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Abstract The main aim of this paper is to find necessary and sufficient conditions for

the convergence of Walsh–Marcinkiewicz means in terms of the modulus of continuity

on the Hardy spaceH2/3.

1. Introduction

The convergence almost everywhere of Walsh–Fejér means σnf was proved by

Fine [3]. Weak-type (1,1)-inequality for maximal operator σ∗ can be found in

Zygmund [34] for the trigonometric series, in Schipp [19] for Walsh series, and in

Pál and Simon [18] for bounded Vilenkin series. Moreover, Fujji [5] and Simon

[21] verified that σ∗ is bounded from H1 to L1. Weisz [31] generalized this result

and proved the boundedness of σ∗ from the martingale space Hp to the space

Lp for p > 1/2. Simon [22] gave a counterexample, which shows that the bound-

edness does not hold for 0< p < 1/2. The counterexample for p= 1/2 is due to

Goginava [7] (see also [1], [2]). In [23] the second author proved that there exists

a martingale f ∈H1/2 such that the Fejér means of f are not uniformly bounded

in the space L1/2.

In [8], [24], and [25] it was proven that the maximal operator σ̃∗
p defined by

σ̃∗
p := sup

n∈N

|σn|
(n+ 1)1/p−2 log2[1/2+p](n+ 1)

,

where 0< p≤ 1/2 and [1/2 + p] denotes the integer part of 1/2 + p, is bounded

from the Hardy space Hp to the space Lp. It was also proven that the rate of the

weights {(n+1)1/p−2 log2[1/2+p](n+1)}∞n=1 in the nth Fejér mean is given exactly.

For Walsh–Kaczmarz system analogical theorems are proven in [12] and [26].

Móricz and Siddiqi [14] investigated the approximation properties of some

special Nörlund means of Walsh–Fourier series of Lp-functions in norm. Fridly,

Manchanda, and Siddiqi [4] improved and extended the results of Móricz and
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Siddiqi [14], among them in Hp-norm, where 0< p < 1. The second author [27]

and [28] gave a necessary and sufficient condition for the convergence of Fejér

means in terms of modulus of continuity on the Hardy space Hp (0< p≤ 1/2). In

[6] Goginava investigated the behavior of Cesàro means of Walsh–Fourier series

in detail. For the two-dimensional case, approximation properties of Nörlund and

Cesàro means were considered by Nagy (see [17], [15]).

For two-dimensional trigonometric Fourier partial sums Sj,j(f) Marcinkie-

wicz [13] proved that the means Mn(f) of a function f ∈ L logL([0,2π]2) con-

verges almost everywhere to f as n → ∞. For two-dimensional Walsh–Fourier

series Weisz [33] proved that the maximal operator M∗(f) is bounded from

the dyadic martingale Hardy space Hp(G
2) to the space Lp(G

2) for p > 2/3. In

the case p= 2/3 Goginava [7] proved that M∗ is not bounded from the Hardy

space H2/3(G
2) to the space L2/3(G

2). By interpolation it follows that M∗ is not

bounded from the Hardy space Hp(G
2) to the space weak-Lp(G

2) for 0< p< 2/3.

That is, the end point of the boundedness of the maximal operator M∗ is

p = 2/3. This means that it is interesting to discuss what does happen here.

Goginava [9] also proved that M∗ is bounded from the Hardy space H2/3(G
2)

to the space weak-L2/3(G
2).

The first author [16] proved that the maximal operator M̃∗ defined by

M̃∗ := sup
n∈N

|Mn|
log3/2(n+ 1)

is bounded from the Hardy space H2/3(G
2) to the space L2/3(G

2). As a corollary

we get

(1) ‖Mnf‖2/3 ≤ c log3/2(n+ 1)‖f‖H2/3
.

In [16] the first author also proved that the sequence {log3/2(n+1)}∞n=1 is impor-

tant for the maximal operator M̃∗. That is, the order of deviant behavior of the

nth Marcinkiewicz means was given exactly.

