Approximation by Walsh-Marcinkiewicz means on the Hardy space $H_{2 / 3}$

Károly Nagy and George Tephnadze

Abstract

The main aim of this paper is to find necessary and sufficient conditions for the convergence of Walsh-Marcinkiewicz means in terms of the modulus of continuity on the Hardy space $H_{2 / 3}$.

1. Introduction

The convergence almost everywhere of Walsh-Fejér means $\sigma_{n} f$ was proved by Fine [3]. Weak-type (1,1)-inequality for maximal operator σ^{*} can be found in Zygmund [34] for the trigonometric series, in Schipp [19] for Walsh series, and in Pál and Simon [18] for bounded Vilenkin series. Moreover, Fujji [5] and Simon [21] verified that σ^{*} is bounded from H_{1} to L_{1}. Weisz [31] generalized this result and proved the boundedness of σ^{*} from the martingale space H_{p} to the space L_{p} for $p>1 / 2$. Simon [22] gave a counterexample, which shows that the boundedness does not hold for $0<p<1 / 2$. The counterexample for $p=1 / 2$ is due to Goginava [7] (see also [1], [2]). In [23] the second author proved that there exists a martingale $f \in H_{1 / 2}$ such that the Fejér means of f are not uniformly bounded in the space $L_{1 / 2}$.

In [8], [24], and [25] it was proven that the maximal operator $\widetilde{\sigma}_{p}^{*}$ defined by

$$
\widetilde{\sigma}_{p}^{*}:=\sup _{n \in \mathbb{N}} \frac{\left|\sigma_{n}\right|}{(n+1)^{1 / p-2} \log ^{2[1 / 2+p]}(n+1)},
$$

where $0<p \leq 1 / 2$ and $[1 / 2+p]$ denotes the integer part of $1 / 2+p$, is bounded from the Hardy space H_{p} to the space L_{p}. It was also proven that the rate of the weights $\left\{(n+1)^{1 / p-2} \log ^{2[1 / 2+p]}(n+1)\right\}_{n=1}^{\infty}$ in the nth Fejér mean is given exactly. For Walsh-Kaczmarz system analogical theorems are proven in [12] and [26].

Móricz and Siddiqi [14] investigated the approximation properties of some special Nörlund means of Walsh-Fourier series of L_{p}-functions in norm. Fridly, Manchanda, and Siddiqi [4] improved and extended the results of Móricz and

[^0]Siddiqi [14], among them in H_{p}-norm, where $0<p<1$. The second author [27] and [28] gave a necessary and sufficient condition for the convergence of Fejér means in terms of modulus of continuity on the Hardy space $H_{p}(0<p \leq 1 / 2)$. In [6] Goginava investigated the behavior of Cesàro means of Walsh-Fourier series in detail. For the two-dimensional case, approximation properties of Nörlund and Cesàro means were considered by Nagy (see [17], [15]).

For two-dimensional trigonometric Fourier partial sums $S_{j, j}(f)$ Marcinkiewicz [13] proved that the means $\mathcal{M}_{n}(f)$ of a function $f \in L \log L\left([0,2 \pi]^{2}\right)$ converges almost everywhere to f as $n \rightarrow \infty$. For two-dimensional Walsh-Fourier series Weisz [33] proved that the maximal operator $\mathcal{M}^{*}(f)$ is bounded from the dyadic martingale Hardy space $H_{p}\left(G^{2}\right)$ to the space $L_{p}\left(G^{2}\right)$ for $p>2 / 3$. In the case $p=2 / 3$ Goginava [7] proved that \mathcal{M}^{*} is not bounded from the Hardy space $H_{2 / 3}\left(G^{2}\right)$ to the space $L_{2 / 3}\left(G^{2}\right)$. By interpolation it follows that \mathcal{M}^{*} is not bounded from the Hardy space $H_{p}\left(G^{2}\right)$ to the space weak- $L_{p}\left(G^{2}\right)$ for $0<p<2 / 3$.

That is, the end point of the boundedness of the maximal operator \mathcal{M}^{*} is $p=2 / 3$. This means that it is interesting to discuss what does happen here. Goginava [9] also proved that \mathcal{M}^{*} is bounded from the Hardy space $H_{2 / 3}\left(G^{2}\right)$ to the space weak- $L_{2 / 3}\left(G^{2}\right)$.

The first author [16] proved that the maximal operator $\widetilde{\mathcal{M}}^{*}$ defined by

$$
\widetilde{\mathcal{M}}^{*}:=\sup _{n \in \mathbb{N}} \frac{\left|\mathcal{M}_{n}\right|}{\log ^{3 / 2}(n+1)}
$$

is bounded from the Hardy space $H_{2 / 3}\left(G^{2}\right)$ to the space $L_{2 / 3}\left(G^{2}\right)$. As a corollary we get

$$
\begin{equation*}
\left\|\mathcal{M}_{n} f\right\|_{2 / 3} \leq c \log ^{3 / 2}(n+1)\|f\|_{H_{2 / 3}} \tag{1}
\end{equation*}
$$

In [16] the first author also proved that the sequence $\left\{\log ^{3 / 2}(n+1)\right\}_{n=1}^{\infty}$ is important for the maximal operator $\widetilde{\mathcal{M}}^{*}$. That is, the order of deviant behavior of the nth Marcinkiewicz means was given exactly.

Now, we continue our investigation at the end point $p=2 / 3$. The main aim of this paper is to find a necessary and sufficient condition for the convergence of Walsh-Marcinkiewicz means in terms of the modulus of continuity on the Hardy space $H_{2 / 3}\left(G^{2}\right)$.

