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Abstract In this paper we study the pseudoprocess driven by ∂t =−A∂3
x. Our method

is an approximation by the pseudo–random walk. We obtain their joint distribution of

the first hitting time and the first hitting place. In addition, this result is provided by the

alternate method of Shimoyama.

1. Introduction

The partial equation

∂u

∂t
(t, x) =A

∂ku

∂xk
(t, x)

has been studied by many authors. Especially in k = 2 it has been studied from

the point of view of probability theory. Many studies have been conducted on

the extension in the case of k > 2 such that k is an even number because of the

analogy with the case of k = 2. We can see some of these results in Funaki [1],

Helms [2], Hochberg [3], Krylov [4], Lachel [5], [6], Motoo [7], Nakajima and Sato

[8], Nishioka [9], Sato [11], and so on.

Above all, Nishioka [9] studied the first hitting place and obtained the joint

distribution of the first hitting time and the first hitting place in k = 4 by using

Spitzer’s equality. His remarkable result is that there exists a linear combination

of the distribution of the first hitting place at zero and its differentiation. He

explained them as “monopoles” and “dipoles.” Sato [11] described Nishioka’s

explanation as a “random walk.”

Nishioka developed his method for when k is even and k ≥ 4, and Lachel [5],

[6] studied it in more detail.

However, when k is odd and k ≥ 3, there were few results because of its

asymmetry. Some authors studied the case when k = 3. Orsinger [10] obtained

the distribution of the sojourn time in (0,∞). Nishioka obtained the distribution

of the sojourn time in (0,∞) by using Spitzer’s identity and he studied the case
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where k ≥ 3 and k is odd. Shimoyama [12] studied the first hitting place and

obtained the joint distribution of the first hitting time and the first hitting place.

In this paper, we obtained the joint distribution of the first hitting time and

the first hitting place by using the method of Sato [11] when k = 3. In k = 3, we

must consider the following by its asymmetry for A> 0:

(1.1)
∂u

∂t
(t, x) =−A

∂3u

∂x3
(t, x)

and

(1.2)
∂v

∂t
(t, x) =A

∂3v

∂x3
(t, x).

But letting v(t, x) = u(t,−x), we have

∂v

∂t
(t, x) =

∂u

∂t
(t,−x)

and

A
∂3

∂x3
v(t, x) =−A

∂3u

∂x3
(t,−x).

Thus it suffices to consider (1.1). That is, it is equivalent to considering the behav-

ior of the random walk associated with (1.1) starting at x < 0 and considering

the behavior of the random walk associated with (1.2) starting at x > 0.

The paper is organized as follows.

In Section 2, we define a random walk which has the only finite jumps with

signed measure, and its total variation is not one.

In Section 3, we prove that the scaling limit of the random walk which is

defined in Section 2 is the fundamental solution of ∂tu=−A∂3
xu.

In Section 4, we study the hitting measure of the joint distribution of the

first hitting time and the first hitting place of each of the following cases.

(1) The random walk starts at x > 0, and it first hits {(t, x) : x < 0}.
(2) The random walk starts at x < 0, and it first hits {(t, x) : x > 0}.
(3) The random walk starts at x > 0, and it first hits {(t, x) : x < 0 or x > a}.

In Section 5, we study the scaling limit of the hitting measures which are

computed in Section 4 and its density in cases (1) and (2). These results corre-

spond to the results of Shimoyama [12].

2. Definition of a pseudoprocess driven by ∂t =−A∂3
x

Let {Yi : i= 1,2, . . .} be the independent and identically distributed random vari-

ables with signed distribution defined by

P (Yi = 0) = p, P (Yi = 1) = q, P (Yi = 2) = r, P (Yi =−1) = s,

and consider the random walk

Xn =X0 + Y1 + Y2 + · · ·+ Yn.
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Let f be a measurable function, and we shall write

E
[
f(Xn)

]
=
∑
k

f(k)P [Xn = k]

and

Ex

[
f(Xn)

]
=E

[
f(Xn)

∣∣X0 = x
]
.

Also, we shall write

Px[Xn = k] = P [Xn = k |X0 = x].

By the Taylor expansion, we have

Ex

[
f(X1)

]
− f(x) = (p+ q+ s+ r− 1)f(x) + (q− s+ 2r)f ′(x)

+
1

2
(q+ s+ 4r)f ′′(x) +

1

6
(q− s+ 8r)f ′′′(x) + · · ·

if we set

p+ s+ q+ r− 1 = 0, q− s+ 2r = 0, q+ s+ 4r = 0;

that is,

p= 1+ 3r, q =−3r, s=−r,

and then

Ex

[
f(X1)

]
− f(x)� r

d3

dx3
f(x).

We assume that the number r is negative. Now we compute the characteristic

function of Yi:

M(μ) = E[eiμYi ]

= p+ qeiμ + se−iμ + re2iμ

= 1+ 3r− 3reiμ − re−iμ + re2iμ.

Since

Ex[e
iμXn ] = eiμxM(μ)n,

we take any r in [−1/4,0) for the convergence of this quantity as n goes to

infinity.

Avoiding useless confusion, we set r =−A for A in (0,1/4]. We note that

M(μ) = 1− 3A+ 3Aeiμ +Ae−iμ −Ae2iμ

= 1−Ae−iμ(eiμ − 1)3(2.1)

=
{
1− 2A(1− cosμ)2

}
+ i

{
2A sinμ(1− cosμ)2

}
.

