i′n
on ρεW

In−1

I′
n−1

.

LEMMA 5.2 ([FIM, LEMMA 5.3])

For 1 ≤ n ≤ 4 and 1 ≤ j ≤ 4 − n, there is a polynomial in γ
(ε)
1

In−1

I′
n−1

, . . . ,

γ
(ε)
4−n

In−1

I′
n−1

over H∗(BT ) which coincides with γ
(ε)
j

(In−1,in)
(I′

n−1,i
′
n)

on ρεW
(In−1,in)
(I′

n−1,i
′
n)
. More

explicitly,

γ
(ε)
j

In
I′
n
=

⎧⎪⎪⎨
⎪⎪⎩
∑j−1

k=0 γ
(ε)
j−k

In−1

I′
n−1

(−ρεti′n)
k, sgn i′n = 1,∑j−1

k=0 γ
(ε)
j−k

In−1

I′
n−1

(−ρεti′n)
k

+
∑j

k=1 ej−k(ρ
εt[4]\I′

n
)(−ρεti′n)

k, sgn i′n =−1.

Proof of Proposition 5.1

By Lemma 5.1, there is a polynomial in the γ
(ε)
j

In−1

I′
n−1

’s (1 ≤ j ≤ 4 − (n − 1))

over H∗(BT ) which coincides with f (ε)In−1

i′n
on ρεW

In−1

I′
n−1

for ε = 0,1,2. Then

by Lemma 5.2 γ
(ε)
j

(In−1,in)
(I′

n−1,i
′
n)

can be replaced by some polynomial in γ
(ε)
1

In−1

I′
n−1

, . . . ,

γ
(ε)
4−n

In−1

I′
n−1

over H∗(BT ). By a descending induction on n we reach a polynomial in

γ
(ε)
1 , γ

(ε)
2 , γ

(ε)
3 , γ

(ε)
4 over H∗(BT ) which coincides with f (ε)In−1

i′n
on ρεW

In−1

I′
n−1

for

ε= 0,1,2. Next we need to show that γj − γ
(ε)
j ∈H∗(BT ) on ρεW (Spin(9)) for

1≤ j ≤ 4 and ε= 0,1,2 to complete the proof of Proposition 5.1. By definition

we have that

γ
(ε)
j = γj +

1

2

(
ej(t)− ej(ρ

εt)
)

(j = 1,2,3).

For ε = 0,1,2 and j = 1,2,3, Table 1 shows that (ej(t)− ej(ρ
εt))/2 ∈H∗(BT )

and then γj −γ
(ε)
j ∈H∗(BT ) on ρεW (Spin(9)). By the definition of γ4 and (4.3),

we have that

γ
(0)
4 = γ4 on W

(
Spin(9)

)
,

γ
(1)
4 = γ4 + e4(t) on ρW

(
Spin(9)

)
,

γ
(2)
4 = γ4 − e4(ρ

2t) on ρ2W
(
Spin(9)

)
.
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Therefore there is a polynomial in γ1, γ2, γ3, γ4 over H∗(BT ) which coincides

with the function f (ε)In−1

i′n
on ρεW

In−1

I′
n−1

. �

Proof of Lemma 5.1

Without loss of generality, we may suppose that In−1 = (1, . . . , n− 1). Note that

ej(xS) = 0 for j >#S or j < 0, and note that we have

(5.3) ej(x1, . . . , xm−1, xm) = ej(x1, . . . , xm−1) + ej−1(x1, . . . , xm−1)xm.

By the definition of γ
(ε)
j

In−1

I′
n−1

we can expand the GKM function f (ε)In−1

i′n
as follows:

1

2

4−n∏
l=0

(τn+l − ρεti′n) =
1

2

5−n∑
j=0

ej(τ[4]\In−1
)(−ρεti′n)

5−n−j

=
1

2

5−n∑
j=0

(
2γ

(ε)
j

In−1

I′
n−1

+ ej(ρ
εt[4]\I′

n−1
)
)
(−ρεti′n)

5−n−j .