2. Definitions and notation

Now, we give a brief introduction to the theory of dyadic analysis (see [20], [30]). Let \mathbb{N}_{+}denote the set of positive integers $\mathbb{N}:=\mathbb{N}_{+} \cup\{0\}$. Let \mathbb{Z}_{2} denote the discrete cyclic group of order 2 , that is, $\mathbb{Z}_{2}=\{0,1\}$, where the group operation is modulo 2 addition and every subset is open. The Haar measure on \mathbb{Z}_{2} is given such that the measure of a singleton is $1 / 2$. Let G be the complete direct product of the countable infinite copies of the compact groups \mathbb{Z}_{2}. The elements of G are of the form $x=\left(x_{0}, x_{1}, \ldots, x_{k}, \ldots\right)$ with coordinates $x_{k} \in\{0,1\}(k \in \mathbb{N})$. The group operation on G is the coordinatewise addition, the measure (denoted by μ) is the product measure, and the topology is the product topology. The compact

Abelian group G is called the Walsh group. A base for the neighborhoods of G can be given in the following way:

$$
\begin{aligned}
I_{0}(x) & :=G \\
I_{n}(x) & :=I_{n}\left(x_{0}, \ldots, x_{n-1}\right) \\
& :=\left\{y \in G: y=\left(x_{0}, \ldots, x_{n-1}, y_{n}, y_{n+1}, \ldots\right)\right\}
\end{aligned}
$$

$(x \in G, n \in \mathbb{N})$. These sets are called dyadic intervals. Let $0=(0: i \in \mathbb{N}) \in G$ denote the null element of G, and let $I_{n}:=I_{n}(0)(n \in \mathbb{N})$. Set

$$
e_{n}:=(0, \ldots, 0,1,0, \ldots) \in G,
$$

the nth coordinate of which is 1 and the rest are zeros $(n \in \mathbb{N})$.
For $k \in \mathbb{N}$ and $x \in G$ let

$$
r_{k}(x):=(-1)^{x_{k}}
$$

denote the k th Rademacher function. If $n \in \mathbb{N}$, then $n=\sum_{i=0}^{\infty} n_{i} 2^{i}$ can be written, where $n_{i} \in\{0,1\}(i \in \mathbb{N})$, that is, n is expressed in the number system of base 2 . Let $|n|:=\max \left\{j \in \mathbb{N}: n_{j} \neq 0\right\}$, that is, $2^{|n|} \leq n<2^{|n|+1}$.

The Walsh-Paley system is defined as the sequence of Walsh-Paley functions

$$
w_{n}(x):=\prod_{k=0}^{\infty}\left(r_{k}(x)\right)^{n_{k}}=(-1)^{\sum_{k=0}^{|n|} n_{k} x_{k}} \quad(x \in G, n \in \mathbb{N}) .
$$

The Dirichlet kernels are defined as

$$
D_{n}:=\sum_{k=0}^{n-1} w_{k}, \quad D_{0}:=0
$$

The 2^{n} th Dirichlet kernels have the following form (see, e.g., [20]):

$$
D_{2^{n}}(x)= \begin{cases}2^{n} & \text { if } x \in I_{n} \tag{2}\\ 0 & \text { if } x \notin I_{n}\end{cases}
$$

The norm (or quasinorm) of the space $L_{p}(G)$ is defined by

$$
\|f\|_{p}:=\left(\int_{G}|f(x)|^{p} d \mu(x)\right)^{1 / p} \quad(0<p<\infty) .
$$

The space weak- $L_{p}(G)$ consists of all measurable functions f for which

$$
\|f\|_{\text {weak }-L_{p}}:=\sup _{\lambda>0} \lambda \mu(f>\lambda)^{1 / p}<+\infty .
$$

The σ-algebra generated by the dyadic intervals of measure 2^{-k} will be denoted by $F_{k}(k \in \mathbb{N})$. Denote by $f=\left(f^{(n)}, n \in \mathbb{N}\right)$ a martingale with respect to $\left(F_{n}, n \in \mathbb{N}\right)$ (for details see, e.g., [30]). The maximal function of a martingale f is defined by

$$
f^{*}=\sup _{n \in \mathbb{N}}\left|f^{(n)}\right|
$$

In the case $f \in L_{1}(G)$, the maximal function can also be given by

$$
f^{*}(x)=\sup _{n \in \mathbb{N}} \frac{1}{\mu\left(I_{n}(x)\right)}\left|\int_{I_{n}(x)} f(u) d \mu(u)\right|, \quad x \in G .
$$

For $0<p<\infty$ the Hardy martingale space $H_{p}(G)$ consists of all martingales for which

$$
\|f\|_{H_{p}}:=\left\|f^{*}\right\|_{p}<\infty .
$$

If $f \in L_{1}(G)$, then it is easy to show that the sequence ($S_{2^{n}} f: n \in \mathbb{N}$) is a martingale. If $f=\left(f^{(0)}, f^{(1)}, \ldots\right)$ is a martingale, then the Walsh-Fourier coefficients are defined in the following way:

$$
\widehat{f}(i)=\lim _{k \rightarrow \infty} \int_{G} f^{(k)}(x) w_{i}(x) d \mu(x) .
$$

The Walsh-Fourier coefficients of $f \in L_{1}(G)$ are the same as the ones of the martingale ($S_{2^{n}} f: n \in \mathbb{N}$) obtained from f.

