Approximation by Walsh–Marcinkiewicz means on the Hardy space $H_{2/3}$

Károly Nagy and George Tephnadze

Abstract The main aim of this paper is to find necessary and sufficient conditions for the convergence of Walsh–Marcinkiewicz means in terms of the modulus of continuity on the Hardy space $H_{2/3}$.

1. Introduction

The convergence almost everywhere of Walsh–Fejér means $\sigma_n f$ was proved by Fine [3]. Weak-type (1,1)-inequality for maximal operator σ^* can be found in Zygmund [34] for the trigonometric series, in Schipp [19] for Walsh series, and in Pál and Simon [18] for bounded Vilenkin series. Moreover, Fujji [5] and Simon [21] verified that σ^* is bounded from H_1 to L_1 . Weisz [31] generalized this result and proved the boundedness of σ^* from the martingale space H_p to the space L_p for p > 1/2. Simon [22] gave a counterexample, which shows that the boundedness does not hold for 0 . The counterexample for <math>p = 1/2 is due to Goginava [7] (see also [1], [2]). In [23] the second author proved that there exists a martingale $f \in H_{1/2}$ such that the Fejér means of f are not uniformly bounded in the space $L_{1/2}$.

In [8], [24], and [25] it was proven that the maximal operator $\tilde{\sigma}_p^*$ defined by

$$\widetilde{\sigma}_p^* := \sup_{n \in \mathbb{N}} \frac{|\sigma_n|}{(n+1)^{1/p-2} \log^{2[1/2+p]}(n+1)},$$

where 0 and <math>[1/2 + p] denotes the integer part of 1/2 + p, is bounded from the Hardy space H_p to the space L_p . It was also proven that the rate of the weights $\{(n+1)^{1/p-2} \log^{2[1/2+p]}(n+1)\}_{n=1}^{\infty}$ in the *n*th Fejér mean is given exactly. For Walsh–Kaczmarz system analogical theorems are proven in [12] and [26].

Móricz and Siddiqi [14] investigated the approximation properties of some special Nörlund means of Walsh–Fourier series of L_p -functions in norm. Fridly, Manchanda, and Siddiqi [4] improved and extended the results of Móricz and

Kyoto Journal of Mathematics, Vol. 54, No. 3 (2014), 641-652

DOI 10.1215/21562261-2693469, © 2014 by Kyoto University

Received April 5, 2013. Accepted July 19, 2013.

²⁰¹⁰ Mathematics Subject Classification: 42C10.

Authors' research supported by project TÁMOP-4.2.2.A-11/1/KONV-2012-0051 and Shota Rustaveli National Science Foundation grant no. 13/06 (Geometry of function spaces, interpolation, and embedding theorems).

Siddiqi [14], among them in H_p -norm, where 0 . The second author [27]and [28] gave a necessary and sufficient condition for the convergence of Fejér $means in terms of modulus of continuity on the Hardy space <math>H_p$ (0). In[6] Goginava investigated the behavior of Cesàro means of Walsh–Fourier seriesin detail. For the two-dimensional case, approximation properties of Nörlund andCesàro means were considered by Nagy (see [17], [15]).

For two-dimensional trigonometric Fourier partial sums $S_{j,j}(f)$ Marcinkiewicz [13] proved that the means $\mathcal{M}_n(f)$ of a function $f \in L\log L([0, 2\pi]^2)$ converges almost everywhere to f as $n \to \infty$. For two-dimensional Walsh–Fourier series Weisz [33] proved that the maximal operator $\mathcal{M}^*(f)$ is bounded from the dyadic martingale Hardy space $H_p(G^2)$ to the space $L_p(G^2)$ for p > 2/3. In the case p = 2/3 Goginava [7] proved that \mathcal{M}^* is not bounded from the Hardy space $H_{2/3}(G^2)$ to the space $L_{2/3}(G^2)$. By interpolation it follows that \mathcal{M}^* is not bounded from the Hardy space $H_p(G^2)$ to the space weak- $L_p(G^2)$ for 0 .

That is, the end point of the boundedness of the maximal operator \mathcal{M}^* is p = 2/3. This means that it is interesting to discuss what does happen here. Goginava [9] also proved that \mathcal{M}^* is bounded from the Hardy space $H_{2/3}(G^2)$ to the space weak- $L_{2/3}(G^2)$.

The first author [16] proved that the maximal operator $\widetilde{\mathcal{M}}^*$ defined by

$$\widetilde{\mathcal{M}}^* := \sup_{n \in \mathbb{N}} \frac{|\mathcal{M}_n|}{\log^{3/2}(n+1)}$$

is bounded from the Hardy space $H_{2/3}(G^2)$ to the space $L_{2/3}(G^2)$. As a corollary we get

(1)
$$\|\mathcal{M}_n f\|_{2/3} \le c \log^{3/2} (n+1) \|f\|_{H_{2/3}}.$$

In [16] the first author also proved that the sequence $\{\log^{3/2}(n+1)\}_{n=1}^{\infty}$ is important for the maximal operator $\widetilde{\mathcal{M}}^*$. That is, the order of deviant behavior of the *n*th Marcinkiewicz means was given exactly.