Pay attention to the sign of i′n, and recall that [4] \ I ′n−1 = {i ∈ [4] | ±i /∈ I ′n−1}.
By (5.3), the above statement is equal to

5−n∑
j=0

γ
(ε)
j

In−1

I′
n−1

(−ρεti′n)
5−n−j

+
1

2

5−n∑
j=0

(
ej(ρ

εt[4]\I′
n
) + ej−1(ρ

εt[4]\I′
n
)ρεt|i′n|

)
(−ρεti′n)

5−n−j

=

⎧⎪⎪⎨
⎪⎪⎩
∑5−n

j=0 γ
(ε)
j

In−1

I′
n−1

(−ρεti′n)
5−n−j , sgn i′n = 1,∑5−n

j=0 γ
(ε)
j

In−1

I′
n−1

(−ρεti′n)
5−n−j

+
∑4−n

j=0 ej(ρ
εt[4]\I′

n
)(−ρεti′n)

5−n−j , sgn i′n =−1. �

Proof of Lemma 5.2

The relation τin = ρεti′n holds on ρεW
(In−1,in)
(I′

n−1,i
′
n)
. Then we have that

γ
(ε)
j

In−1

I′
n−1

− γ
(ε)
j

(In−1,in)
(I′

n−1,i
′
n)

=
1

2

(
ej(τi∈[4]\In−1

)− ej(ρ
εti′∈[4]\I′

n−1
)
)
− 1

2

(
ej(τi∈[4]\In)− ej(ρ

εti′∈[4]\I′
n
)
)

=
1

2

(
ej−1(τi∈[4]\In)τin − ej−1(ρ

εti′∈[4]\I′
n
)ρεt|i′n|

)

=

⎧⎨
⎩γ

(ε)
j−1

In
I′
n
ρεti′n , sgn i′n = 1,

γ
(ε)
j−1

In
I′
n
ρεti′n + ej−1(ρ

εti′∈[4]\I′
n
)ρεti′n , sgn i′n =−1.
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Iterated use of this equation shows that

γ
(ε)
j

(In−1,in)
(I′

n−1,i
′
n)

=

⎧⎪⎪⎨
⎪⎪⎩
∑j−1

k=0 γ
(ε)
j−k

In−1

I′
n−1

(−ρεti′n)
k, sgn i′n = 1,∑j−1

k=0 γ
(ε)
j−k

In−1

I′
n−1

(−ρεti′n)
k

+
∑j

k=1 ej−k(ρ
εt[4]\I′

n
)(−ρεti′n)

k, sgn i′n =−1. �

Now we are ready to prove Lemma 4.1.

Proof of Lemma 4.1

We show that any GKM function h ∈H∗(F4) belongs to the subring R generated

by the ti’s, γ, τi’s, γi’s, and ω (1≤ i≤ 4). By the definition of ρ, the set of all

vertices W (F4) of F4 decomposes as

W (F4) =W
(
Spin(9)

)

 ρW

(
Spin(9)

)

 ρ2W

(
Spin(9)

)
.

For each ε= 0,1,2, ρεW (Spin(9)) has a filtration

ρεW I4
I′
4
⊂ · · · ⊂ ρεW In

I′
n
⊂ ρεW

In−1

I′
n−1

⊂ · · · ⊂ ρεW I0
I′
0
= ρεW

(
Spin(9)

)
.

By descending induction on n, we will show that any GKM function h can be

modified to be 0 on ρεW In
I′
n
by subtracting some GKM function in R. Moreover,

in the induction step on n, we give an induction to fill the decomposition (5.1)

of ρεW
In−1

I′
n−1

.

Let 0≤ n≤ 4. The following claim in the case where n= 0 shows that h can

be modified to be 0 on W (Spin(9)).

CLAIM 1 (n)

For any ordered n-tuples In, I
′
n and any function h from W In

I′
n
to H∗(BT ) which

satisfies the GKM condition on W In
I′
n
, there is a GKM function G ∈ R which

coincides with h on W In
I′
n
.

We show this claim by descending induction on n. For n= 4, since W I4
I′
4
is a one-

point set, the claim holds obviously. Assume that Claim 1 (n) holds, and fix In =

(i1, . . . , in) and I ′n = (i′1, . . . , i
′
n). Then we have a GKM function which coincides

with h on W In
I′
n
. Subtracting this GKM function from h, we may assume that h

vanishes on W In
I′
n
. We give an induction to fill the decomposition (5.1) of W

In−1

I′
n−1

as

follows. For any k ∈ [4] \ In, let σk denote the reflection associated with tk − tin .