Let {Fn} be the filtration generated by (Xn). Since

p+ q+ s+ |r|= 1+ 2A,
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the total variation of Fn is less than or equal to (1+2A)n. Since Fn is essentially

a finite set, the mean Ex[·] is defined for any event of Fn. Set

p(n,k) = P0[Xn = k].

Then we have ∑
k

p(n,k)eikμ =M(μ)n.

Thus p(n,k) is the Fourier coefficient of the right-hand function. Therefore

(2.2) p(n,k) =
1

2π

∫ π

−π

M(μ)ne−ikμ dμ,

and we have

lim
n→∞

p(n,k) = 0.

REMARK 2.1

If A= 1/4, then we have

p=
1

4
, q =

3

4
, s=

1

4
, r =−1

4
,

and

M(μ) =
1

4
+

3

4
eiμ +

1

4
e−iμ − 1

4
e2iμ.

3. Scaling limit to continuous time and space

The following theorem is the main result in this section.

THEOREM 3.1

By the scaling x= kε and t= nε3 for ε > 0, we have

q(t, x) = lim
ε→0

1

ε
p(n,k)

=
1

2π

∫ ∞

−∞
eiAy3t−iyx dy,

which is the fundamental solution of (1.1).

Proof

Let δ(x) be Dirac’s delta function, and we clearly have

q(0, x) = δ(x).

We consider

1

ε
p(n,k) =

1

2πε

∫ π

−π

M(μ)t/ε
3

e−ixμ/ε dμ

=
1

2π

∫ π/ε

−π/ε

M(εy)t/ε
3

e−ixy dy
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=
1

2π

((∫ π/ε

π/ε−π/ε1/3
+

∫ −(π/ε−π/ε1/3)

−π/ε

)

+
(∫ π/ε−π/ε1/3

π/ε1/3
+

∫ −π/ε1/3

−(π/ε−π/ε1/3

)
+
(∫ π/ε1/3

−π/ε1/3

))
M(εy)t/ε

3

e−ixy dy,

= I1 + I2 + I3, say.

By (2.1),∣∣M(μ)
∣∣2 = {

1− 2A(1− cosμ)2
}2

+
{
2A sinμ(1− cosμ)

}2

= 1− 4A+ 8A2 + 8A(1− 3A) cosμ− 8A(1− 6A) cos2 μ− 8A2 cos3 μ.

We note that |M(μ)| is an even function.

First, we consider I1. For A< 1/4 and sufficiently small ε, we have

|I1| ≤
1

π

∫ π/ε

π/ε−π/ε1/3

∣∣M(εy)
∣∣t/ε3 dy

=
1

π

∫ π/ε1/3

0

∣∣M(π− εy)
∣∣t/ε3 dy

=
1

π

∫ π/ε1/3

0

∣∣1− 4A+ 8A2 − 8A(1− 3A) cos εy

− 4A(1− 6A) cos2 εy+ 8A2 cos3 εy
∣∣t/ε3 dy

≈ 1

π

∫ π/ε1/3

0

∣∣∣1− 4A+ 8A2 − 8A(1− 3A)
(
1− 1

2
ε2y2

)

− 4A(1− 6A)
(
1− 1

2
ε2y2

)2

+ 8A2
(
1− 1

2
ε2y2

)3∣∣∣t/ε3

=
1

π

∫ π/ε1/3

0

∣∣(1− 8A)2 + 8A(1− 6A)ε2y2 −A(1− 12A)ε4y4 −A2ε6y6
∣∣t/ε3

→ 0 as ε→ 0.

Second we estimate I2:

|I2| ≤
1

π

∫ π/ε−π/ε1/3

π/ε1/3

∣∣M(εy)
∣∣t/ε3 dy = 1

πε

∫ π−ε2/3π

ε2/3π

∣∣M(u)
∣∣t/ε3 du.

Since in u ∈ [0, π], M(u) takes maximum at u= 0 and minimum at u which we

take as cosu=−1 + 1/3A, we have

|I2| ≤
1

ε
max

(∣∣M(π− ε2/3π)
∣∣t/ε3 , ∣∣M(ε2/3π)

∣∣t/ε3)
≈ 1

ε
max

(
(1− 8A)t/2ε

3

, (1−Aε8/3π4)t/2ε
3)

→ 0 as ε→ 0.
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Finally, in the interval of the integral I3, we have

M(εy)≈ 1 + iAy3ε3.

Thus the proof is complete. �

Next we have the following, similar to [11].

THEOREM 3.2

Let f be continuous in L2(R). Suppose that f is the Fourier transform of a

function f̂ in L2(R); that is,

f(x) =

∫ ∞

−∞
e−iλxf̂(λ)dλ.

Set

uε(t, x) =E[ xε ]

[
f(εX[ t

ε3
])
]
,

where [·] denotes its integer part. Then there exists the limit

u(t, x) = lim
ε→0

uε(t, x)

which satisfies (1.1) and

u(0, x) = f(x).

4. Hitting measure

For each |s|< 1, the Green operator of {Xn}n≥0 is defined by

Gsf(l) =

∞∑
n=0

snEl

[
f(Xn)

]
.