Now, we continue our investigation at the end point p = 2/3. The main aim of this paper is to find a necessary and sufficient condition for the convergence of Walsh–Marcinkiewicz means in terms of the modulus of continuity on the Hardy space $H_{2/3}(G^2)$.

2. Definitions and notation

Now, we give a brief introduction to the theory of dyadic analysis (see [20], [30]). Let \mathbb{N}_+ denote the set of positive integers $\mathbb{N} := \mathbb{N}_+ \cup \{0\}$. Let \mathbb{Z}_2 denote the discrete cyclic group of order 2, that is, $\mathbb{Z}_2 = \{0, 1\}$, where the group operation is modulo 2 addition and every subset is open. The Haar measure on \mathbb{Z}_2 is given such that the measure of a singleton is 1/2. Let G be the complete direct product of the countable infinite copies of the compact groups \mathbb{Z}_2 . The elements of G are of the form $x = (x_0, x_1, \ldots, x_k, \ldots)$ with coordinates $x_k \in \{0, 1\}$ $(k \in \mathbb{N})$. The group operation on G is the coordinatewise addition, the measure (denoted by μ) is the product measure, and the topology is the product topology. The compact Abelian group G is called the Walsh group. A base for the neighborhoods of G can be given in the following way:

$$I_0(x) := G,$$

$$I_n(x) := I_n(x_0, \dots, x_{n-1})$$

$$:= \{ y \in G : y = (x_0, \dots, x_{n-1}, y_n, y_{n+1}, \dots) \}$$

 $(x \in G, n \in \mathbb{N})$. These sets are called dyadic intervals. Let $0 = (0 : i \in \mathbb{N}) \in G$ denote the null element of G, and let $I_n := I_n(0)(n \in \mathbb{N})$. Set

$$e_n := (0, \ldots, 0, 1, 0, \ldots) \in G,$$

the *n*th coordinate of which is 1 and the rest are zeros $(n \in \mathbb{N})$.

For $k \in \mathbb{N}$ and $x \in G$ let

$$r_k(x) := (-1)^{x_k}$$

denote the kth Rademacher function. If $n \in \mathbb{N}$, then $n = \sum_{i=0}^{\infty} n_i 2^i$ can be written, where $n_i \in \{0, 1\}$ $(i \in \mathbb{N})$, that is, n is expressed in the number system of base 2. Let $|n| := \max\{j \in \mathbb{N} : n_j \neq 0\}$, that is, $2^{|n|} \le n < 2^{|n|+1}$.

The Walsh–Paley system is defined as the sequence of Walsh–Paley functions

$$w_n(x) := \prod_{k=0}^{\infty} (r_k(x))^{n_k} = (-1)^{\sum_{k=0}^{|n|} n_k x_k} \quad (x \in G, n \in \mathbb{N}).$$

The Dirichlet kernels are defined as

$$D_n := \sum_{k=0}^{n-1} w_k, \qquad D_0 := 0.$$

The 2^n th Dirichlet kernels have the following form (see, e.g., [20]):

(2)
$$D_{2^n}(x) = \begin{cases} 2^n & \text{if } x \in I_n, \\ 0 & \text{if } x \notin I_n. \end{cases}$$

The norm (or quasinorm) of the space $L_p(G)$ is defined by

$$\|f\|_p := \left(\int_G |f(x)|^p d\mu(x)\right)^{1/p} \quad (0$$

The space weak- $L_p(G)$ consists of all measurable functions f for which

$$||f||_{\operatorname{weak}-L_p} := \sup_{\lambda > 0} \lambda \mu (f > \lambda)^{1/p} < +\infty.$$

The σ -algebra generated by the dyadic intervals of measure 2^{-k} will be denoted by F_k $(k \in \mathbb{N})$. Denote by $f = (f^{(n)}, n \in \mathbb{N})$ a martingale with respect to $(F_n, n \in \mathbb{N})$ (for details see, e.g., [30]). The maximal function of a martingale fis defined by

$$f^* = \sup_{n \in \mathbb{N}} |f^{(n)}|.$$

In the case $f \in L_1(G)$, the maximal function can also be given by

$$f^*(x) = \sup_{n \in \mathbb{N}} \frac{1}{\mu(I_n(x))} \Big| \int_{I_n(x)} f(u) \, d\mu(u) \Big|, \quad x \in G.$$

For $0 the Hardy martingale space <math>H_p(G)$ consists of all martingales for which

$$||f||_{H_p} := ||f^*||_p < \infty.$$

If $f \in L_1(G)$, then it is easy to show that the sequence $(S_{2^n}f : n \in \mathbb{N})$ is a martingale. If $f = (f^{(0)}, f^{(1)}, \ldots)$ is a martingale, then the Walsh–Fourier coefficients are defined in the following way:

$$\widehat{f}(i) = \lim_{k \to \infty} \int_G f^{(k)}(x) w_i(x) \, d\mu(x).$$

The Walsh–Fourier coefficients of $f \in L_1(G)$ are the same as the ones of the martingale $(S_{2^n}f : n \in \mathbb{N})$ obtained from f.