Now, we continue our investigation at the end point p= 2/3. The main aim

of this paper is to find a necessary and sufficient condition for the convergence of

Walsh–Marcinkiewicz means in terms of the modulus of continuity on the Hardy

space H2/3(G
2).

2. Definitions and notation

Now, we give a brief introduction to the theory of dyadic analysis (see [20], [30]).

Let N+ denote the set of positive integers N := N+ ∪ {0}. Let Z2 denote the

discrete cyclic group of order 2, that is, Z2 = {0,1}, where the group operation

is modulo 2 addition and every subset is open. The Haar measure on Z2 is given

such that the measure of a singleton is 1/2. Let G be the complete direct product

of the countable infinite copies of the compact groups Z2. The elements of G are of

the form x= (x0, x1, . . . , xk, . . .) with coordinates xk ∈ {0,1} (k ∈N). The group

operation on G is the coordinatewise addition, the measure (denoted by μ) is

the product measure, and the topology is the product topology. The compact
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Abelian group G is called the Walsh group. A base for the neighborhoods of G

can be given in the following way:

I0(x) := G,

In(x) := In(x0, . . . , xn−1)

:=
{
y ∈G : y = (x0, . . . , xn−1, yn, yn+1, . . .)

}
(x ∈ G,n ∈ N). These sets are called dyadic intervals. Let 0 = (0 : i ∈ N) ∈ G

denote the null element of G, and let In := In(0)(n ∈N). Set

en := (0, . . . ,0,1,0, . . .) ∈G,

the nth coordinate of which is 1 and the rest are zeros (n ∈N).

For k ∈N and x ∈G let

rk(x) := (−1)xk

denote the kth Rademacher function. If n ∈N, then n=
∑∞

i=0 ni2
i can be written,

where ni ∈ {0,1} (i ∈N), that is, n is expressed in the number system of base 2.

Let |n| := max{j ∈N : nj �= 0}, that is, 2|n| ≤ n < 2|n|+1.

The Walsh–Paley system is defined as the sequence of Walsh–Paley functions

wn(x) :=
∞∏
k=0

(
rk(x)

)nk = (−1)
∑|n|

k=0 nkxk (x ∈G,n ∈N).

The Dirichlet kernels are defined as

Dn :=

n−1∑
k=0

wk, D0 := 0.

The 2nth Dirichlet kernels have the following form (see, e.g., [20]):

(2) D2n(x) =

{
2n if x ∈ In,

0 if x /∈ In.

The norm (or quasinorm) of the space Lp(G) is defined by

‖f‖p :=
(∫

G

∣∣f(x)∣∣p dμ(x))1/p

(0< p<∞).

The space weak-Lp(G) consists of all measurable functions f for which

‖f‖weak -Lp := sup
λ>0

λμ(f > λ)1/p <+∞.

The σ-algebra generated by the dyadic intervals of measure 2−k will be

denoted by Fk (k ∈N). Denote by f = (f (n), n ∈N) a martingale with respect to

(Fn, n ∈ N) (for details see, e.g., [30]). The maximal function of a martingale f

is defined by

f∗ = sup
n∈N

|f (n)|.
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In the case f ∈ L1(G), the maximal function can also be given by

f∗(x) = sup
n∈N

1

μ(In(x))

∣∣∣∫
In(x)

f(u)dμ(u)
∣∣∣, x ∈G.

For 0< p<∞ the Hardy martingale space Hp(G) consists of all martingales

for which

‖f‖Hp := ‖f∗‖p <∞.

If f ∈ L1(G), then it is easy to show that the sequence (S2nf : n ∈ N) is a

martingale. If f = (f (0), f (1), . . .) is a martingale, then the Walsh–Fourier coeffi-

cients are defined in the following way:

f̂(i) = lim
k→∞

∫
G

f (k)(x)wi(x)dμ(x).