By Parseval’s equality, we have∑
k

p(n,k)
2
=

1

2π

∫ π

−π

M(μ)
2n

dμ≡Kn,

where Kn is a positive constant smaller than 1 and tends to zero as n goes to

infinity since |M(μ)|< 1 except for μ= 0. Thus∣∣El

[
f(Xn)

]∣∣= ∣∣∣∑
k

p(n,k− l)f(k)
∣∣∣≤Kn‖f‖l2 .

We obtain the following.

PROPOSITION 4.1

For every f of l2, Gsf is analytic in |s|< 1, and we have∣∣Gsf(l)
∣∣≤ 1

|1− s| ‖f‖l2 .

For l and k in Z, we define

gs(l, k) = Gs1k(l) =

∞∑
n=0

snPl(Xn = k) =

∞∑
n=0

snp(n,k− l).
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For fixed |s|< 1, we have the following:

cn =
1

2π

∫ π

−π

e−inμ

1− sM(μ)
dμ,

by (2.2). We note that gs(l, k) = ck−l.

PROPOSITION 4.2

Let M1(z) = (z − 1)3 + 1
A ( 1s − 1)z, and let M2(z) =−(z − 1)3 + 1

A ( 1s − 1)z2. We

assume that |s|< 1. We have

cn =

⎧⎨
⎩

1
As

ξ−n

M ′
1(ξ)

(n≤ 0),

1
As (

ηn+1
1

M ′
2(η1)

+
ηn+1
2

M ′
2(η2)

), (n > 0),

where a real number ξ is a solution of M1(z) = 0 and complex numbers η1 and

η2 are conjugate solutions of M2(z) = 0.

Proof

First, we consider that n ≤ 0. We set z = eiμ and change a variable; then the

residue theorem implies

cn =
1

2π

∫ π

−π

e−inμ

1− s(1−Ae−iμ(eiμ − 1)3)
dμ

=
1

2πi

∫
C

dz

z

z−n

1− s(1−A 1
z (z − 1)3)

=
1

2πiAs

∫
C
dz

z−n

(z − 1)3 + 1
A ( 1s − 1)z

=
1

As

∑
|z|<1

Res
( z−n

(z − 1)3 + 1
A ( 1s − 1)z

)
,

where C is the unit circle in the complex plain. We denote by M1(z) the denom-

inator in the equation above; that is,

M1(z) = (z − 1)3 +
1

A

(1
s
− 1

)
z.

Second, we consider that n > 0. We set z = e−iμ and in a similar fashion to the

case of n≤ 0 we have

cn =
1

2π

∫ π

−π

e−inμ

1− s(1−Ae−iμ(eiμ − 1)3)
dμ

=
1

2π

∫ π

−π

e−inμ

1− s(1−Ae2iμ(1− e−iμ)3)
dμ

=
1

2πi

∫
C

dz

z

zn

1− s(1−A 1
z2 (1− z)3)
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=
1

2πiAs

∫
C
dz

zn+1

−(z − 1)3 + 1
A ( 1s − 1)z2

=
1

As

∑
|z|<1

Res
( zn+1

−(z − 1)3 + 1
A ( 1s − 1)z2

)
,

where C is the unit circle in the complex plain. We denote by M2(z) the denom-

inator in the equation above; that is,

M2(z) =−(z − 1)3 +
1

A

(1
s
− 1

)
z2.

We consider the zeros of M1(z) and M2(z). We note that

M1(z) = 0 ⇐⇒ M2(1/z) = 0.

So we have to consider the zeros of M1(z). By
1
A ( 1s − 1) > 0, ξ is the one of

solutions of M1(z) = 0 which is a real number, and 0< ξ < 1 and η′1 and η′2 are

the others of solutions of M1(z) = 0 which are complex numbers and |η′i| > 1

(i= 1,2). Taking ηi = 1/η′i (i= 1,2), we get the rest of the claims. �

The behavior of Xn varies at the boundary of an interval according to the starting

point; we will study three cases. The first case is the hitting measure to the

boundary of (−∞,0) when Xn starts at a positive point. The next case is the

hitting measure to the boundary of (0,∞) when Xn starts at a negative point.

The last case is the hitting measure to the boundary of (0,L) when Xn starts

at l where 0< l < L.

4.1. The hitting measure to the boundary of (−∞,0) when Xn starts at a positive
point

In this section, we assume that Xn starts at l, which is a positive integer.

We define the first hitting time to the set Z∩ (−∞,0) as

σ− =min{n :Xn < 0},
and we shall write

p̃(n, l, k) = Pl[Xn = k;n < σ−].

Since Fn is essentially finite, note that the quantity is well defined. Then we have

p̃(n, l, k) = Pl[Xn = k]− Pl[Xn = k;σ− ≤ n]

= Pl[Xn = k]−
n∑

m=0

Pl[σ
− =m,Xσ− =−1]P−1[Xn−m = k],

which is a strong Markov property. For l and k in Z, define

g̃s(l, k) =
∞∑

n=0

snp̃(n, l, k),

Hi(s, l) =

∞∑
n=0

snPl[σ
− = n,Xσ− = i].
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Since the total variation of Fn ≤ (1 + 2A)n, g̃s(l, k), and Hi(s, l) are analytic in

|s|< (1 + 2A)−1, then we get

g̃s(l, k) = gs(l, k)−H−1(s, l)gs(−1, k).

By l > 0, we have

g̃s(l, k) = ck−l −H−1(s, l)ck+1.

For k =−1, we have

0 = c−l−1 − c0H−1(s, l).