The partial sums of the Walsh–Fourier series are defined as

$$S_m(f;x) := \sum_{i=0}^{m-1} \widehat{f}(i)w_i(x).$$

For n = 1, 2, ... and a martingale f the *n*th Fejér means and Fejér kernel of the Walsh–Fourier series of the function f are given by

$$\sigma_n(f;x) = \frac{1}{n} \sum_{j=0}^{n-1} S_j(f;x), \qquad K_n(x) := \frac{1}{n} \sum_{k=0}^{n-1} D_k(x).$$

The σ -algebra generated by the dyadic two-dimensional $(I_n(x^1) \times I_n(x^2)$ square of measure $2^{-n} \times 2^{-n}$ is denoted by $\mathcal{F}_{n,n}$ $(n \in \mathbb{N})$. Denote by $f = (f_{n,n}, n \in \mathbb{N})$ the one-parameter martingale with respect to $\mathcal{F}_{n,n}$ $(n \in \mathbb{N})$. The definitions of the spaces $L_p(G^2)$, weak- $L_p(G^2)$, and $H_p(G^2)$ are given analogously to those in the one-dimensional case.

The Kronecker product $(w_{n,m}: n, m \in \mathbb{N})$ of two Walsh system is said to be a two-dimensional Walsh system. Thus,

$$w_{n,m}(x^1, x^2) = w_n(x^1)w_m(x^2).$$

If $f \in L_1(G^2)$, then the numbers $\widehat{f}(n,m) = \int_{G^2} f w_{n,m} d\mu$ $(w_{n,m} : n, m \in \mathbb{N})$ is said to be the (n,m)th Walsh–Fourier coefficient of f. We can extend this definition to the martingales in the usual way. Denote by $S_{n,m}$ the (n,m)th rectangular partial sum of the Walsh–Fourier series of a martingale f. Namely,

$$S_{n,m}(f;x^1,x^2) := \sum_{i=0}^{n-1} \sum_{j=0}^{m-1} \widehat{f}(i,j) w_{i,j}(x^1,x^2).$$

A bounded measurable function a is a p-atom if there exists a dyadic twodimensional cube I^2 such that

$$\int_{I^2} a \, d\mu = 0, \qquad \|a\|_{\infty} \le \mu(I^2)^{-1/p}, \qquad \text{supp} \, a \subset I^2.$$

The dyadic Hardy martingale spaces H_p (G^2) for 0 have an atomic characterization. Namely the following theorem is true (see [32]).

THEOREM W (WEISZ [32, THEOREM 1, P. 359])

A martingale $f = (f_{n,n}, n \in \mathbb{N})$ is in $H_p(G^2)$ (0) if and only if there exists $a sequence <math>(a_k, k \in \mathbb{N})$ of p-atoms and a sequence $(\mu_k, k \in \mathbb{N})$ of real numbers such that for every $n \in \mathbb{N}$,

(3)
$$\sum_{k=0}^{\infty} \mu_k S_{2^n, 2^n} a_k = f_{n, n}$$

and

$$\sum_{k=0}^{\infty} |\mu_k|^p < \infty.$$

Moreover, $||f||_{H_p} \sim \inf(\sum_{k=0}^{\infty} |\mu_k|^p)^{1/p}$, where the infimum is taken over all decompositions of f of the form (3).

The concept of modulus of continuity in $H_p(G^2)$ (0 is given by

$$\omega(1/2^n, f)_{H_p} := \|f - S_{2^n, 2^n} f\|_{H_p}.$$

The *n*th Marcinkiewicz–Fejér mean of a martingale f is defined by

$$\mathcal{M}_n(f; x^1, x^2) := \frac{1}{n} \sum_{k=0}^n S_{k,k}(f; x^1, x^2).$$

The two-dimensional Dirichlet kernels and Marcinkiewicz–Fejér kernels are defined by

$$D_{k,l}(x^1, x^2) = D_k(x^1)D_l(x^2), \qquad K_n(x^1, x^2) := \frac{1}{n}\sum_{k=0}^n D_{k,k}(x^1, x^2).$$

Let the maximal operators \mathcal{M}^* and $\mathcal{M}^{\#}$ be given by

$$\mathcal{M}^*(f) = \sup_{n \ge 1} |\mathcal{M}_n(f)|, \qquad \mathcal{M}^{\#}(f) = \sup_{n \in \mathbb{N}} |\mathcal{M}_{2^n}(f)|.$$

For the maximal operator $\mathcal{M}^{\#}$ Goginava [10] proved that the following is true.