The Walsh–Fourier coefficients of f ∈ L1(G) are the same as the ones of the

martingale (S2nf : n ∈N) obtained from f .

The partial sums of the Walsh–Fourier series are defined as

Sm(f ;x) :=

m−1∑
i=0

f̂(i)wi(x).

For n= 1,2, . . . and a martingale f the nth Fejér means and Fejér kernel of

the Walsh–Fourier series of the function f are given by

σn(f ;x) =
1

n

n−1∑
j=0

Sj(f ;x), Kn(x) :=
1

n

n−1∑
k=0

Dk(x).

The σ-algebra generated by the dyadic two-dimensional (In(x
1) × In(x

2)-

square of measure 2−n×2−n is denoted by �n,n (n ∈N). Denote by f = (fn,n, n ∈
N) the one-parameter martingale with respect to �n,n (n ∈ N). The definitions

of the spaces Lp(G
2), weak-Lp(G

2), and Hp(G
2) are given analogously to those

in the one-dimensional case.

The Kronecker product (wn,m : n,m ∈N) of two Walsh system is said to be

a two-dimensional Walsh system. Thus,

wn,m(x1, x2) =wn(x
1)wm(x2).

If f ∈ L1(G
2), then the numbers f̂(n,m) =

∫
G2 fwn,m dμ (wn,m : n,m ∈ N)

is said to be the (n,m)th Walsh–Fourier coefficient of f . We can extend this

definition to the martingales in the usual way. Denote by Sn,m the (n,m)th

rectangular partial sum of the Walsh–Fourier series of a martingale f . Namely,

Sn,m(f ;x1, x2) :=

n−1∑
i=0

m−1∑
j=0

f̂(i, j)wi,j(x
1, x2).

A bounded measurable function a is a p-atom if there exists a dyadic two-

dimensional cube I2 such that∫
I2

adμ= 0, ‖a‖∞ ≤ μ(I2)−1/p, suppa⊂ I2.
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The dyadic Hardy martingale spaces Hp (G2) for 0< p≤ 1 have an atomic

characterization. Namely the following theorem is true (see [32]).

THEOREM W (WEISZ [32, THEOREM 1, P. 359])

A martingale f = (fn,n, n ∈N) is in Hp(G
2) (0< p≤ 1) if and only if there exists

a sequence (ak, k ∈N) of p-atoms and a sequence (μk, k ∈N) of real numbers such

that for every n ∈N,

(3)

∞∑
k=0

μkS2n,2nak = fn,n

and
∞∑
k=0

|μk|p <∞.

Moreover, ‖f‖Hp � inf(
∑∞

k=0 |μk|p)1/p, where the infimum is taken over all decom-

positions of f of the form (3).

The concept of modulus of continuity in Hp(G
2) (0< p≤ 1) is given by

ω(1/2n, f)Hp := ‖f − S2n,2nf‖Hp .

The nth Marcinkiewicz–Fejér mean of a martingale f is defined by

Mn(f ;x
1, x2) :=

1

n

n∑
k=0

Sk,k(f ;x
1, x2).

The two-dimensional Dirichlet kernels and Marcinkiewicz–Fejér kernels are

defined by

Dk,l(x
1, x2) =Dk(x

1)Dl(x
2), Kn(x

1, x2) :=
1

n

n∑
k=0

Dk,k(x
1, x2).

Let the maximal operators M∗ and M# be given by

M∗(f) = sup
n≥1

∣∣Mn(f)
∣∣, M#(f) = sup

n∈N

∣∣M2n(f)
∣∣.

For the maximal operator M# Goginava [10] proved that the following is

true.

THEOREM G (GOGINAVA [10, THEOREMS 1, 2, P. 38])

The maximal operator M# is bounded from the Hardy space H1/2(G
2) to the

space weak-L1/2(G
2) and is not bounded from the Hardy space Hp(G

2) to the

space Lp(G
2) for 0< p≤ 1/2.