Then σk interchanges tk and tin , and for any w ∈W
(In−1,k)
(I′

n−1,i
′
n)
, wσk is contained in

W
(In−1,in)
(I′

n−1,i
′
n)
. By the GKM condition, h(w)− h(wσk) = h(w) belongs to the ideal

generated by w(tin −tk) =w(tin)−ti′n = τin(w)−ti′n . Put k0, . . . , k4−n ∈ [4]\In−1

as k0 = in, ks < kt for 1≤ s < t, and {k0, . . . , k4−n} ∪ In−1 = [4].
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CLAIM 2 (t)

If h is a GKM function which vanishes on
∐

s<tW
(In−1,ks)
(I′

n−1,i
′
n)
, then there is a GKM

function G ∈R such that h coincides with
∏

s<t(τks − ti′n)G on W
(In−1,kt)
(I′

n−1,i
′
n)
.

We show this claim by induction on t (0 ≤ t ≤ 4− n). Without loss of general-

ity, we may suppose that In−1 = (1, . . . , n− 1) and k0 = in = n, k1 = n+ 1, . . . ,

k4−n = 4. We rephrase Claim 2 (t) as follows.

CLAIM 2 (k)

If h vanishes on
∐

0≤l<kW
(In−1,n+l)
(I′

n−1,i
′
n)

, then there is a GKM function G ∈R such

that h coincides with
∏

0≤l<k(τn+l − ti′n)G on W
(In−1,n+k)
(I′

n−1,i
′
n)

.

Obviously
∏

0≤l<k(τn+l − ti′n) vanishes on
∐

0≤l<kW
(In−1,n+l)
(I′

n−1,i
′
n)

. For w ∈
W

(In−1,n+k)
(I′

n−1,i
′
n)

, by the GKM condition, there is an element gw ∈ H∗(BT ) such

that

h(w) =
( ∏
0≤l<k

(τn+l − ti′n)(w)
)
gw.

One can verify that a function G′ : W
(In−1,n+k)
(I′

n−1,i
′
n)

→H∗(BT ) given by

G′(w) = gw

satisfies the GKM condition on W
(In−1,n+k)
(I′

n−1,i
′
n)

as follows. Assume that two vertices

w, w′ ∈W
(In−1,n+k)
(I′

n−1,i
′
n)

of F4 satisfy w′ = wσα for some positive root α. Then α=

ti − tj , where i < j and i, j ∈ {m ∈ Z | n≤m≤ n+ k− 1 or n+ k+ 1≤m≤ 4}.
When i < j < n+ k or n+ k < i < j, the GKM condition says that

h(w)− h(w′)

=
( ∏
0≤l<k

(
w(tn+l)− ti′n

))
G′(w)−

( ∏
0≤l<k

(
wσti−tj (tn+l)− ti′n

))
G′(w′)

=
( ∏
0≤l<k

(
w(tn+l)− ti′n

))(
G′(w)−G′(w′)

)
belongs to the ideal (w(ti − tj)). Since w(tn+l)− ti′n and w(ti − tj) are relatively

prime, G′(w)−G′(w′) also belongs to the ideal (w(ti − tj)). When i < n+ k < j,

the GKM condition says that

h(w)− h(w′)

=
( ∏
0≤l<k

(
w(tn+l)− ti′n

))
G′(w)−

( ∏
0≤l<k

(
wσti−tj (tn+l)− ti′n

))
G′(w′)

=
( ∏
0≤l<k,l �=i

(
w(tn+l)− ti′n

))

×
((
w(ti)− ti′n

)(
G′(w)−G′(w′)

)
+
(
w(ti)−w(tj)

)
G′(w′)

)
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belongs to the ideal (w(ti − tj)). Since w(tn+l)− ti′n and w(ti − tj) are relatively

prime, G′(w)−G′(w′) also belongs to the ideal (w(ti − tj)). Hence the function

G′ satisfies the GKM condition on W
(In−1,n+k)
(I′

n−1,i
′
n)

.