The partial sums of the Walsh-Fourier series are defined as

$$
S_{m}(f ; x):=\sum_{i=0}^{m-1} \widehat{f}(i) w_{i}(x) .
$$

For $n=1,2, \ldots$ and a martingale f the nth Fejér means and Fejér kernel of the Walsh-Fourier series of the function f are given by

$$
\sigma_{n}(f ; x)=\frac{1}{n} \sum_{j=0}^{n-1} S_{j}(f ; x), \quad K_{n}(x):=\frac{1}{n} \sum_{k=0}^{n-1} D_{k}(x) .
$$

The σ-algebra generated by the dyadic two-dimensional $\left(I_{n}\left(x^{1}\right) \times I_{n}\left(x^{2}\right)\right.$ square of measure $2^{-n} \times 2^{-n}$ is denoted by $\digamma_{n, n}(n \in \mathbb{N})$. Denote by $f=\left(f_{n, n}, n \in\right.$ $\mathbb{N})$ the one-parameter martingale with respect to $\digamma_{n, n}(n \in \mathbb{N})$. The definitions of the spaces $L_{p}\left(G^{2}\right)$, weak- $L_{p}\left(G^{2}\right)$, and $H_{p}\left(G^{2}\right)$ are given analogously to those in the one-dimensional case.

The Kronecker product ($w_{n, m}: n, m \in \mathbb{N}$) of two Walsh system is said to be a two-dimensional Walsh system. Thus,

$$
w_{n, m}\left(x^{1}, x^{2}\right)=w_{n}\left(x^{1}\right) w_{m}\left(x^{2}\right) .
$$

If $f \in L_{1}\left(G^{2}\right)$, then the numbers $\widehat{f}(n, m)=\int_{G^{2}} f w_{n, m} d \mu\left(w_{n, m}: n, m \in \mathbb{N}\right)$ is said to be the (n, m) th Walsh-Fourier coefficient of f. We can extend this definition to the martingales in the usual way. Denote by $S_{n, m}$ the (n, m) th rectangular partial sum of the Walsh-Fourier series of a martingale f. Namely,

$$
S_{n, m}\left(f ; x^{1}, x^{2}\right):=\sum_{i=0}^{n-1} \sum_{j=0}^{m-1} \widehat{f}(i, j) w_{i, j}\left(x^{1}, x^{2}\right) .
$$

A bounded measurable function a is a p-atom if there exists a dyadic twodimensional cube I^{2} such that

$$
\int_{I^{2}} a d \mu=0, \quad\|a\|_{\infty} \leq \mu\left(I^{2}\right)^{-1 / p}, \quad \operatorname{supp} a \subset I^{2}
$$

The dyadic Hardy martingale spaces $H_{p}\left(G^{2}\right)$ for $0<p \leq 1$ have an atomic characterization. Namely the following theorem is true (see [32]).

THEOREM W (WEISZ [32, THEOREM 1, P. 359])
A martingale $f=\left(f_{n, n}, n \in \mathbb{N}\right)$ is in $H_{p}\left(G^{2}\right)(0<p \leq 1)$ if and only if there exists a sequence $\left(a_{k}, k \in \mathbb{N}\right)$ of p-atoms and a sequence $\left(\mu_{k}, k \in \mathbb{N}\right)$ of real numbers such that for every $n \in \mathbb{N}$,

$$
\begin{equation*}
\sum_{k=0}^{\infty} \mu_{k} S_{2^{n}, 2^{n}} a_{k}=f_{n, n} \tag{3}
\end{equation*}
$$

and

$$
\sum_{k=0}^{\infty}\left|\mu_{k}\right|^{p}<\infty
$$

Moreover, $\|f\|_{H_{p}} \backsim \inf \left(\sum_{k=0}^{\infty}\left|\mu_{k}\right|^{p}\right)^{1 / p}$, where the infimum is taken over all decompositions of f of the form (3).

The concept of modulus of continuity in $H_{p}\left(G^{2}\right)(0<p \leq 1)$ is given by

$$
\omega\left(1 / 2^{n}, f\right)_{H_{p}}:=\left\|f-S_{2^{n}, 2^{n}} f\right\|_{H_{p}}
$$

The nth Marcinkiewicz-Fejér mean of a martingale f is defined by

$$
\mathcal{M}_{n}\left(f ; x^{1}, x^{2}\right):=\frac{1}{n} \sum_{k=0}^{n} S_{k, k}\left(f ; x^{1}, x^{2}\right)
$$

The two-dimensional Dirichlet kernels and Marcinkiewicz-Fejér kernels are defined by

$$
D_{k, l}\left(x^{1}, x^{2}\right)=D_{k}\left(x^{1}\right) D_{l}\left(x^{2}\right), \quad K_{n}\left(x^{1}, x^{2}\right):=\frac{1}{n} \sum_{k=0}^{n} D_{k, k}\left(x^{1}, x^{2}\right) .
$$

Let the maximal operators \mathcal{M}^{*} and \mathcal{M} \# be given by

$$
\mathcal{M}^{*}(f)=\sup _{n \geq 1}\left|\mathcal{M}_{n}(f)\right|, \quad \mathcal{M}^{\#}(f)=\sup _{n \in \mathbb{N}}\left|\mathcal{M}_{2^{n}}(f)\right|
$$

For the maximal operator $\mathcal{M}^{\#}$ Goginava [10] proved that the following is true.

THEOREM G (GOGINAVA [10, THEOREMS 1, 2, P. 38])

The maximal operator $\mathcal{M}^{\#}$ is bounded from the Hardy space $H_{1 / 2}\left(G^{2}\right)$ to the space weak- $L_{1 / 2}\left(G^{2}\right)$ and is not bounded from the Hardy space $H_{p}\left(G^{2}\right)$ to the space $L_{p}\left(G^{2}\right)$ for $0<p \leq 1 / 2$.