By Proposition 4.2, we obtain the next proposition.

PROPOSITION 4.3

For |s|< 1 and l ∈Z∩ (0,∞),

H−1(s, l) = ξl+1,

where ξ is defined in Proposition 4.2; that is, it is the real-number solution of

(z − 1)3 + 1
A ( 1s − 1)z = 0. Moreover H−1(s, l) is analytic in |s|< 1.

REMARK 4.4

For the real-number solution of (z − 1)3 + 1
A ( 1s − 1)z = 0 goes to 1 when s goes

to 1,

lim
s→1

H−1(s, l) = 1,

which is the interpretation of the hitting measure
∞∑

m=0

El[σ
− =m,Xσ− = i] =El[Xσ− = i, σ− <∞].

We note that the latter quantity may not be convergent, because all terms are

signed.

4.2. The hitting measure to the boundary of (0,∞) when Xn starts at a negative
point

In this section, we assume that Xn starts at −l, which is a negative integer.

We note that the following quantities are almost well defined by the same

reasons given in Section 4.1.

We define the first hitting time to the set Z∩ (0,∞) as

σ+ =min{n :Xn > 0},
and we shall write

p̃(n,−l, k) = P−l[Xn = k;n < σ+].

Then we have

p̃(n,−l, k) = P−l[Xn = k]− P−l[Xn = k;σ+ ≤ n]

= P−l[Xn = k]−
∑
i=1,2

n∑
m=0

P−l[σ
+ =m,Xσ+ = i]Pi[Xn−m = k].
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For l and k in Z, define

g̃s(−l, k) =
∞∑

n=0

snp̃(n,−l, k),

Hi(s,−l) =

∞∑
n=0

snP−l[σ
+ = n,Xσ+ = i].

We get

g̃s(−l, k) = gs(−l, k)−
∑
i=1,2

Hi(s,−l)gs(i, k)

= ck+l −
∑
i=1,2

Hi(s,−l)ck−i.

Especially, when k = 1 and 2, we have

0 = cl+1 − c0H1(s,−l)− c−1H2(s,−l),(4.1)

0 = cl+2 − c1H1(s,−l)− c0H2(s,−l).(4.2)

Thus we obtain the next proposition.

PROPOSITION 4.5

For |s|< 1 (s ∈R) and l ∈Z∩ (0,∞),

H1(s,−l) =
c0cl+1 − c−1cl+2

c20 − c1c−1
,

H2(s,−l) =
c0cl+2 − c1cl+1

c20 − c1c−1
.

Moreover Hi(s,−l) (i= 1,2) are analytic in |s|< 1 (s ∈R).

Proof

To show the proposition, it suffices to confirm that the denominator c20−c1c−1 �= 0

in |s|< 1 (s ∈R).

By s ∈R, we note that �{M(μ)} is an even function and �{M(μ)} is an

odd function. So |1− sM(μ)|2 is an even function with respect to μ.

For s= 0, we have

cn =

{
1, n= 0,

0, n �= 0.

So c20 − c1c−1 = 1. Thus we consider c20 − c1c−1 in the case s �= 0.

Then we have to prove the claim in the case when s ∈R, s �= 0, and |s|< 1.

We will divide this proof into some steps.

Step 1. We shall prove �{c0}> 0 for |s|< 1 (s ∈ C).
We set s= ρeiθ and M(μ) = |M(μ)|eiλ(μ), where 0< ρ< 1, π < θ <−π, and

λ(μ) is the argument of |M(μ)|:
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�{c0} = �
{ 1

2π

∫ π

−π

1

1− sM(μ)
dμ

}

=
1

2π

∫ π

−π

�{1− s̄M̄(μ)}
|1− sM(μ)|2 dμ

=
1

2π

∫ π

−π

1− ρ|M(μ)| cos(θ+ λ(μ))

|1− sM(μ)|2 dμ.

Since |M(μ)|< 1, we have 1− ρ|M(μ)| cos(θ+ λ(μ))> 0. Thus �{c0}> 0.

In the following steps we assume that s ∈R; then we note that cn is a real

number.

Step 2. We shall prove c0 + c−1 > 0 for 0< |s|< 1.

By

c0 + c−1 =
1

2π

∫ π

−π

1 + eiμ

1− sM(μ)
dμ

=
1

2π

∫ π

−π

(1 + eiμ)(1− sM̄(μ))

|1− sM(μ)|2 dμ,

it suffices to consider the real part of a numerator of the integrand:

�
{
(1 + eiμ)

(
1− sM̄(μ)

)}
= (1+ cosμ)

(
1− s�

{
M(μ)

})
− s sinμ�

{
M(μ)

}
= (1+ cosμ)

(
1− s+ 2As(1− cosμ)2

)
− 2As sin2 μ(1− cosμ)

= (1 + cosμ)(1− s).

Then it is positive for 0< |s|< 1.

Step 3. We shall prove c0 − c−1 > 0 for 0< |s|< 1.

By

c0 − c−1 =
1

2π

∫ π

−π

(1− eiμ)(1− sM̄(μ))

|1− sM(μ)|2 dμ,

it suffices to consider the real part of a numerator of the integrand,

�
{
(1− eiμ)

(
1− sM̄(μ)

)}
= (1− cosμ)

(
1− s+ 2As(1− cosμ)2

)
+ 2As sin2 μ(1− cosμ)

= (1− cosμ)
(
1− s+ 4As(1− cosμ)

)
.