THEOREM G (GOGINAVA [10, THEOREMS 1, 2, P. 38])

The maximal operator $\mathcal{M}^{\#}$ is bounded from the Hardy space $H_{1/2}(G^2)$ to the space weak- $L_{1/2}(G^2)$ and is not bounded from the Hardy space $H_p(G^2)$ to the space $L_p(G^2)$ for 0 .

For the martingale

$$f = \sum_{n=0}^{\infty} (f_n - f_{n-1})$$

the conjugate transforms are defined as

$$\widetilde{f^{(t)}} = \sum_{n=0}^{\infty} r_n(t)(f_n - f_{n-1}),$$

where $t \in G$ is fixed. Note that $\widetilde{f^{(0)}} = f$. It is well known (see [30]) that

(4)
$$\|\widetilde{f^{(t)}}\|_{H_p(G^2)} = \|f\|_{H_p(G^2)}, \quad \|f\|_{H_p(G^2)}^p \sim \int_{[0,1)} \|\widetilde{f^{(t)}}\|_p^p dt.$$

3. Formulation of main results

THEOREM 1

(a) Let

(5)
$$\omega\left(\frac{1}{2^k},f\right)_{H_{2/3}} = o\left(\frac{1}{k^{3/2}}\right) \quad as \ k \to \infty.$$

Then

$$\left\|\mathcal{M}_n(f) - f\right\|_{H_{2/3}} \to 0 \quad when \ n \to \infty.$$

(b) There exists a martingale $f \in H_{2/3}$, for which

$$\omega\left(\frac{1}{2^{2^k}},f\right)_{H_{2/3}} = O\left(\frac{1}{2^{3k/2}}\right) \quad as \ k \to \infty$$

and

$$\left|\mathcal{M}_n(f) - f\right|_{2/3} \nrightarrow 0 \quad as \ n \to \infty.$$

During the proof of our main theorem we will use the following lemma of Goginava [11].

LEMMA 1 (GOGINAVA [11, LEMMA 4.2, P. 1954])

Let

$$x^{1} \in I_{4A}(0, \dots, 0, x^{1}_{4m} = 1, 0, \dots, 0, x^{1}_{4l} = 1, x^{1}_{4l+1}, \dots, x^{1}_{4A-1})$$

and

$$x^{2} \in I_{4A}(0, \dots, 0, x_{4l}^{2} = 1, x_{4l+1}^{1}, \dots, x_{4q-1}^{1}, 1 - x_{4q}^{1}, x_{4q+1}^{2}, \dots, x_{4A-1}^{2}).$$

Then

$$n_{A-1} |K_{n_{A-1}}(x^1, x^2)| \ge 2^{4q+4l+4m-3},$$

where $n_A = 2^{4A} + 2^{4A-4} + \dots + 2^4 + 2^0$.

4. Proof of the theorem

Proof of Theorem 1

During the proof we follow the method of the second author in [28] and [29], but we have to make the necessary changes. Moreover, the proof is based on the result of the first author [16] discussing the properties of the maximal operator $\widetilde{\mathcal{M}}^*$. Combining (1) and (4) we have

(6)
$$\begin{aligned} \|\mathcal{M}_{n}f\|_{H_{2/3}}^{2/3} &= \int_{[0,1]} \|\widetilde{(\mathcal{M}_{n}f)^{(t)}}\|_{2/3}^{2/3} dt = \int_{[0,1]} \|\mathcal{M}_{n}\widetilde{f^{(t)}}\|_{2/3}^{2/3} dt \\ &\leq c\log(n+1) \int_{[0,1]} \|\widetilde{f^{(t)}}\|_{H_{2/3}}^{2/3} dt \\ &= c\log(n+1) \int_{[0,1]} \|f\|_{H_{2/3}}^{2/3} dt \\ &= c\log(n+1) \|f\|_{H_{2/3}}^{2/3}. \end{aligned}$$

Let $2^{N} < n \le 2^{N+1}$. The inequality (6) implies $\|\mathcal{M}_{n}f - f\|_{H_{2/3}}^{2/3} \le \|\mathcal{M}_{n}f - \mathcal{M}_{n}S_{2^{N},2^{N}}f\|_{H_{2/3}}^{2/3}$ $+ \|\mathcal{M}_{n}S_{2^{N},2^{N}}f - S_{2^{N},2^{N}}f\|_{H_{2/3}}^{2/3} + \|S_{2^{N},2^{N}}f - f\|_{H_{2/3}}^{2/3}$ $= \|\mathcal{M}_{n}(S_{2^{N},2^{N}}f - f)\|_{H_{2/3}}^{2/3}$ $+ \|\mathcal{M}_{n}S_{2^{N},2^{N}}f - S_{2^{N},2^{N}}f\|_{H_{2/3}}^{2/3} + \|S_{2^{N},2^{N}}f - f\|_{H_{2/3}}^{2/3}$ $\le c(\log(n+1)+1)\omega^{2/3}(\frac{1}{2^{N}},f)_{H_{2/3}}$ $+ \|\mathcal{M}_{n}S_{2^{N},2^{N}}f - S_{2^{N},2^{N}}f\|_{H_{2/3}}^{2/3}.$