For the martingale

$$
f=\sum_{n=0}^{\infty}\left(f_{n}-f_{n-1}\right)
$$

the conjugate transforms are defined as

$$
\widetilde{f^{(t)}}=\sum_{n=0}^{\infty} r_{n}(t)\left(f_{n}-f_{n-1}\right),
$$

where $t \in G$ is fixed. Note that $\widetilde{f^{(0)}}=f$. It is well known (see [30]) that

$$
\begin{equation*}
\left\|\widetilde{f^{(t)}}\right\|_{H_{p}\left(G^{2}\right)}=\|f\|_{H_{p}\left(G^{2}\right)}, \quad\|f\|_{H_{p}\left(G^{2}\right)}^{p} \sim \int_{[0,1)}\left\|\widetilde{f^{(t)}}\right\|_{p}^{p} d t \tag{4}
\end{equation*}
$$

3. Formulation of main results

THEOREM 1
(a) Let

$$
\begin{equation*}
\omega\left(\frac{1}{2^{k}}, f\right)_{H_{2 / 3}}=o\left(\frac{1}{k^{3 / 2}}\right) \quad \text { as } k \rightarrow \infty . \tag{5}
\end{equation*}
$$

Then

$$
\left\|\mathcal{M}_{n}(f)-f\right\|_{H_{2 / 3}} \rightarrow 0 \text { when } n \rightarrow \infty
$$

(b) There exists a martingale $f \in H_{2 / 3}$, for which

$$
\omega\left(\frac{1}{2^{2^{k}}}, f\right)_{H_{2 / 3}}=O\left(\frac{1}{2^{3 k / 2}}\right) \quad \text { as } k \rightarrow \infty
$$

and

$$
\left\|\mathcal{M}_{n}(f)-f\right\|_{2 / 3} \nrightarrow 0 \quad \text { as } n \rightarrow \infty .
$$

During the proof of our main theorem we will use the following lemma of Goginava [11].

LEMMA 1 (GOGINAVA [11, LEMMA 4.2, P. 1954])
Let

$$
x^{1} \in I_{4 A}\left(0, \ldots, 0, x_{4 m}^{1}=1,0, \ldots, 0, x_{4 l}^{1}=1, x_{4 l+1}^{1}, \ldots, x_{4 A-1}^{1}\right)
$$

and

$$
x^{2} \in I_{4 A}\left(0, \ldots, 0, x_{4 l}^{2}=1, x_{4 l+1}^{1}, \ldots, x_{4 q-1}^{1}, 1-x_{4 q}^{1}, x_{4 q+1}^{2}, \ldots, x_{4 A-1}^{2}\right) .
$$

Then

$$
n_{A-1}\left|K_{n_{A-1}}\left(x^{1}, x^{2}\right)\right| \geq 2^{4 q+4 l+4 m-3},
$$

where $n_{A}=2^{4 A}+2^{4 A-4}+\cdots+2^{4}+2^{0}$.

4. Proof of the theorem

Proof of Theorem 1
During the proof we follow the method of the second author in [28] and [29], but we have to make the necessary changes. Moreover, the proof is based on the
result of the first author [16] discussing the properties of the maximal operator $\widetilde{\mathcal{M}}^{*}$. Combining (1) and (4) we have
(6)

$$
\begin{aligned}
\left\|\mathcal{M}_{n} f\right\|_{H_{2 / 3}}^{2 / 3} & =\int_{[0,1)} \|\left(\widetilde{\left.\mathcal{M}_{n} f\right)^{(t)}}\left\|_{2 / 3}^{2 / 3} d t=\int_{[0,1)}\right\| \mathcal{M}_{n} \widetilde{f^{(t)}} \|_{2 / 3}^{2 / 3} d t\right. \\
& \leq c \log (n+1) \int_{[0,1)}\left\|\widetilde{f^{(t)}}\right\|_{H_{2 / 3}}^{2 / 3} d t \\
& =c \log (n+1) \int_{[0,1)}\|f\|_{H_{2 / 3}}^{2 / 3} d t \\
& =c \log (n+1)\|f\|_{H_{2 / 3}}^{2 / 3} .
\end{aligned}
$$