For 1> s> 0, it is clear that c0 − c−1 > 0.

Now we consider −1< s< 0. By 0<A≤ 1/4,

(1− cosμ)
(
1− s+ 4As(1− cosμ)

)
≥ (1− cosμ)(1 + s cosμ)

> 0.

Then it is positive for 0< |s|< 1.
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Step 4. We shall prove c−1−c1 > 0 if −1< s< 0 and c−1−c1 < 0 if 1> s> 0.

By

c−1 − c1 =
1

2π

∫ π

−π

(eiμ − e−iμ)(1− sM̄(μ))

|1− sM(μ)|2 dμ,

it suffices to consider the real part of a numerator of the integrand,

�
{
(eiμ − e−iμ)

(
1− sM̄(μ)

)}
=−2s sin2 μ�

(
M(μ)

)
=−4As sin2 μ(1− cosμ).

Then we get the claim.

Step 5. We shall prove c−1 < 0 if 1> s> 0.

By

c−1 =
1

2π

∫ π

−π

eiμ(1− sM̄(μ))

|1− sM(μ)|2 dμ

=
2

2π

∫ π

0

�[eiμ(1− sM̄(μ))]

|1− sM(μ)|2 dμ,

it suffices to consider the real part of a numerator of the integrand:

�
{
eiμ

(
1− sM̄(μ)

)}
=−2As cos2 μ+ (1− s+ 4As) cosμ− 2As.

Setting t= cosμ, we denote by F (t) the above equation, or

F (t) =−2Ast2μ+ (1− s+ 4As)t− 2As.

We denote by α and β (|α|< |β|) solutions of the equation F (t) = 0.

By the discriminant of F (t) = 0, α and β are real numbers. Moreover by

Vièta’s formula, 0<α< 1< β.

Meanwhile, we have F (1)> 0, F (−1)< 0, and F (1)< |F (−1)|. So |(−1, α)|>
|(α,1)|, and F (t) is monotone function in (−1,1).

Thus we get c−1 < 0 if 1> s> 0.

Step 6. We shall prove c−1 > 0 if −1< s< 0.

We use the notation of step 5.

Then the discriminant of F (t) = 0 is (1− s)(1− (1− 8A)s). In the case when

the discriminant of F (t) = 0 is negative, that is, (1− (1− 8A)s)< 0, it is clear

that c−1 > 0 if s < 0 by F (t)> 0 for |t|< 1.

We shall consider the case when the discriminant of F (t) = 0 is nonnegative;

that is, (1− (1− 8A)s)≥ 0.

By the relation of solutions and coefficients about F (t) = 0, β <−1<α< 0.

Meanwhile, we have F (1)> 0, F (−1)< 0, and F (1)> |F (−1)|. So |(−1, α)|<
|(α,1)| and F (t) is a monotone function in (−1,1).

Thus we get c−1 > 0 if −1< s< 0.

Pulling together the above arguments, we can get the claim of the proposition

as follows.
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For s= 0, c20 − c1c−1 = 1> 0.

For 1> s> 0, by step 4 we have c−1 < c1, and then by step 5, −c2−1 <−c1c−1.

So by steps 2 and 3,

c20 − c1c−1 > c20 − c2−1

= (c0 − c−1)(c0 + c−1)

> 0.

For −1< s< 0, by step 4 we have c−1 > c1, and then by step 6, c2−1 > c1c−1.

Now by step 3, c0 > c−1, and then by step 1,

c20 > c0c−1

> c2−1 > c1c−1.

Therefore, c20 − c1c−1 > 0. �

Next we will compute

lim
s→1

Hi(s,−l), i= 1,2.

At first, we compute cn. By Proposition 4.2 and its proof, we consider sufficient

zero points of M1(z). We set

(4.3) v3 =
1

A

(1
s
− 1

)
and

z = 1− vz′.

Then we have

M1(1− vz′) =−v3z′3 + v3(1− vz′) = 0.

By Cardano’s formula, we obtain that

z′1 = x+ y,

z′2 = ωx+ ω2y,

and

z′3 = ω2x+ ωy

are zero points of M1(1− vz′), where

x =
3

√√√√1 +
√
1 + 4

27v
3

2
,

y =
3

√√√√1−
√
1 + 4

27v
3

2
,
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and ω is an imaginary cubic root. Thus we set

ξ = 1− vz′1,

η1 =
1

1− vz′2
,

and

η2 =
1

1− vz′3
.

We note that ξ is a zero of M1(z), which satisfies |ξ|< 1, and η1 and η2 are zeros

of M2(z), which satisfy |ηi|< 1 (i= 1,2).

By Taylor expansion, we have the following:

ξ = 1− v+
1

3
v2 − 1

81
v4 +O(v5),

η1 = 1+
−1 + i

√
3

2
v+

−1− i
√
3

3
v2 +

1

3
v3 +

5

81
(−1 + i

√
3)v4 +O(v5),

η2 = 1+
−1− i

√
3

2
v+

−1 + i
√
3

3
v2 +

1

3
v3 +

5

81
(−1− i

√
3)v4 +O(v5).