By (descending) induction on n there is a GKM function G ∈R such that G

and G′ coincide on W
(In−1,n+k)
(I′

n−1,i
′
n)

. Then

h−
( ∏
0≤l<k

(τn+l − ti′n)
)
G= 0 on

∐
0≤l≤k

W
(In−1,n+l)
(I′

n−1,i
′
n)

.

Therefore the induction on k proceeds.

Next we fill the other half of the decomposition (5.1). Note that, when In−1 =

(1, . . . , n− 1),

f (0)In−1

i′n
=

1

2

∏
0≤l≤4−n

(τn+l − ti′n).

Let 0≤ k′ ≤ 4− n.

CLAIM 3 (k′)

If h vanishes on
∐

0≤l≤4−nW
(In−1,n+l)
(I′

n−1,i
′
n)



∐

0≤l<k′ W
(In−1,n+l)
(I′

n−1,−i′n)
, then there is a

GKM function G ∈ R such that h coincides with f (0)In−1

i′n

∏
0≤l<k′(τn+l + ti′n)G

on W
(In−1,n+k′)
(I′

n−1,−i′n)
.

We show this claim by induction on k′. For w ∈W
(In−1,n+k′)
(I′

n−1,−i′n)
, by the GKM condi-

tion, h(w) belongs to the ideal generated by the product of the following elements

of H∗(BT ):

w(tn+l − tn+k′) = w(tn+l) + ti′n for 0≤ l < k′,

w(tn+l + tn+k′) = w(tn+l)− ti′n for 0≤ l≤ 4− n, l �= k′,

w(tn+k′) = −ti′n .

For w ∈W
(In−1,n+k′)
(I′

n−1,−i′n)
, by (5.2), there is an element gw ∈H∗(BT ) such that

h(w) = f (0)In−1

i′n
(w)

( ∏
0≤l<k′

(τn+l + ti′n)(w)
)
gw.

One can verify that a function G′ given by G′(w) = gw satisfies the GKM condi-

tion on W
(In−1,n+k′)
(I′

n−1,−i′n)
as above. By (descending) induction on n there is a GKM

function G ∈R such that G and G′ coincide on W
(In−1,n+k′)
(I′

n−1,−i′n)
. Then

h− f (0)In−1

i′n

( ∏
0≤l<k′

(τn+l + ti′n)
)
G= 0

on
∐

0≤l≤4−n

W
(In−1,n+l)
(I′

n−1,i
′
n)



∐

0≤l≤k′

W
(In−1,n+l)
(I′

n−1,−i′n)
.
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Therefore the induction on k′ proceeds. By Proposition 5.1, the function

f (0)In−1

i′n
=

1

2

∏
0≤l≤4−n

(τn+l − ti′n)

can be replaced by a polynomial in the γj ’s (1≤ j ≤ 4) over H∗(BT ). Therefore

the (descending) induction on n proceeds, and we may assume that h vanishes

on W (Spin(9)) =W 
 κW .

Next we show that, for a GKM function hwhich vanishes onW (Spin(9)), there

is a GKM function G ∈ R such that h − ωG = 0 on W (Spin(9)) 
 ρW (Spin(9)),

where ω vanishes on W (Spin(9)). Recall that the schematic diagram (3.6) says

that each w ∈ ρW 
 ρκW is adjacent to four vertices of W 
 κW , and the labels

of these edges are ρ2ti (1≤ i≤ 4) and different from each other. The GKM con-

dition says that, for w ∈ ρW (Spin(9)), h(w) belongs to the ideal (
∏4

i=1 ρ
2ti). For

w ∈ ρW (Spin(9)), there is an element gw ∈H∗(BT ) such that

h(w) =−e4(ρ
2t)gw = ω(w)gw.

It is obvious that a function G′ given by G′(w) = gw satisfies the GKM condition

on ρW (Spin(9)), since the edges in the GKM subgraph induced by ρW (Spin(9))

have the long roots or ρti as their labels and all the positive roots of F4 are rel-

atively prime in H∗(BT ). Then we claim that there is a GKM function G such

that G = G′ on ρW (Spin(9)). This claim is proved as above, changing W In
I′
n
to

ρW In
I′
n
, τks − ti′n to τks − ρti′n , and f (0)In−1

i′n
to f (1)In−1

i′n
.