Let $2^{N}<n \leq 2^{N+1}$. The inequality (6) implies

$$
\begin{aligned}
\left\|\mathcal{M}_{n} f-f\right\|_{H_{2 / 3}}^{2 / 3} \leq & \left\|\mathcal{M}_{n} f-\mathcal{M}_{n} S_{2^{N}, 2^{N}} f\right\|_{H_{2 / 3}}^{2 / 3} \\
& +\left\|\mathcal{M}_{n} S_{2^{N}, 2^{N}} f-S_{2^{N}, 2^{N}} f\right\|_{H_{2 / 3}}^{2 / 3}+\left\|S_{2^{N}, 2^{N}} f-f\right\|_{H_{2 / 3}}^{2 / 3} \\
= & \left\|\mathcal{M}_{n}\left(S_{2^{N}, 2^{N}} f-f\right)\right\|_{H_{2 / 3}}^{2 / 3} \\
& +\left\|\mathcal{M}_{n} S_{2^{N}, 2^{N}} f-S_{2^{N}, 2^{N}} f\right\|_{H_{2 / 3}}^{2 / 3}+\left\|S_{2^{N}, 2^{N}} f-f\right\|_{H_{2 / 3}}^{2 / 3} \\
\leq & c(\log (n+1)+1) \omega^{2 / 3}\left(\frac{1}{2^{N}}, f\right)_{H_{2 / 3}} \\
& +\left\|\mathcal{M}_{n} S_{2^{N}, 2^{N}} f-S_{2^{N}, 2^{N}} f\right\|_{H_{2 / 3}}^{2 / 3} .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& \mathcal{M}_{n} S_{2^{N}, 2^{N}} f-S_{2^{N}, 2^{N}} f \\
& =\frac{1}{n} \sum_{k=0}^{2^{N}} S_{k, k} S_{2^{N}, 2^{N}} f+\frac{1}{n} \sum_{k=2^{N}+1}^{n} S_{k, k} S_{2^{N}, 2^{N}} f-S_{2^{N}, 2^{N}} f \\
& =\frac{1}{n} \sum_{k=0}^{2^{N}} S_{k, k} f+\frac{\left(n-2^{N}\right) S_{2^{N}, 2^{N}} f}{n}-S_{2^{N}, 2^{N}} f \\
& =\frac{2^{N}}{n}\left(\mathcal{M}_{2^{N}} f-S_{2^{N}, 2^{N}} f\right) \\
& =\frac{2^{N}}{n}\left(S_{2^{N}, 2^{N}} \mathcal{M}_{2^{N}} f-S_{2^{N}, 2^{N}} f\right) \\
& =\frac{2^{N}}{n} S_{2^{N}, 2^{N}}\left(\mathcal{M}_{2^{N}} f-f\right) .
\end{aligned}
$$

Combining (4) and Theorem G, and following the steps of estimation (6) we get

$$
\begin{align*}
\left\|\mathcal{M}_{n} S_{2^{N}, 2^{N}} f-S_{2^{N}, 2^{N}} f\right\|_{H_{2 / 3}}^{2 / 3} & \leq\left(\frac{2^{N}}{n}\right)^{2 / 3}\left\|S_{2^{N}, 2^{N}}\left(\mathcal{M}_{2^{N}} f-f\right)\right\|_{H_{2 / 3}}^{2 / 3} \tag{7}\\
& \leq\left\|\mathcal{M}_{2^{N}} f-f\right\|_{H_{2 / 3}}^{2 / 3} \rightarrow 0, \quad \text { while } n \rightarrow \infty
\end{align*}
$$

We immediately have that if

$$
\omega\left(\frac{1}{2^{n}}, f\right)_{H_{2 / 3}}=o\left(\frac{1}{n^{3 / 2}}\right), \quad \text { as } n \rightarrow \infty,
$$

then

$$
\left\|\mathcal{M}_{n} f-f\right\|_{H_{2 / 3}} \rightarrow 0, \quad \text { while } n \rightarrow \infty .
$$

It completes the proof of the first part of our theorem.
Now, we prove the second part of Theorem 1. We set

$$
a_{i}\left(x^{1}, x^{2}\right)=2^{2^{i}}\left(D_{2^{2^{i}+1}}\left(x^{1}\right)-D_{2^{2^{i}}}\left(x^{1}\right)\right)\left(D_{2^{2^{i}+1}}\left(x^{2}\right)-D_{2^{2^{i}}}\left(x^{2}\right)\right)
$$

and

$$
f_{A, A}\left(x^{1}, x^{2}\right)=\sum_{i=1}^{A} \frac{a_{i}\left(x^{1}, x^{2}\right)}{2^{3 i / 2}} .
$$

Since

$$
S_{2^{A}, 2^{A}} a_{k}\left(x^{1}, x^{2}\right)= \begin{cases}a_{k}\left(x^{1}, x^{2}\right) & \text { if } 2^{k} \leq A, \\ 0 & \text { if } 2^{k}>A,\end{cases}
$$

and

$$
\begin{aligned}
\operatorname{supp} a_{k} & =I_{2^{k}}^{2} \\
\int_{I_{2^{k}}^{2}} a_{k} d \mu & =0 \\
\left\|a_{k}\right\|_{\infty} & \leq \mu\left(\operatorname{supp} a_{k}\right)^{-3 / 2}
\end{aligned}
$$

by Theorem W we conclude that $f \in H_{2 / 3}$. We write that

$$
\begin{aligned}
f- & S_{2^{n}, 2^{n}} f \\
& =\left(f^{(1)}-S_{2^{n}, 2^{n}} f^{(1)}, \ldots, f^{(n)}-S_{2^{n}, 2^{n}} f^{(n)}, \ldots, f^{(n+k)}-S_{2^{n}, 2^{n}} f^{(n+k)}, \ldots\right) \\
& =\left(0, \ldots, 0, f^{(n+1)}-f^{(n)}, \ldots, f^{(n+k)}-f^{(n)}, \ldots\right) \\
& =\left(0, \ldots, 0, \ldots, \sum_{i=\log n+1}^{\log n+k} \frac{a_{i}(x)}{2^{3 i / 2}}, \ldots\right), \quad k \in \mathbb{N}_{+} .
\end{aligned}
$$

Hence

$$
\omega\left(\frac{1}{2^{n}}, f\right)_{H_{2 / 3}} \leq \sum_{i=[\log n]}^{\infty} \frac{1}{2^{3 i / 2}}=O\left(\frac{1}{n^{3 / 2}}\right),
$$

where $[\log n]$ denotes the integer part of $\log n$.
Set $n_{2^{A-2}}=2^{4 \cdot 2^{A-2}}+2^{4 \cdot 2^{A-2}-4}+\cdots+2^{4}+2^{0}=2^{2^{A}}+2^{2^{A}-4}+\cdots+2^{4}+2^{0}$ as in Lemma 1:
(8) $\mathcal{M}_{n_{2^{k-2}}}(f)-f=\frac{2^{2^{k}} \mathcal{M}_{2^{k}}(f)}{n_{2^{k-2}}}+\frac{1}{n_{2^{k-2}}} \sum_{j=2^{2^{k}}+1}^{n_{2^{k-2}}} S_{j, j}(f)-\frac{2^{2^{k}} f}{n_{2^{k-2}}}-\frac{n_{2^{k-2}-1} f}{n_{2^{k-2}}}$.