Hence,

$$\begin{aligned} \mathcal{M}_{n}S_{2^{N},2^{N}}f - S_{2^{N},2^{N}}f \\ &= \frac{1}{n}\sum_{k=0}^{2^{N}}S_{k,k}S_{2^{N},2^{N}}f + \frac{1}{n}\sum_{k=2^{N}+1}^{n}S_{k,k}S_{2^{N},2^{N}}f - S_{2^{N},2^{N}}f \\ &= \frac{1}{n}\sum_{k=0}^{2^{N}}S_{k,k}f + \frac{(n-2^{N})S_{2^{N},2^{N}}f}{n} - S_{2^{N},2^{N}}f \\ &= \frac{2^{N}}{n}(\mathcal{M}_{2^{N}}f - S_{2^{N},2^{N}}f) \\ &= \frac{2^{N}}{n}(S_{2^{N},2^{N}}\mathcal{M}_{2^{N}}f - S_{2^{N},2^{N}}f) \\ &= \frac{2^{N}}{n}S_{2^{N},2^{N}}(\mathcal{M}_{2^{N}}f - f). \end{aligned}$$

Combining (4) and Theorem G, and following the steps of estimation (6) we get

• •

(7)
$$\begin{aligned} \|\mathcal{M}_{n}S_{2^{N},2^{N}}f - S_{2^{N},2^{N}}f\|_{H_{2/3}}^{2/3} &\leq \left(\frac{2^{N}}{n}\right)^{2/3} \|S_{2^{N},2^{N}}(\mathcal{M}_{2^{N}}f - f)\|_{H_{2/3}}^{2/3} \\ &\leq \|\mathcal{M}_{2^{N}}f - f\|_{H_{2/3}}^{2/3} \to 0, \quad \text{while } n \to \infty. \end{aligned}$$

We immediately have that if

$$\omega\Bigl(\frac{1}{2^n},f\Bigr)_{H_{2/3}}=o\Bigl(\frac{1}{n^{3/2}}\Bigr),\quad \text{as $n\to\infty$},$$

then

 $\|\mathcal{M}_n f - f\|_{H_{2/3}} \to 0$, while $n \to \infty$.

It completes the proof of the first part of our theorem.

Now, we prove the second part of Theorem 1. We set

$$a_i(x^1, x^2) = 2^{2^i} \left(D_{2^{2^i+1}}(x^1) - D_{2^{2^i}}(x^1) \right) \left(D_{2^{2^i+1}}(x^2) - D_{2^{2^i}}(x^2) \right)$$

and

$$f_{A,A}(x^1, x^2) = \sum_{i=1}^{A} \frac{a_i(x^1, x^2)}{2^{3i/2}}$$

Since

$$S_{2^{A},2^{A}}a_{k}(x^{1},x^{2}) = \begin{cases} a_{k}(x^{1},x^{2}) & \text{if } 2^{k} \leq A, \\ 0 & \text{if } 2^{k} > A, \end{cases}$$

and

$$\sup a_{k} = I_{2^{k}}^{2},$$
$$\int_{I_{2^{k}}} a_{k} d\mu = 0,$$
$$\|a_{k}\|_{\infty} \le \mu(\operatorname{supp} a_{k})^{-3/2},$$

by Theorem W we conclude that $f \in H_{2/3}$. We write that

$$\begin{aligned} f - S_{2^{n},2^{n}}f \\ &= (f^{(1)} - S_{2^{n},2^{n}}f^{(1)}, \dots, f^{(n)} - S_{2^{n},2^{n}}f^{(n)}, \dots, f^{(n+k)} - S_{2^{n},2^{n}}f^{(n+k)}, \dots) \\ &= (0,\dots,0, f^{(n+1)} - f^{(n)}, \dots, f^{(n+k)} - f^{(n)}, \dots) \\ &= \left(0,\dots,0,\dots, \sum_{i=\log n+1}^{\log n+k} \frac{a_{i}(x)}{2^{3i/2}}, \dots\right), \quad k \in \mathbb{N}_{+}. \end{aligned}$$

Hence

$$\omega\Big(\frac{1}{2^n},f\Big)_{H_{2/3}} \le \sum_{i=[\log n]}^{\infty} \frac{1}{2^{3i/2}} = O\Big(\frac{1}{n^{3/2}}\Big),$$

where $[\log n]$ denotes the integer part of $\log n$. Set $n_{2^{A-2}} = 2^{4 \cdot 2^{A-2}} + 2^{4 \cdot 2^{A-2}-4} + \dots + 2^4 + 2^0 = 2^{2^A} + 2^{2^A-4} + \dots + 2^4 + 2^0$ as in Lemma 1:

(8)
$$\mathcal{M}_{n_{2^{k-2}}}(f) - f = \frac{2^{2^k} \mathcal{M}_{2^{2^k}}(f)}{n_{2^{k-2}}} + \frac{1}{n_{2^{k-2}}} \sum_{j=2^{2^k}+1}^{n_{2^{k-2}}} S_{j,j}(f) - \frac{2^{2^k} f}{n_{2^{k-2}}} - \frac{n_{2^{k-2}-1} f}{n_{2^{k-2}}}.$$

648

It is easy to show that

(9)
$$\widehat{f}(i,j) = \begin{cases} \frac{2^{2^k}}{2^{3k/2}} & \text{if } (i,j) \in \{2^{2^k}, \dots, 2^{2^k+1}-1\}^2, k = 0, 1, \dots, \\ 0 & \text{if } (i,j) \notin \bigcup_{k=0}^{\infty} \{2^{2^k}, \dots, 2^{2^k+1}-1\}^2. \end{cases}$$

Let $2^{2^k} < j \le n_{2^{k-2}}$. Since $w_{v+2^{2^k}} = w_{2^{2^k}} w_v$, when $v < 2^{2^k}$ using (9) we have $S_{j,j}f(x^1, x^2)$

$$\begin{split} &= S_{2^{2^{k}},2^{2^{k}}}f(x^{1},x^{2}) + \sum_{v=2^{2^{k}}}^{j-1} \sum_{s=2^{2^{k}}}^{j-1} \widehat{f}(v,s)w_{v,s}(x^{1},x^{2}) \\ &= S_{2^{2^{k}},2^{2^{k}}}f(x^{1},x^{2}) + \frac{2^{2^{k}}}{2^{3k/2}} \sum_{v=0}^{j-2^{2^{k}}-1} \sum_{s=0}^{j-2^{2^{k}}-1} w_{v+2^{2^{k}}}(x^{1})w_{s+2^{2^{k}}}(x^{2}) \\ &= S_{2^{2^{k}},2^{2^{k}}}f(x^{1},x^{2}) + \frac{2^{2^{k}}w_{2^{2^{k}}}(x^{1})w_{2^{2^{k}}}(x^{2})}{2^{3k/2}} \sum_{v=0}^{j-2^{2^{k}}-1} \sum_{s=0}^{j-2^{2^{k}}-1} w_{v}(x^{1})w_{s}(x^{2}) \\ &= S_{2^{2^{k}},2^{2^{k}}}f(x^{1},x^{2}) + \frac{2^{2^{k}}w_{2^{2^{k}}}(x^{1})w_{2^{2^{k}}}(x^{2})D_{j-2^{2^{k}},j-2^{2^{k}}}(x^{1},x^{2})}{2^{3k/2}}. \end{split}$$

Hence,

$$\begin{aligned} &\frac{1}{n_{2^{k-2}}} \sum_{j=2^{2^{k}}+1}^{n_{2^{k-2}}} S_{j,j} f(x^{1},x^{2}) \\ &= \frac{n_{2^{k-2}-1} S_{2^{2^{k}},2^{2^{k}}} f(x^{1},x^{2})}{n_{2^{k-2}}} + \frac{2^{2^{k}} w_{2^{2^{k}}}(x^{1}) w_{2^{2^{k}}}(x^{2})}{n_{2^{k-2}-1}} \sum_{j=1}^{n_{2^{k-2}-1}} D_{j,j}(x^{1},x^{2}) \\ &= \frac{n_{2^{k-2}-1} S_{2^{2^{k}},2^{2^{k}}} f(x^{1},x^{2})}{n_{2^{k-2}}} + \frac{2^{2^{k}} w_{2^{2^{k}}}(x^{1}) w_{2^{2^{k}}}(x^{2}) n_{2^{k-2}-1} K_{n_{2^{k-2}-1}}(x^{1},x^{2})}{n_{2^{k-1}-1} 2^{3^{k/2}}}. \end{aligned}$$

Equality (8) yields

(10)
$$\begin{aligned} \left\| \mathcal{M}_{n_{2^{k-2}}}(f) - f \right\|_{2/3}^{2/3} &\geq \frac{c}{2^{k}} \left\| n_{2^{k-2}-1} K_{n_{2^{k-2}-1}} \right\|_{2/3}^{2/3} \\ &- \left(\frac{2^{2^{k}}}{n_{2^{k-2}}} \right)^{2/3} \left\| \mathcal{M}_{2^{2^{k}}}(f) - f \right\|_{2/3}^{2/3} \\ &- \left(\frac{n_{2^{k-2}-1}}{n_{2^{k-2}}} \right)^{2/3} \left\| S_{2^{2^{k}},2^{2^{k}}} f - f \right\|_{2/3}^{2/3}. \end{aligned}$$