So, by Proposition 4.2 we get

(4.4) cn =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
3As

1
v2 + 3n+1

9As
1
v − n2+n

6As + 27n3+54n2+9n−10
486As v

+ 81n4+270n3+135n2−150n−56
5832As v2 +O(v3) (n≤ 0),

1
3As

1
v2 + 3n+1

9As
1
v − n2+n

3As + 27n3+54n2+9n−10
486As v

+ 81n4+270n3+135n2−150n−56
5832As v2 +O(v3) (n > 0).

From Proposition 4.5, we get

H1(s,−l) = (2 + l)− (l2 + 3l+ 2)
1

2
v+O(v2),

H2(s,−l) = (−1− l) + (l2 + 3l+ 2)
1

2
v+O(v2).

If s goes to one, then v goes to zero. Therefore we obtain the next proposition.

PROPOSITION 4.6

We have

lim
s→1

H1(s,−l) = 2+ l,

lim
s→1

H2(s,−l) = −1− l.

4.3. The hitting measure to the boundary of (0,L) when Xn starts at l (0< l < L)
In this section, we assume that Xn starts at l, which is integer and 0< l < L.

We note that the following quantities are almost well defined for the same

reasons given in Sections 4.2 and 4.3.
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We define the first hitting time to the set Z∩ (0,L) as

σ =min{n :Xn < 0 or Xn >L},

and we shall write

p̃(n, l, k) = Pl[Xn = k;n < σ].

Then we have

p̃(n, l, k) = Pl[Xn = k]− P−l[Xn = k;σ ≤ n]

= Pl[Xn = k]−
∑

i=−1,L+1,L+2

n∑
m=0

Pl[σ =m,Xσ = i]Pi[Xn−m = k].

For l and k in Z, define

g̃s(l, k) =

∞∑
n=0

snp̃(n, l, k),

Hi(s, l) =

∞∑
n=0

snPl[σ = n,Xσ = i].

We get

g̃s(l, k) = gs(l, k)−
∑

i=−1,L+1,L+2

Hi(s, l)gs(i, k)

= ck−l −
∑

i=−1,L+1,L+2

Hi(s, l)ck−i.

Especially, when k =−1, L+ 1 and L+ 2, we have

(4.5)

⎧⎪⎪⎨
⎪⎪⎩
0 = c−l−1 − c0H−1(s, l)− c−L−2HL+1(s, l)− c−L−3HL+2(s, l),

0 = cL+1−l − cL+2H−1(s, l)− c0HL+1(s, l)− c−1HL+2(s, l),

0 = cL+2−l − cL+3H−1(s, l)− c1HL+1(s, l)− c0HL+2(s, l).

So we have to solve these equations about H−1(s, l), HL+1(s, l), and HL+2(s, l).

But we are interested in the behavior of H−1(s, l), HL+1(s, l), and HL+2(s, l)

when s goes to one. Then we consider that s≈ 1.

First we will show that the determinant

|Λ| =

∣∣∣∣∣∣
c0 c−L−2 c−L−3

cL+1 c0 c−1

cL+3 c1 c0

∣∣∣∣∣∣
= c0

∣∣∣∣c0 c−1

c1 c0

∣∣∣∣− c−L−2

∣∣∣∣cL+1 c−1

cL+3 c0

∣∣∣∣+ c−L−3

∣∣∣∣cL+1 c0
cL+3 c1

∣∣∣∣
is not zero.

Meanwhile, for

cn = p(0, n) + p(1, n)s+ p(2, n)s2 + p(3, n)s3 +O(s4)
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we have

c−L−2

∣∣∣∣cL+1 c−1

cL+3 c0

∣∣∣∣=O(s4)

and

c−L−3

∣∣∣∣cL+1 c0
cL+3 c1

∣∣∣∣=O(s4).

By the proof of Proposition 4.5 we get that the determinant |Λ| is not zero.
Second, we will compute the limit

lim
s→1

Hi(s, l)

for i=−1,L+ 1,L+ 2.

From (4.4) and (4.5), we have

H−1(s, l) =
2+ l2 + 3L+L2 − l(3 + 2L)

6 + 5L+L2
+O(v2),

HL+1(s, l) =
2+ l2 − l2 +L+ lL

2 +L
+O(v2),

HL+2(s, l) =
(1 + l)(−1 + l+L)

3 +L
+O(v2),

where v is defined in (4.3). Thus we get the following.

PROPOSITION 4.7

We have

lim
s→1

H−1(s, l) =
L2 − (2l− 3)L+ (l− 1)(l− 2)

(L+ 2)(L+ 3)
,

lim
s→1

HL+1(s, l) =
(l+ 1)(L− l+ 2)

L+ 2
,

lim
s→1

HL+2(s, l) =
(l+ 1)(L+ l− 1)

L+ 3
.

5. Scaling limit of the first hitting time and place

Let s= e−ε3λ, and let y = nε. We have

v =
( 1

A
(eε

3λ − 1)
)1/3

∼ ε
( λ

A

)1/3

.

For simplicity, we set

ν =
( λ

A

)1/3

.

First, we consider the behavior of ξ, η1, and η2 in Proposition 4.2 when ε goes

to zero. By Taylor expansion, we have
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log ξ = −v− 1

6
v2 +

5

324
v4 +O(v5),

log η1 =
(−1 + i

√
3)

2
v+

(−1− i
√
3)

12
v2 +

5(1− i
√
3)

648
v4 +O(v5),

log η2 =
(−1− i

√
3)

2
v+

(−1 + i
√
3)

12
v2 +

5(1 + i
√
3)

648
v4 +O(v5).