It is easy to show that

$$
\widehat{f}(i, j)= \begin{cases}\frac{2^{2^{k}}}{2^{3 k / 2}} & \text { if }(i, j) \in\left\{2^{2^{k}}, \ldots, 2^{2^{k}+1}-1\right\}^{2}, k=0,1, \ldots, \tag{9}\\ 0 & \text { if }(i, j) \notin \bigcup_{k=0}^{\infty}\left\{2^{2^{k}}, \ldots, 2^{2^{k}+1}-1\right\}^{2} .\end{cases}
$$

Let $2^{2^{k}}<j \leq n_{2^{k-2}}$. Since $w_{v+2^{2^{k}}}=w_{2^{k}} w_{v}$, when $v<2^{2^{k}}$ using (9) we have

$$
\begin{aligned}
& S_{j, j} f\left(x^{1}, x^{2}\right) \\
& \quad=S_{2^{2^{k}}, 2^{2^{k}}} f\left(x^{1}, x^{2}\right)+\sum_{v=2^{2^{k}}}^{j-1} \sum_{s=2^{2^{k}}}^{j-1} \widehat{f}(v, s) w_{v, s}\left(x^{1}, x^{2}\right) \\
& =S_{2^{2^{k}, 2^{2^{k}}}} f\left(x^{1}, x^{2}\right)+\frac{2^{2^{k}}}{2^{3 k / 2}} \sum_{v=0}^{j-2^{2^{k}}-1} \sum_{s=0}^{j-2^{2^{k}}-1} w_{v+2^{2^{k}}}\left(x^{1}\right) w_{s+2^{2^{k}}}\left(x^{2}\right) \\
& =S_{2^{2^{k}, 2^{k}}} f\left(x^{1}, x^{2}\right)+\frac{2^{2^{k}} w_{2^{2^{k}}}\left(x^{1}\right) w_{2^{2^{k}}}\left(x^{2}\right)}{2^{3 k / 2}} \sum_{v=0}^{j-2^{2^{k}}-1} \sum_{s=0}^{j-2^{2^{k}}-1} w_{v}\left(x^{1}\right) w_{s}\left(x^{2}\right) \\
& =S_{2^{2^{k}, 2^{2^{k}}}} f\left(x^{1}, x^{2}\right)+\frac{2^{2^{k}} w_{2^{2^{k}}}\left(x^{1}\right) w_{2^{2^{k}}}\left(x^{2}\right) D_{j-2^{2^{k}, j-2^{2^{k}}}}\left(x^{1}, x^{2}\right)}{2^{3 k / 2}} .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& \frac{1}{n_{2^{k-2}}} \sum_{j=2^{2^{k}}+1}^{n_{2^{k-2}}} S_{j, j} f\left(x^{1}, x^{2}\right) \\
& =\frac{n_{2^{k-2}-1} S_{2^{2^{k}}, 2^{k}} f\left(x^{1}, x^{2}\right)}{n_{2^{k-2}}}+\frac{2^{2^{k}} w_{2^{k}}\left(x^{1}\right) w_{2^{2^{k}}}\left(x^{2}\right)}{n_{2^{k-2}} 2^{3 k / 2}} \sum_{j=1}^{n_{2 k-2}} D_{j, j}\left(x^{1}, x^{2}\right) \\
& \quad=\frac{n_{2^{k-2}-1} S_{2^{2^{k}}, 2^{k}} f\left(x^{1}, x^{2}\right)}{n_{2^{k-2}}}+\frac{2^{2^{k}} w_{2^{2 k}}\left(x^{1}\right) w_{2^{2^{k}}}\left(x^{2}\right) n_{2^{k-2}-1} K_{n_{2^{k-2}-1}}\left(x^{1}, x^{2}\right)}{n_{2^{k-1}} 2^{3 k / 2}} .
\end{aligned}
$$

Equality (8) yields

$$
\begin{aligned}
\left\|\mathcal{M}_{n_{2^{k-2}}}(f)-f\right\|_{2 / 3}^{2 / 3} \geq & \frac{c}{2^{k}}\left\|n_{2^{k-2}-1} K_{n_{2^{k-2}-1}}\right\|_{2 / 3}^{2 / 3} \\
& -\left(\frac{2^{2^{k}}}{n_{2^{k-2}}}\right)^{2 / 3}\left\|\mathcal{M}_{2^{2^{k}}}(f)-f\right\|_{2 / 3}^{2 / 3} \\
& -\left(\frac{n_{2^{k-2}-1}}{n_{2^{k-2}}}\right)^{2 / 3}\left\|S_{2^{2^{k}}, 2^{2^{k}}} f-f\right\|_{2 / 3}^{2 / 3} .
\end{aligned}
$$