 ${\rm Let}$

$$x^{1} \in I_{2^{k-2}}^{m,l} := I_{2^{k-2}}(0, \dots, 0, x_{4m}^{1} = 1, 0, \dots, 0, x_{4l}^{1} = 1, x_{4l+1}^{1}, \dots, x_{2^{k-2}-1}^{1})$$

and

$$x^{2} \in J_{2^{k-2}}^{l,q} := I_{2^{k-2}}(0, \dots, 0, x_{4l}^{2} = 1, x_{4l+1}^{1}, \dots, x_{4q-1}^{1}, 1 - x_{4q}^{1}, x_{4q+1}^{2}, \dots, x_{2^{k-2}-1}^{2}).$$

Applying Lemma 1 we have

$$n_{2^{k-2}-1} \left| K_{n_{2^{k-2}-1}}(x^1,x^2) \right| \geq 2^{4q+4l+4m-3}.$$

Hence, we can write that

$$\begin{split} &\int_{G} \left(n_{2^{k-2}-1} \left|K_{n_{2^{k-2}-1}}(x^{1},x^{2})\right|\right)^{2/3} d\mu(x^{1},x^{2}) \\ &\geq c \sum_{m=1}^{2^{k-2}-3} \sum_{l=m+1}^{2^{k-2}-2} \sum_{q=l+1}^{2^{k-2}-1} \sum_{x_{4l+1}^{1}=0}^{1} \cdots \sum_{x_{2^{k-2}-1}^{1}=0}^{1} \sum_{x_{2^{k-2}-1}^{1}=0}^{1} \sum_{x_{2^{k-2}-1}^{2}=0}^{1} \sum_{x_{2^{k-2}-1}^{1}=0}^{1} \sum_{x_{2^{k-2}-1}^{1}=0}^{1} \sum_{x_{2^{k-2}-1}^{1}=0}^{1} \left(n_{2^{k-2}-1} \left|K_{n_{2^{k-2}-1}}(x^{1},x^{2})\right|\right)^{2/3} d\mu(x^{1},x^{2}) \\ &\geq c \sum_{m=1}^{2^{k-2}-3} \sum_{l=m+1}^{2^{k-2}-2} \sum_{q=l+1}^{2^{k-2}-1} \sum_{x_{4l+1}^{1}=0}^{1} \cdots \sum_{x_{2^{k-2}-1}^{1}=0}^{1} \sum_{x_{2^{k-2}$$

Using (10) we have

$$\limsup_{k \to \infty} \left\| \mathcal{M}_{n_{2^{k-2}}}(f) - f \right\|_{2/3} \ge c > 0.$$

The proof of Theorem 1 is complete.

References

- I. Blahota, G. Gát, and U. Goginava, Maximal operators of Fejér means of Vilenkin-Fourier series, JIPAM J. Inequal. Pure Appl. Math. 7 (2006), no. 149. MR 2268603.
- [2] , Maximal operators of Fejér means of double Vilenkin-Fourier series, Colloq. Math. 107 (2007), 287–296. MR 2284166. DOI 10.4064/cm107-2-8.
- J. Fine, Cesàro summability of Walsh-Fourier series, Proc. Natl. Acad. Sci. USA 41 (1955), 558–591. MR 0070757.
- [4] S. Fridli, P. Manchanda, and A. H. Siddiqi, Approximation by Walsh-Nörlund means, Acta Sci. Math. (Szeged) 74 (2008), 593–608. MR 2487934.
- N. J. Fujii, A maximal inequality for H₁ functions on the generalized Walsh-Paley group, Proc. Amer. Math. Soc. 77 (1979), 111–116. MR 0539641. DOI 10.2307/2042726.