Then we have

ξn ∼ exp
(
n
(
−v− 1

6
v2 +

5

324
v4
))

,

ηn1 ∼ exp
(
n
(
−1

2
v− 1

12
v2 +

5

648
v4
))

×
(
cos

(
n

√
3(−324v+ 54v2 + 5v4)

648

)
− i sin

(
n

√
3(−324v+ 54v2 + 5v4)

648

))
,

ηn2 ∼ exp
(
n
(
−1

2
v− 1

12
v2 +

5

648
v4
))

×
(
cos

(
n

√
3(−324v+ 54v2 + 5v4)

648

)
+ i sin

(
n

√
3(−324v+ 54v2 + 5v4)

648

))
.

Thus we get the next proposition.

PROPOSITION 5.1

We set ν = (λ/A)1/3. Let ε go to zero; then we have

ξ
y
ε → e−yν ,

η
y
ε
1 → e−

yν
2

(
cos

(√3

2
yν

)
+ i sin

(√3

2
yν

))
,

η
y
ε
2 → e−

yν
2

(
cos

(√3

2
yν

)
− i sin

(√3

2
yν

))
,

where ξ, η1, and η2 are defined in Proposition 4.2.

Let f(x) be a differentiable function, and let x > 0 in the following subsections.

5.1. The boundary of (−∞,0) when Xt starts at a positive point
Let x > 0 and

τ− = inf{t :Xt < 0}.

We have

Ex

[
e−λτ−

f(Xτ−)
]
∼ El

[
e−ε3λσ−

f(εXσ−)
]

= f(−ε)El[e
−ε3λσ−

;Xσ− =−1]

= f(−ε)H−1(e
−ε3λ, l).

Then we obtain the next theorem by Propositions 4.3 and 5.1.
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THEOREM 5.2

For every differentiable function f and x > 0, we have

(5.1) Ex

[
e−λτ−

f(Xτ−)
]
= exp

{
−x(λ/A)1/3

}
f(0).

From the Laplace inversion formula, a direct calculation shows that

L−1
(
exp

{
−x(λ/A)1/3

})
=

3A

π

∫ ∞

0

a2 exp
{
−a3tA− x

2
a
}
sin

(√3

2
xa

)
da.

Then we get the density function of the first hitting time τ− and the hitting

place:

Px{τ− ∈ dt,Xτ− ∈ dy} = ρ(t, x)dtδ0(dy)

=
3A

π

∫ ∞

0

a2 exp
{
−a3tA− x

2
a
}
sin

(√3

2
xa

)
dadtδ0(dy).

Moreover we integrate the above with respect to t from zero to t; we have the

next theorem by Shimoyama [12].

THEOREM 5.3

We have

P−
x

{
τ− ∈ [0, t],Xτ− ∈ dy

}
= 1− 3A

π

∫ ∞

0

1

a
exp

{
−a3tA− x

2
a
}
sin

(√3

2
xa

)
daδ0(dy).

5.2. The boundary of (0,∞) when Xt starts at a negative point
Let

τ+ = inf{t :Xt > 0}.
Consider

E−x

[
e−λτ+

f(Xτ+)
]

∼E−l

[
e−ε3λσ+

f(εXσ+)
]

= f(ε)E−l[e
−ε3λσ+

;Xσ+ = 1] + f(2ε)E−l[e
−ε3λσ+

;Xσ+ = 2]

= f(ε)H1(e
−ε3λ,−l) + f(2ε)H2(e

−ε3λ,−l)

=
1

2

(
f(ε) + f(2ε)

)(
H1(e

−ε3λ,−l) +H2(e
−ε3λ,−l)

)
+

1

2

(
f(ε)− f(2ε)

)(
H1(e

−ε3λ,−l)−H2(e
−ε3λ,−l)

)
.

By Propositions 4.5 and 5.1 we get the next theorem.

THEOREM 5.4

For every differentiable function f and x > 0, we have

E−x

[
e−λτ+

f(Xτ+)
]
= k(λ,x)f(0)− j(λ,x)f ′(0),
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where

k(λ,x) =
2√
3
e−

x
2 (λ/A)1/3 sin

(√3

2

( λ

A

)1/3

x+
π

3

)
,

j(λ,x) =
2√
3

(A
λ

)1/3

e−
x
2 (λ/A)1/3 sin

(√3

2

( λ

A

)1/3

x
)
.

From the Laplace inversion formula, we get the density function of the first hitting

time τ− and the hitting place

P−x{τ+ ∈ dt,Xτ+ ∈ dy}= μk(t, x)δ0(dy)− μj(t, x)δ
′
0(dy),

where

μk(t, x) =

√
3

2

A

π

∫ ∞

0

a2e−a3tA
(
e−xa + 2e

x
2 a sin

(√3

2
xa− π

6

))
da

and

μj(t, x) =

√
3

2

A

π

∫ ∞

0

ae−a3tA
(
e−xa − 2e

x
2 a cos

(√3

2
xa+

π

3

))
da.

REMARK 5.5

By direct calculus, we get the relation of μk(t, x), μj(t, x), and ρ(t, x) as follows:

μk(t, x) +
∂

∂x
μj(t, x) = ρ(t,−x).

Then we have

P−x{τ+ ∈ dt,Xτ+ ∈ dy}= ∂

∂z

{
−μj(t, x+z)δ0(dy+z)

} ∣∣∣
z=0

dt+ρ(t,−x)dtδ0(dy).