Finally we show that, for a GKM function h which vanishes on W (Spin(9))

ρW (Spin(9)), there is a GKM function G ∈R such that h− ω(ω+ e4(ρ

2t))G= 0

as a GKM function on the whole W (F4), where ω + e4(ρ
2t) vanishes on

ρW (Spin(9)). It is proved as above that, for w ∈ ρ2W (Spin(9)), h(w) belongs

to the ideal (
∏4

i=1 ti
∏4

i=1 ρti). For w ∈ ρ2W (Spin(9)), there is an element gw ∈
H∗(BT ) such that

h(w) =−e4(ρt)e4(t)gw = ω(w)
(
ω(w) + e4(ρ

2t)
)
gw,

where the latter equality is due to (4.3). Then we claim that a function G′ given

by G′(w) = gw satisfies the GKM condition on ρ2W (Spin(9)), and that there is

a GKM function G such that G=G′ on ρ2W (Spin(9)). This claim is proved as

above, changing W In
I′
n
to ρ2W In

I′
n
, τks − ti′n to τks −ρ2ti′n , and f (0)In−1

i′n
to f (2)In−1

i′n
.

The proof is completed. �

6. Proof of Proposition 4.2

We prove Proposition 4.2 in a way similar to that of [FIM, Lemma 5.5].

Proof of Proposition 4.2

The relations (4.4), (4.5), (4.6), (4.7), and (4.8) hold obviously by definition, and

the relation (4.13) holds by (4.2). To show that (4.9), (4.10), (4.11), and (4.12)

hold, we claim that the following relations hold in H∗
T (F4):

e1(τ
2)− e1(t

2) = 0,(6.1)



720 Takashi Sato

e2(τ
2)− e2(t

2)− 6ω = 0,(6.2)

e3(τ
2)− e3(t

2)− e1(t
2)ω = 0,(6.3)

e4(τ
2)− e4(t

2) + 3ω2 − 2
(
e4(ρt)− e4(ρ

2t)
)
ω = 0.(6.4)

The left-hand side functions of these equations are constant on each ρεW (Spin(9))

for ε= 0,1,2. Calculations of each value on ρεW (Spin(9)) with (4.3) show that

(6.1), (6.2), (6.3), and (6.4) hold.

We show that (6.1), (6.2), (6.3), and (6.4) are divisible by 4 to deduce (4.9),

(4.10), (4.11), and (4.12). Let x be an indeterminate, and put X = −6ωx4 +

e1(t
2)ωx6+(3ω2−2(e4(ρt)− e4(ρ

2t))ω)x8. It follows from (6.1), (6.2), (6.3), and

(6.4) that

0 =

4∏
i=1

(1− τ2i x
2)−

4∏
i=1

(1− t2ix
2) +X

=

4∑
k=0

(
1 + (−1)kek(τ)x

k
) 4∑
k=0

(
1 + ek(τ)x

k
)

−
4∑

k=0

(
1 + (−1)kek(t)x

k
) 4∑
k=0

(
1 + ek(t)x

k
)
+X.

We can erase ek(τ) by (4.5), (4.6), (4.7), and (4.8), and obtain

4

3∑
k=1

(−1)kγ2
kx

2k − 8γ1γ3x
4 + 4

3∑
k=1

mk∑
i=nk

(−1)iγie2k−i(t)x
2k

+ 2(2γ4 + ω)x4 + 4γ2
(
e4(t) + 2γ4 + ω

)
x6 + 2e2(t)(2γ4 + ω)x6

+
(
2e4(t) + 2γ4 + ω

)
(2γ4 + ω)x8 +X,

where nk =max{1,2k − 3} and mk =min{3,2k}. This calculation is similar to

the calculation in [FIM, proof of Lemma 5.5], but note that γ4 �= 1
2 (e4(τ)−e4(t)).