Let

$$
x^{1} \in I_{2^{k-2}}^{m, l}:=I_{2^{k-2}}\left(0, \ldots, 0, x_{4 m}^{1}=1,0, \ldots, 0, x_{4 l}^{1}=1, x_{4 l+1}^{1}, \ldots, x_{2^{k-2}-1}^{1}\right)
$$

and

$$
x^{2} \in J_{2^{k-2}}^{l, q}:=I_{2^{k-2}}\left(0, \ldots, 0, x_{4 l}^{2}=1, x_{4 l+1}^{1}, \ldots, x_{4 q-1}^{1}, 1-x_{4 q}^{1}, x_{4 q+1}^{2}, \ldots, x_{2^{k-2}-1}^{2}\right) .
$$

Applying Lemma 1 we have

$$
n_{2^{k-2}-1}\left|K_{n_{2^{k-2}-1}}\left(x^{1}, x^{2}\right)\right| \geq 2^{4 q+4 l+4 m-3} .
$$

Hence, we can write that

$$
\begin{aligned}
& \int_{G}\left(n_{2^{k-2-1}}\left|K_{n_{2^{k-2}-1}}\left(x^{1}, x^{2}\right)\right|\right)^{2 / 3} d \mu\left(x^{1}, x^{2}\right) \\
& \quad \geq c \sum_{m=1}^{2^{k-2}-3} \sum_{l=m+1}^{2^{k-2}-2} \sum_{q=l+1}^{2^{k-2}-1} \sum_{x_{4 l+1}^{1}=0}^{1} \ldots \sum_{x_{2^{k-2}-1}^{1}}^{1} \sum_{x_{4 q+1}^{2}=0}^{1} \ldots \sum_{x_{2^{k-2}-1}^{2}}^{1} \\
& \quad \int_{I_{2^{k-2}}^{m, l} \times J_{2^{k-2}}^{l, q}}\left(n_{2^{k-2}-1}\left|K_{n_{2}{ }^{k-2}-1}\left(x^{1}, x^{2}\right)\right|\right)^{2 / 3} d \mu\left(x^{1}, x^{2}\right) \\
& \quad \geq c \sum_{m=1}^{2^{k-2}-3} \sum_{l=m+1}^{2^{k-2}-2} \sum_{2^{k-2}-1} \sum_{q=l+1}^{1} \ldots \sum_{x_{4 l+1}^{1}=0}^{1} \sum_{x_{2^{k-2}-1}^{1}=0}^{1} \ldots \sum_{x_{4 q+1}^{2}=0}^{1} x_{2^{k-2}-1}^{2}=0 \\
& \quad \mu\left(I_{2^{k-2}}^{m, l} \times J_{2^{k-2}}^{l, q}\right) 2^{(8 q+8 l+8 m) / 3} \\
& \geq c \sum_{m=1}^{2^{k-2}-3} \sum_{l=m+1}^{2^{k-2}-2} \sum_{q=l+1}^{2^{k-2}-1} 2^{(8 q+8 l+8 m) / 3} 2^{2^{k-2}-4 l} 2^{2^{k-2}-4 q}\left(\frac{1}{2^{2^{k-2}}}\right)^{2} \\
& \geq c \sum_{m=1}^{2^{k-2}-3} 2^{8 m / 3} \sum_{l=m+1}^{2^{k-2}-2} 2^{-4 l / 3} \sum_{q=l+1}^{2^{k-2}-1} 2^{-4 q / 3} \geq c \sum_{m=1}^{2^{k-2}-3} 1 \geq c 2^{k} .
\end{aligned}
$$

Using (10) we have

$$
\limsup _{k \rightarrow \infty}\left\|\mathcal{M}_{n_{2^{k-2}}}(f)-f\right\|_{2 / 3} \geq c>0
$$

The proof of Theorem 1 is complete.

References

[1] I. Blahota, G. Gát, and U. Goginava, Maximal operators of Fejér means of Vilenkin-Fourier series, JIPAM J. Inequal. Pure Appl. Math. 7 (2006), no. 149. MR 2268603.
[2] , Maximal operators of Fejér means of double Vilenkin-Fourier series, Colloq. Math. 107 (2007), 287-296. MR 2284166. DOI 10.4064/cm107-2-8.
[3] J. Fine, Cesàro summability of Walsh-Fourier series, Proc. Natl. Acad. Sci. USA 41 (1955), 558-591. MR 0070757.
[4] S. Fridli, P. Manchanda, and A. H. Siddiqi, Approximation by Walsh-Nörlund means, Acta Sci. Math. (Szeged) 74 (2008), 593-608. MR 2487934.
[5] N. J. Fujii, A maximal inequality for H_{1} functions on the generalized Walsh-Paley group, Proc. Amer. Math. Soc. 77 (1979), 111-116. MR 0539641. DOI 10.2307/2042726.
[6] U. Goginava, On the approximation properties of Cesàro means of negative order of Walsh-Fourier series, J. Approx. Theory 115 (2002), 9-20.
MR 1888974. DOI 10.1006/jath.2001.3632.
[7] , The maximal operator of Marcinkiewicz-Fejér means of the d-dimensional Walsh-Fourier series, East J. Approx. 12 (2006), 295-302. MR 2252557.
[8] , Maximal operators of Fejér-Walsh means, Acta Sci. Math. (Szeged) 74 (2008), 615-624. MR 2487936.
[9] , The weak type inequality for the maximal operator of the Marcinkiewicz-Fejér means of the two-dimensional Walsh-Fourier series, J. Approx. Theory 154 (2008), 161-180. MR 2474770.