Moreover, letting

P−x

{
τ+ ∈ [0, t],Xτ+ ∈ dy

}
= μK(t, x)δ0(dy)− μJ (t, x)δ

′
0(dy),

we will compute μK(t, x) and μJ(t, x).

First we consider μK(t, x). By the definition of μk(t, x), L(μk(·, x))(λ) =
k(λ,x). Noting that μK(t, x) =

∫ t

0
μk(u,x)du, we have

lim
t→∞

μK(t, x) = lim
λ→0

λL
(
μk(·, x)

)
(λ)

= lim
λ→0

k(λ,x) = 1

by the final-value theorem of the theory of Laplace transforms. Thus we get

μK(t, x) =

∫ ∞

0

μk(u,x)du−
∫ ∞

t

μk(u,x)du

= 1−
∫ ∞

t

μk(u,x)du

= 1−
√
3

2

A

π

∫ ∞

0

e−a3tA

a

(
e−xa + 2e−

x
2 a sin

(√3

2
xa− π

6

))
da.
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Next we consider μJ (t, x). We set L(μj(·, x))(λ) = j(λ,x) and μJ (t, x) =∫ t

0
μj(u,x)du. Noting that

lim
t→∞

μJ (t, x) = lim
λ→0

λL
(
μj(·, x)

)
(λ)

= lim
λ→0

j(λ,x) = x

we get

μJ(t, x) =

∫ ∞

0

μj(u,x)du−
∫ ∞

t

μj(u,x)du

= x−
∫ ∞

t

μj(u,x)du

= x−
√
3

2

A

π

∫ ∞

0

e−a3tA

a

(
e−xa − 2e

x
2 a sin

(√3

2
xa+

π

3

))
da

in a way similar to that used above. We have the next theorem by Shimoyama [12].

THEOREM 5.6

We have

P−x

{
τ+ ∈ [0, t],Xτ+ ∈ dy

}
= μK(t, x)δ0(dy)− μJ (t, x)δ

′
0(dy),

where

μK(t, x) = 1−
√
3

2

A

π

∫ ∞

0

e−a3tA

a

(
e−xa + 2e−

x
2 a sin

(√3

2
xa− π

6

))
da

and

μJ (t, x) = x−
√
3

2

A

π

∫ ∞

0

e−a3tA

a

(
e−xa − 2e

x
2 a sin

(√3

2
xa+

π

3

))
da.

5.3. The boundary of (0, a) when Xt starts at x (0< x< a)
Let

τ = inf{t :Xt < 0 or Xt > a}.

Consider

Ex

[
e−λτf(Xτ )

]
∼El

[
e−ε3λσf(εXσ)

]
= f(−ε)El[e

−ε3λσ;Xσ =−1]

+ f(a+ ε)El[e
−ε3λσ;Xσ = L+ 1] + f(a+ 2ε)El[e

−ε3λσ;Xσ = L+ 2]

= f(−ε)H−1(e
−ε3λ, l) + f(a+ ε)HL+1(e

−ε3λ, l) + f(a+ 2ε)HL+2(e
−ε3λ, l)

= f(−ε)H−1(e
−ε3λ, l) + f(a+ ε)HL+1(e

−ε3λ, l) + f(a+ 2ε)HL+2(e
−ε3λ, l)

= f(−ε)H−1(e
−ε3λ, l)
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+
1

2

(
f(a+ ε) + f(a+ 2ε)

)(
HL+1(e

−ε3λ, l) +HL+2(e
−ε3λ, l)

)
+

1

2

(
f(a+ ε)− f(a+ 2ε)

)(
HL+1(e

−ε3λ, l)−HL+2(e
−ε3λ, l)

)
.

Then by (4.5) and Proposition 5.1 we get the following.

THEOREM 5.7

Let ν = (λ/A)1/3. For every differentiable function f and x > 0, we have

Ex

[
e−λτf(Xτ )

]
=

−e(a−x)ν + 2e−
1
2 (a−x)ν sin(

√
3
2 (a− x)ν + π

6 )

−eaν + 2e−
1
2aν sin(

√
3
2 aν + π

6 )
f(0)

+
2√
3

((
e(

a
2−x)ν sin

(√3

2
aν +

π

3

)
− e

1
2 (a+x)ν sin

(√3

2
(a− x)ν +

π

3

)
(5.2)

+ e−
1
2 (2a−x)ν sin

(√3

2
xν

))/(
−eaν + 2e−

1
2aν sin

(√3

2
aν +

π

6

)))
f(a)

− 2√
3ν

((
e(

a
2−x)ν sin

(√3

2
aν

)
− e

1
2 (a+x)ν sin

(√3

2
(a− x)ν

)

+ e−
1
2 (2a−x)ν sin

(√3

2
xν

))/(
−eaν + 2e−

1
2aν sin

(√3

2
aν +

π

6

)))
f ′(a).

REMARK 5.8

As λ goes to zero in (5.2), we obtain

u(x) =Ex

[
f(Xτ )

]
=

(a− x)2

a2
f(0) +

x(2a− x)

a2
f(a) +

x(x− a)

a
f ′(a),

which satisfies

u′′′ = 0, u(0) = f(0), u(a) = f(a), u′(a) = f ′(a).

REMARK 5.9

As a goes to infinity in (5.2), we obtain (5.1).
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