Then comparing the coefficients, we obtain

0 = −4γ2
1 + 4

(
−γ1e1(t) + γ2

)
= 4

2∑
j=1

(−1)jγj
(
γ2−j + e2−j(t)

)
,

0 = 4γ2
2 − 8γ1γ3 + 4

(
−γ1e3(t) + γ2e2(t)− γ3e1(t)

)
+ 4γ4 − 4ω

= 4
( 4∑
j=1

(−1)jγj
(
γ4−j + e4−j(t)

)
− ω

)
,

0 = −4γ2
3 − 4γ3e3(t) + 4γ2

(
e4(t) + 2γ4 + ω

)
+ 2e2(t)(2γ4 + ω)

+
(
e1(t)

2 − 2e2(t)
)
ω

= 4
( 4∑
j=2

(−1)jγj
(
γ6−j + e6−j(t)

)
+ (γ2 + γ2)ω

)
,
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0 =
(
2e4(t) + 2γ4 + ω

)
(2γ4 + ω) +

(
3ω2 − 2

(
e4(ρt)− e4(ρ

2t)
)
ω
)

= 4
(
γ4
(
γ4 + e4(t)

)
+ ω2 +

(
γ4 − e4(ρt)

)
ω
)
.

Regarding GKM functions as elements of Map(W (G),H∗(BT ) ⊗ Q), we can

divide them by 4 to obtain

0 =

2∑
j=1

(−1)jγj
(
γ2−j + e2−j(t)

)
, 0 =

4∑
j=1

(−1)jγj
(
γ4−j + e4−j(t)

)
− ω,

0 =

4∑
j=2

(−1)jγj
(
γ6−j + e6−j(t)

)
+ (γ2 + γ2)ω,

0 = γ4
(
γ4 + e4(t)

)
+ ω2 +

(
γ4 − e4(ρt)

)
ω.

Since the right-hand sides of these equations remain polynomials in H∗(BT )-

valued GKM functions over Z, these equations hold in H∗(F4) ⊂ Map(W (G),

H∗(BT )). �

7. Proof of Lemma 4.2

We will prove Lemma 4.2 by the argument of regular sequences.

DEFINITION 7.1

A sequence a1, . . . , an of elements of a ring R is called regular if, for any i, ai is

not a zero divisor in R/(a1, . . . , ai−1).

The following theorems and propositions are useful. Propositions 7.1 and 7.2 are

obvious by definition.

PROPOSITION 7.1

If a1, . . . , an is a regular sequence, then so is a1, . . . , ai−1, ai + b, ai+1, . . . , an for

1≤ i≤ n and any b ∈ (a1, . . . , ai−1).

PROPOSITION 7.2

If a1, . . . , an is a regular sequence, then so is a1, . . . , ai−1, ai+1, . . . , an for

1≤ i≤ n.

THEOREM 7.1 ([M, THEOREM 16.1])

If a1, . . . , an is a regular sequence, then so is av11 , . . . , avnn for any positive integers

v1, . . . , vn.

THEOREM 7.2 ([M, COROLLARY OF THEOREM 16.3])

Let A be a Noetherian ring and nonnegatively graded. If a1, . . . , an is a regular
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sequence in A and each ai is homogeneous of positive degree, then any permuta-

tion of a1, . . . , an is again a regular sequence.

THEOREM 7.3 ([NS, THEOREM 5.5.1])

Let F be a field, and let R = F [gi | 1 ≤ i ≤ m] be a nonnegatively graded poly-

nomial ring with |gi|> 0 for any 1≤ i≤m. Assume that a1, . . . , an is a regular

sequence in R which consists of homogeneous elements of positive degree. Then

the Poincaré series of R/(ai | 1≤ i≤ n) is given as∏n
i=1(1− x|ai|)∏m
i=1(1− x|gi|)

.

Proof

For a nonnegatively graded F -module M of finite type, let P (M,x) denote the

Poincaré series of M , namely,

P (M,x) =

∞∑
n=0

(dimF Mn)x
n,

where Mn denotes the degree n part of M . Then obviously we have that

P (R,x) =
1∏m

i=1(1− x|gi|)
.

Since a1, . . . , an is a regular sequence, the multiplication by ai induces an injection

on a graded F -module R/(a1, . . . , ai−1). Therefore

P
(
R/(a1, . . . , ai), x

)
= (1− x|ai|)P

(
R/(a1, . . . , ai−1), x

)
.