For the martingale

f =

∞∑
n=0

(fn − fn−1)
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the conjugate transforms are defined as

f̃ (t) =
∞∑

n=0

rn(t)(fn − fn−1),

where t ∈G is fixed. Note that f̃ (0) = f . It is well known (see [30]) that

(4) ‖f̃ (t)‖Hp(G2) = ‖f‖Hp(G2), ‖f‖pHp(G2) ∼
∫
[0,1)

‖f̃ (t)‖pp dt.

3. Formulation of main results

THEOREM 1

(a) Let

(5) ω
( 1

2k
, f

)
H2/3

= o
( 1

k3/2

)
as k→∞.

Then ∥∥Mn(f)− f
∥∥
H2/3

→ 0 when n→∞.

(b) There exists a martingale f ∈H2/3, for which

ω
( 1

22k
, f

)
H2/3

=O
( 1

23k/2

)
as k→∞

and ∥∥Mn(f)− f
∥∥
2/3

� 0 as n→∞.

During the proof of our main theorem we will use the following lemma of Goginava

[11].

LEMMA 1 (GOGINAVA [11, LEMMA 4.2, P. 1954])

Let

x1 ∈ I4A(0, . . . ,0, x
1
4m = 1,0, . . . ,0, x1

4l = 1, x1
4l+1, . . . , x

1
4A−1)

and

x2 ∈ I4A(0, . . . ,0, x
2
4l = 1, x1

4l+1, . . . , x
1
4q−1,1− x1

4q, x
2
4q+1, . . . , x

2
4A−1).

Then

nA−1

∣∣KnA−1
(x1, x2)

∣∣≥ 24q+4l+4m−3,

where nA = 24A + 24A−4 + · · ·+ 24 + 20.

4. Proof of the theorem

Proof of Theorem 1

During the proof we follow the method of the second author in [28] and [29],

but we have to make the necessary changes. Moreover, the proof is based on the
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result of the first author [16] discussing the properties of the maximal operator

M̃∗. Combining (1) and (4) we have

‖Mnf‖2/3H2/3
=

∫
[0,1)

∥∥ ˜(Mnf)(t)
∥∥2/3
2/3

dt=

∫
[0,1)

‖Mnf̃ (t)‖2/32/3 dt

≤ c log(n+ 1)

∫
[0,1)

‖f̃ (t)‖2/3H2/3
dt

= c log(n+ 1)

∫
[0,1)

‖f‖2/3H2/3
dt

= c log(n+ 1)‖f‖2/3H2/3
.

(6)

Let 2N < n≤ 2N+1. The inequality (6) implies

‖Mnf − f‖2/3H2/3
≤ ‖Mnf −MnS2N ,2N f‖2/3H2/3

+ ‖MnS2N ,2N f − S2N ,2N f‖2/3H2/3
+ ‖S2N ,2N f − f‖2/3H2/3

=
∥∥Mn(S2N ,2N f − f)

∥∥2/3
H2/3

+ ‖MnS2N ,2N f − S2N ,2N f‖2/3H2/3
+ ‖S2N ,2N f − f‖2/3H2/3

≤ c
(
log(n+ 1) + 1

)
ω2/3

( 1

2N
, f

)
H2/3

+ ‖MnS2N ,2N f − S2N ,2N f‖2/3H2/3
.

Hence,

MnS2N ,2N f − S2N ,2N f

=
1

n

2N∑
k=0

Sk,kS2N ,2N f +
1

n

n∑
k=2N+1

Sk,kS2N ,2N f − S2N ,2N f

=
1

n

2N∑
k=0

Sk,kf +
(n− 2N )S2N ,2N f

n
− S2N ,2N f

=
2N

n
(M2N f − S2N ,2N f)

=
2N

n
(S2N ,2NM2N f − S2N ,2N f)

=
2N

n
S2N ,2N (M2N f − f).