DOI 10.1016/j.jat.2008.03.012.
[10] , The weak type inequality for the Walsh system, Studia Math. 185 (2008), 35-48. MR 2379997. DOI 10.4064/sm185-1-2.
[11] , The martingale Hardy type inequality for Marcinkiewicz-Fejér means of two-dimensional conjugate Walsh-Fourier series, Acta Math. Sin. (Engl.
Ser.) 27 (2011), 1949-1958. MR 2835217. DOI 10.1007/s10114-011-9551-7.
[12] U. Goginava and K. Nagy, On the maximal operator of Walsh-Kaczmarz-Fejér means, Czechoslovak Math. J. 61 (2011), 673-686. MR 2853082. DOI 10.1007/s10587-011-0038-6.
[13] I. Marcinkiewisz, Sur une metode remarquable de summation des series doubles de Fourier, Ann. Scuola Norm. Sup. Pisa 8 (1939), 149-160. MR 1556822.
[14] F. Móricz and A. Siddiqi, Approximation by Nörlund means of Walsh-Fourier series, J. Approx. Theory. 70 (1992), 375-389. MR 1178380.
DOI 10.1016/0021-9045(92)90067-X.
[15] K. Nagy, Approximation by Nörlund means of quadratical partial sums of double Walsh-Fourier series, Anal. Math. 26 (2010), 299-319. MR 2738323.
DOI 10.1007/s10476-010-0404-x.
[16] , On the maximal operator of Walsh-Marcinkiewicz means, Publ. Math. Debrecen. 78 (2011), 633-646. MR 2867206. DOI 10.5486/PMD.2011.4829.
[17] , Approximation by Cesàro means of negative order of double
Walsh-Kaczmarz-Fourier series, Tohoku Math. J. 64 (2012), 317-331.
[18] J. Pál and P. Simon, On a generalization of the concept of derivative, Acta Math. Hungar. 29 (1977), 155-164. MR 0450884.
[19] F. Schipp, Certain rearrangements of series in the Walsh series (in Russian), Mat. Zametki 18 (1975), 193-201. MR 0390633.
[20] F. Schipp, W. R. Wade, P. Simon, Walsh Series: An Introduction to Dyadic Harmonic Analysis, with the collaboration of J. Pál, Adam Hilger, Bristol, England, 1990. MR 1117682.
[21] P. Simon, Investigations with respect to the Vilenkin system, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 28 (1985), 87-101. MR 0823096.
[22] , Cesàro summability with respect to two-parameter Walsh systems, Monatsh. Math. 131 (2000), 321-334. MR 1813992.
DOI 10.1007/s006050070004.
[23] G. Tephnadze, Fejér means of Vilenkin-Fourier series, Studia Sci. Math. Hungar. 49 (2012), 79-90. MR 3059789. DOI 10.1556/SScMath.2011.1187.
[24] , On the maximal operator of Vilenkin-Fejér means, Turkish J. Math 37 (2013), 308-318. MR 3040854.
[25] , On the maximal operators of Vilenkin-Fejér means on Hardy spaces, Math. Inequal. Appl. 16 (2013), 301-312. MR 3060398. DOI 10.7153/mia-16-23.
[26] , On the maximal operator of Walsh-Kaczmarz-Fejér means, Period. Math. Hungar. 67 (2013), 33-45. MR 3090822. DOI 10.1007/s10998-013-4617-1.
[27] , Approximation by Walsh-Kaczmarz-Fejér means on the Hardy spaces, to appear in Acta Math. Scientia.
[28] , On the norm convergence by Fejér means on the bounded Vilenkin groups, to appear in Turkish J. Math.
[29] , On the partial sums of Vilenkin-Fourier series, J. Contemp. Math. Anal. 49 (2014), 23-32. DOI 10.3103/S1068362314010038.
[30] F. Weisz, Martingale Hardy Spaces and Their Applications in Fourier Analysis, Lecture Notes in Math. 1568, Springer, Berlin, 1994. MR 1320508.
[31] _, Cesàro summability of one- and two-dimensional Walsh-Fourier series, Anal. Math. 22 (1996), 229-242.
[32] , "Hardy spaces and Cesàro means of two-dimensional Fourier series" in Approximation Theory and Function Series (Budapest, 1995), Bolyai Soc. Math. Stud. 5, János Bolyai Math. Soc., Budapest, 1996, 353-367. MR 1432680.
[33] \qquad , Convergence of double Walsh-Fourier series and Hardy spaces, Approx. Theory Appl. (N. S.) 17 (2001), 32-44. MR 1867788. DOI 10.1023/A:1015553812707.
[34] A. Zygmund, Trigonometric Series, Vol. 1, 2nd ed., Cambridge Univ. Press, New York, 1959. MR 0107776.

Nagy: Institute of Mathematics and Computer Sciences, College of Nyíregyháza, Nyíregyháza H-4400, Hungary; nkaroly@nyf.hu

Tephnadze: Institute of Mathematics, Faculty of Exact and Natural Sciences, Tbilisi State University, Tbilisi 0128, Georgia and Department of Engineering Sciences and Mathematics, Luleå University of Technology, SE-97187 Luleå, Sweden;
giorgitephnadze@gmail.com

[^0]: Kyoto Journal of Mathematics, Vol. 54, No. 3 (2014), 641-652
 DOI $10.1215 / 21562261-2693469$, © 2014 by Kyoto University
 Received April 5, 2013. Accepted July 19, 2013.
 2010 Mathematics Subject Classification: 42C10.
 Authors' research supported by project TÁMOP-4.2.2.A-11/1/KONV-2012-0051 and Shota Rustaveli National Science Foundation grant no. 13/06 (Geometry of function spaces, interpolation, and embedding theorems).