The induction on i completes the proof. �

Proof of Lemma 4.2

Let p be a prime number, and let

M =
(
Z[ti, γ, τi, γi, ω | 1≤ i≤ 4]/{r′1,Ri, r2i, r12 | 1≤ i≤ 4}

)
,

where |ti| = 2, |γi| = 2i, and |ω| = 8. We will show that the Poincaré series of

M ⊗ (Z/pZ) does not depend on p. Then the graded Z-module M of finite type

must be free. The relations (4.9) and (4.10) say that

γ2 = γ1
(
γ1 + e1(t)

)
, γ4 =−

( 3∑
j=1

(−1)jγj
(
γ4−j + e4−j(t)

)
− ω

)
,

and then we can erase γ2 and γ4. Let R denote the polynomial ring Z[ti, γ, τi, γ1,

γ3, ω | 1 ≤ i ≤ 4], let r′1, Ri’s, and ri’s also denote the corresponding elements

of R, and let I denote the ideal generated by {r′1,Ri, r6, r8, r12 | 1≤ i≤ 4} in R.

Since M ∼=R/I , it is sufficient to compute the Poincaré series of (R/I)⊗ (Z/pZ).

When p= 2, we show that the sequence

r′1, r12,R4,R3,R2,R1, r6, r8
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is regular and compute the Poincaré series from this sequence. In (R/I)⊗(Z/2Z),

we have that

r′1 = e1(t),

R1 = −
(
e1(τ)− e1(t)

)
,

R2 = −
(
e2(τ)− e2(t)

)
+
(
e1(τ)− e1(t)

)
e1(t),

R3 = −
(
e3(τ)− e3(t)

)
,

R4 = e4(τ)− e4(t)− ω,

r6 ≡ γ2
3

(
mod(γ, ei(t), ω

∣∣ 1≤ i≤ 4)
)
,

r8 ≡ γ2
4 ≡ γ2

2 ≡ γ8
1

(
mod(γ, ei(t), ω

∣∣ 1≤ i≤ 4)
)
.

It is well known that the sequence of the elementary symmetric polynomials

e1(x), e2(x), . . . , en(x),

that is, the sequence of the Chern classes, is regular in (Z/pZ)[xi | 1≤ i≤ n] for

any prime p. Since a polynomial ring over a field is Noetherian, by Theorem 7.2,

the sequence

γ, e1(t), e2(t), e3(t), e4(t), ω, e4(τ), e3(τ), e2(τ), e1(τ), γ
2
3 , γ

8
1

is regular in R⊗ (Z/2Z). We modify this sequence by Theorem 7.1 and Propo-

sition 7.1 to obtain the following regular sequence:

γ, r′1, e2(t), e3(t), e4(t), ω
3,R4,R3,R2,R1, r6, r8.

Since ρ2t4 = −γ and e4(ρt) = −e4(t) − e4(ρ
2t) ≡ 0 (mod γ, e4(t)), by Proposi-

tion 7.1

γ, r′1, e2(t), e3(t), e4(t), r12,R4,R3,R2,R1, r6, r8

is a regular sequence. Hence

r′1, r12,R4,R3,R2,R1, r6, r8

is a regular sequence by Proposition 7.2. Finally, the Poincaré series of (R/I)⊗
(Z/2Z) is calculated from the degrees of the generators and the relations by

Theorem 7.3, and we have that

P
(
M ⊗ (Z/2Z), x

)
=

1

(1− x2)4
(1 + x8 + x16)

4∏
i=1

1− x4i

1− x2
.

Next let us consider the case where p ≥ 3. Let e1, e2, e3, and e4 be the

left-hand sides of (6.1), (6.2), (6.3), and (6.4), respectively, namely,

e1 = e1(τ
2)− e2(t

2), e2 = e2(τ
2)− e2(t

2)− 6ω,

e3 = e3(τ
2)− e2(t

2)− e1(t
2)ω,

e4 = e4(τ
2)− e4(t

2) + 3ω2 − 2
(
e4(ρt)− e4(ρ

2t)
)
ω.
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Recall that e1, e2, e3, and e4 are divided by 4 to yield r2, r4, r6, and r8, respec-

tively. We have that

M ⊗ (Z/pZ) ∼=
(
Z[ti, γ, τi, γi, ω | 1≤ i≤ 4]/(r′1,Ri, e2i, r12 | 1≤ i≤ 4)