- U. Goginava, On the approximation properties of Cesàro means of negative order of Walsh-Fourier series, J. Approx. Theory 115 (2002), 9–20.
 MR 1888974. DOI 10.1006/jath.2001.3632.
- [7] _____, The maximal operator of Marcinkiewicz-Fejér means of the d-dimensional Walsh-Fourier series, East J. Approx. 12 (2006), 295–302.
 MR 2252557.
- [8] _____, Maximal operators of Fejér–Walsh means, Acta Sci. Math. (Szeged) 74 (2008), 615–624. MR 2487936.
- [9] _____, The weak type inequality for the maximal operator of the Marcinkiewicz-Fejér means of the two-dimensional Walsh-Fourier series, J. Approx. Theory 154 (2008), 161–180. MR 2474770. DOI 10.1016/j.jat.2008.03.012.
- [10] _____, The weak type inequality for the Walsh system, Studia Math. 185 (2008), 35–48. MR 2379997. DOI 10.4064/sm185-1-2.
- [11] _____, The martingale Hardy type inequality for Marcinkiewicz-Fejér means of two-dimensional conjugate Walsh-Fourier series, Acta Math. Sin. (Engl. Ser.) 27 (2011), 1949–1958. MR 2835217. DOI 10.1007/s10114-011-9551-7.
- U. Goginava and K. Nagy, On the maximal operator of Walsh-Kaczmarz-Fejér means, Czechoslovak Math. J. 61 (2011), 673–686. MR 2853082.
 DOI 10.1007/s10587-011-0038-6.
- [13] I. Marcinkiewisz, Sur une metode remarquable de summation des series doubles de Fourier, Ann. Scuola Norm. Sup. Pisa 8 (1939), 149–160. MR 1556822.
- F. Móricz and A. Siddiqi, Approximation by Nörlund means of Walsh-Fourier series, J. Approx. Theory. **70** (1992), 375–389. MR 1178380.
 DOI 10.1016/0021-9045(92)90067-X.
- K. Nagy, Approximation by Nörlund means of quadratical partial sums of double Walsh-Fourier series, Anal. Math. 26 (2010), 299–319. MR 2738323.
 DOI 10.1007/s10476-010-0404-x.
- [16] _____, On the maximal operator of Walsh-Marcinkiewicz means, Publ. Math. Debrecen. 78 (2011), 633–646. MR 2867206. DOI 10.5486/PMD.2011.4829.
- [17] _____, Approximation by Cesàro means of negative order of double Walsh-Kaczmarz-Fourier series, Tohoku Math. J. 64 (2012), 317–331.
- [18] J. Pál and P. Simon, On a generalization of the concept of derivative, Acta Math. Hungar. 29 (1977), 155–164. MR 0450884.
- F. Schipp, Certain rearrangements of series in the Walsh series (in Russian), Mat. Zametki 18 (1975), 193–201. MR 0390633.
- [20] F. Schipp, W. R. Wade, P. Simon, Walsh Series: An Introduction to Dyadic Harmonic Analysis, with the collaboration of J. Pál, Adam Hilger, Bristol, England, 1990. MR 1117682.
- P. Simon, Investigations with respect to the Vilenkin system, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 28 (1985), 87–101. MR 0823096.

- [22] _____, Cesàro summability with respect to two-parameter Walsh systems, Monatsh. Math. 131 (2000), 321–334. MR 1813992.
 DOI 10.1007/s006050070004.
- [23] G. Tephnadze, *Fejér means of Vilenkin–Fourier series*, Studia Sci. Math. Hungar. **49** (2012), 79–90. MR 3059789. DOI 10.1556/SScMath.2011.1187.
- [24] _____, On the maximal operator of Vilenkin-Fejér means, Turkish J. Math 37 (2013), 308–318. MR 3040854.
- [25] _____, On the maximal operators of Vilenkin–Fejér means on Hardy spaces, Math. Inequal. Appl. 16 (2013), 301–312. MR 3060398. DOI 10.7153/mia-16-23.
- [26] _____, On the maximal operator of Walsh-Kaczmarz-Fejér means, Period.
 Math. Hungar. 67 (2013), 33-45. MR 3090822. DOI 10.1007/s10998-013-4617-1.
- [27] _____, Approximation by Walsh-Kaczmarz-Fejér means on the Hardy spaces, to appear in Acta Math. Scientia.
- [28] _____, On the norm convergence by Fejér means on the bounded Vilenkin groups, to appear in Turkish J. Math.
- [29] _____, On the partial sums of Vilenkin–Fourier series, J. Contemp. Math. Anal. 49 (2014), 23–32. DOI 10.3103/S1068362314010038.
- [30] F. Weisz, Martingale Hardy Spaces and Their Applications in Fourier Analysis, Lecture Notes in Math. 1568, Springer, Berlin, 1994. MR 1320508.
- [31] _____, Cesàro summability of one- and two-dimensional Walsh–Fourier series, Anal. Math. **22** (1996), 229–242.
- [32] _____, "Hardy spaces and Cesàro means of two-dimensional Fourier series" in *Approximation Theory and Function Series (Budapest, 1995)*, Bolyai Soc. Math. Stud. 5, János Bolyai Math. Soc., Budapest, 1996, 353–367. MR 1432680.
- [33] _____, Convergence of double Walsh-Fourier series and Hardy spaces, Approx. Theory Appl. (N. S.) 17 (2001), 32–44. MR 1867788.
 DOI 10.1023/A:1015553812707.
- [34] A. Zygmund, Trigonometric Series, Vol. 1, 2nd ed., Cambridge Univ. Press, New York, 1959. MR 0107776.

Nagy: Institute of Mathematics and Computer Sciences, College of Nyíregyháza, Nyíregyháza H-4400, Hungary; nkaroly@nyf.hu

Tephnadze: Institute of Mathematics, Faculty of Exact and Natural Sciences, Tbilisi State University, Tbilisi 0128, Georgia and Department of Engineering Sciences and Mathematics, Luleå University of Technology, SE-97187 Luleå, Sweden; giorgitephnadze@gmail.com

652