Combining (4) and Theorem G, and following the steps of estimation (6) we get

‖MnS2N ,2N f − S2N ,2N f‖2/3H2/3
≤
(2N

n

)2/3∥∥S2N ,2N (M2N f − f)
∥∥2/3
H2/3

≤ ‖M2N f − f‖2/3H2/3
→ 0, while n→∞.

(7)
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We immediately have that if

ω
( 1

2n
, f

)
H2/3

= o
( 1

n3/2

)
, as n→∞,

then

‖Mnf − f‖H2/3
→ 0, while n→∞.

It completes the proof of the first part of our theorem.

Now, we prove the second part of Theorem 1. We set

ai(x
1, x2) = 22

i(
D22i+1(x

1)−D22i (x
1)
)(
D22i+1(x

2)−D22i (x
2)
)

and

fA,A(x
1, x2) =

A∑
i=1

ai(x
1, x2)

23i/2
.

Since

S2A,2Aak(x
1, x2) =

{
ak(x

1, x2) if 2k ≤A,

0 if 2k >A,

and

suppak = I22k ,∫
I2
2k

ak dμ = 0,

‖ak‖∞ ≤ μ(suppak)
−3/2,

by Theorem W we conclude that f ∈H2/3. We write that

f − S2n,2nf

= (f (1) − S2n,2nf
(1), . . . , f (n) − S2n,2nf

(n), . . . , f (n+k) − S2n,2nf
(n+k), . . .)

= (0, . . . ,0, f (n+1) − f (n), . . . , f (n+k) − f (n), . . .)

=
(
0, . . . ,0, . . . ,

logn+k∑
i=logn+1

ai(x)

23i/2
, . . .

)
, k ∈N+.

Hence

ω
( 1

2n
, f

)
H2/3

≤
∞∑

i=[logn]

1

23i/2
=O

( 1

n3/2

)
,

where [logn] denotes the integer part of logn.

Set n2A−2 = 24·2
A−2

+ 24·2
A−2−4 + · · ·+ 24 + 20 = 22

A

+ 22
A−4 + · · ·+ 24 + 20

as in Lemma 1:

(8) Mn
2k−2

(f)− f =
22

kM22k (f)

n2k−2

+
1

n2k−2

n
2k−2∑

j=22k+1

Sj,j(f)−
22

k

f

n2k−2

− n2k−2−1f

n2k−2

.
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It is easy to show that

(9) f̂(i, j) =

{
22

k

23k/2 if (i, j) ∈ {22k , . . . ,22k+1 − 1}2, k = 0,1, . . . ,

0 if (i, j) /∈
⋃∞

k=0{22
k

, . . . ,22
k+1 − 1}2.

Let 22
k

< j ≤ n2k−2 . Since w
v+22k

=w
22k

wv , when v < 22
k

using (9) we have

Sj,jf(x
1, x2)

= S
22k ,22k

f(x1, x2) +

j−1∑
v=22k

j−1∑
s=22k

f̂(v, s)wv,s(x
1, x2)

= S
22k ,22k

f(x1, x2) +
22

k

23k/2

j−22
k−1∑

v=0

j−22
k−1∑

s=0

w
v+22k

(x1)w
s+22k

(x2)

= S22k ,22k f(x
1, x2) +

22
k

w
22k

(x1)w
22k

(x2)

23k/2

j−22
k−1∑

v=0

j−22
k−1∑

s=0

wv(x
1)ws(x

2)

= S
22k ,22k

f(x1, x2) +
22

k

w
22k

(x1)w
22k

(x2)D
j−22

k
,j−22

k
(x1, x2)

23k/2
.