)
⊗ (Z/pZ)

∼=
(
Z[ti, γ, τi, ω | 1≤ i≤ 4]/(r′1, e2i, r12 | 1≤ i≤ 4)

)
⊗ (Z/pZ),

since 2 is invertible in Z/pZ. We will show that the sequence

r′1, r12, e8, e6, e4, e2

is a regular sequence. It is well known that the sequence of elementary symmetric

polynomials in {x2
i }ni=1

e1(x
2), e2(x

2), . . . , en(x
2),

that is, the sequence of the Pontryagin classes, is regular in (Z/pZ)[xi | 1≤ i≤ n]

for any prime p. By Theorem 7.2, the sequence

γ, e1(t), e2(t), e3(t), e4(t), ω, e4(τ
2), e3(τ

2), e2(τ
2), e1(τ

2)

is regular in (Z/pZ)[ti, γ, τi, ω | 1 ≤ i ≤ 4]. We modify this sequence by Theo-

rem 7.1 and Proposition 7.1 to obtain the following regular sequence:

γ, r′1, e2(t), e3(t), e4(t), r12, e8, e6, e4, e2.

Hence

r′1, r12, e8, e6, e4, e2

is a regular sequence by Proposition 7.2. Therefore, by Theorem 7.3, we have

that

P
(
M ⊗ (Z/pZ), x

)
=

1

(1− x2)4
(1 + x8 + x16)

4∏
i=1

1− x4i

1− x2
.

�

8. Proof of Corollary 1.1

Proof of Corollary 1.1

By the argument in Section 1 we have the isomorphisms

H∗(F4/T ) ∼=H∗
T (F4/T )/(t1, t2, t3, t4, γ)

∼= Z[τi, γi, ω | 1≤ i≤ 4]/(Qi, q2i, q12 | 1≤ i≤ 4),

where

Qi = ei(τ)− 2γi (i= 1,2,3), Q4 = e4(τ)− 2γ4 − ω,

q2 = γ2 − γ2
1 , q4 = γ4 − 2γ1γ3 + γ2

2 − ω,

q6 = 2γ2γ4 − γ2
3 + γ2ω, q8 = γ2

4 + γ4ω+ ω2,

q12 = ω3.
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We can regard γ2 and γ4 as dependent variables by the relations q2 and q4. Let

R be the polynomial ring Z[τi, γ1, γ3, ω | 1≤ i≤ 4]. Then

H∗(F4/T )∼=R/(Qi, q6, q8, q12 | 1≤ i≤ 4).

Obviously we have that

Qi = −ri (i= 1,2,3), Q4 ≡ r4 (mod Q3),

q6 ≡ γ2e4(τ)− γ2
3 =−r6 (mod Q4), q12 = r12.

Moreover, we have that

q8 = 4γ2
1γ

2
3 − 4γ5

1γ3 + γ8
1 + 3ω(ω+ 2γ1γ3)− 3γ4

1ω

≡ 8γ4
1γ4 + 4γ4

1ω− 4γ5
1γ3 + γ8

1 + 3ω(ω+ 2γ1γ3)− 3γ4
1ω (mod q6)

= 12γ5
1γ3 − 7γ8

1 + 9γ4
1ω+ 3ω(ω+ 2γ1γ3)− 3γ4

1ω.

On the other hand,

r8 = 3e4(τ)γ
4
1 − γ8

1 + 3ω
(
ω+ e3(τ)γ1

)
≡ 3(2γ4 + ω)γ4

1 − γ8
1 + 3ω(ω+ 2γ1γ3) (mod Q3,Q4)

= 12γ5
1γ3 − 7γ8

1 + 9γ4
1ω+ 3ω(ω+ 2γ1γ3)− 3γ4

1ω.

Hence q8 ≡ r8 (mod q6,Q3,Q4). Therefore

H∗(F4/T )∼=R/(Qi, q6, q8, q12 | 1≤ i≤ 4)∼=R/(r1, r2, r3, r4, r6, r8, r12). �
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