Hence,

1

n2k−2

n
2k−2∑

j=22k+1

Sj,jf(x
1, x2)

=
n2k−2−1S22k ,22k

f(x1, x2)

n2k−2

+
22

k

w
22k

(x1)w
22k

(x2)

n2k−223k/2

n
2k−2−1∑
j=1

Dj,j (x
1, x2)

=
n2k−2−1S22k ,22k

f(x1, x2)

n2k−2

+
22

k

w
22k

(x1)w
22k

(x2)n2k−2−1Kn
2k−2−1

(x1, x2)

n2k−123k/2
.

Equality (8) yields∥∥Mn
2k−2

(f)− f
∥∥2/3
2/3

≥ c

2k
‖n2k−2−1Kn

2k−2−1
‖2/32/3

−
( 22

k

n2k−2

)2/3∥∥M
22k

(f)− f
∥∥2/3
2/3

(10)

−
(n2k−2−1

n2k−2

)2/3

‖S
22k ,22k

f − f‖2/32/3.

Let

x1 ∈ Im,l
2k−2 := I2k−2(0, . . . ,0, x1

4m = 1,0, . . . ,0, x1
4l = 1, x1

4l+1, . . . , x
1
2k−2−1)

and

x2 ∈ J l,q
2k−2 := I2k−2(0, . . . ,0, x2

4l = 1, x1
4l+1, . . . , x

1
4q−1,1− x1

4q, x
2
4q+1, . . . , x

2
2k−2−1).
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Applying Lemma 1 we have

n
2k−2−1

∣∣Kn
2k−2−1

(x1, x2)
∣∣≥ 24q+4l+4m−3.

Hence, we can write that∫
G

(
n

2k−2−1

∣∣Kn
2k−2−1

(x1, x2)
∣∣)2/3 dμ(x1, x2)

≥ c

2k−2−3∑
m=1

2k−2−2∑
l=m+1

2k−2−1∑
q=l+1

1∑
x1
4l+1=0

· · ·
1∑

x1

2k−2−1
=0

1∑
x2
4q+1=0

· · ·
1∑

x2

2k−2−1
=0∫

Im,l

2k−2×Jl,q

2k−2

(
n2k−2−1

∣∣Kn
2k−2−1

(x1, x2)
∣∣)2/3 dμ(x1, x2)

≥ c
2k−2−3∑
m=1

2k−2−2∑
l=m+1

2k−2−1∑
q=l+1

1∑
x1
4l+1=0

· · ·
1∑

x1

2k−2−1
=0

1∑
x2
4q+1=0

· · ·
1∑

x2

2k−2−1
=0

μ(Im,l
2k−2 × J l,q

2k−2)2
(8q+8l+8m)/3

≥ c
2k−2−3∑
m=1

2k−2−2∑
l=m+1

2k−2−1∑
q=l+1

2(8q+8l+8m)/322
k−2−4l22

k−2−4q
( 1

22k−2

)2

≥ c

2k−2−3∑
m=1

28m/3
2k−2−2∑
l=m+1

2−4l/3
2k−2−1∑
q=l+1

2−4q/3 ≥ c

2k−2−3∑
m=1

1≥ c2k.

Using (10) we have

limsup
k→∞

∥∥Mn
2k−2

(f)− f
∥∥
2/3

≥ c > 0.

The proof of Theorem 1 is complete. �
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[32] , “Hardy spaces and Cesàro means of two-dimensional Fourier series” in

Approximation Theory and Function Series (Budapest, 1995), Bolyai Soc.

Math. Stud. 5, János Bolyai Math. Soc., Budapest, 1996, 353–367. MR 1432680.

[33] , Convergence of double Walsh–Fourier series and Hardy spaces,

Approx. Theory Appl. (N. S.) 17 (2001), 32–44. MR 1867788.

DOI 10.1023/A:1015553812707.

[34] A. Zygmund, Trigonometric Series, Vol. 1, 2nd ed., Cambridge Univ. Press,

New York, 1959. MR 0107776.

Nagy: Institute of Mathematics and Computer Sciences, College of Nýıregyháza,
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